SlideShare a Scribd company logo
An Efficient Approach for the Generation of Allen
Relations
Kleanthi Georgala and Mohamed Ahmed Sherif and Axel-Cyrille Ngonga
Ngomo
University of Leipzig
Institute for Applied Informatics
September 2nd, 2016
The Hague, Netherlands
Georgala Sherif Ngonga Ngomo (InfAI) AEGLE September 14, 2016 1 / 1
Overview
Georgala Sherif Ngonga Ngomo (InfAI) AEGLE September 14, 2016 2 / 1
Why Link Discovery between events?
Why Link Discovery between events?
:E1 rdfs:label "Engine failure"@en
:E1 rdf:type :Error
:E1 :beginDate :"2015-04-22T11:39:35"
:E1 :endDate :"2015-04-22T11:39:37"
Why Link Discovery between events?
:E1 rdfs:label "Engine failure"@en
:E1 rdf:type :Error
:E1 :beginDate :"2015-04-22T11:39:35"
:E1 :endDate :"2015-04-22T11:39:37"
:E2 rdfs:label "Car accident"@en
:E2 rdf:type :Accident
:E2 :beginDate :"2015-06-28T11:45:22"
:E2 :endDate :"2015-06-28T11:45:24"
Georgala Sherif Ngonga Ngomo (InfAI) AEGLE September 14, 2016 3 / 1
Link Discovery
Linked Data 4th principle: Include links to other URIs so that they can
discover more things.
Definition (Link Discovery)
Given sets S and T of resources and relation R
Find M = {(s, t) ∈ S × T : R(s, t)}
Example: R = :failureType
Georgala Sherif Ngonga Ngomo (InfAI) AEGLE September 14, 2016 4 / 1
Do you have time to talk about.. time?
What if R = :startsBefore ?
No dedicated approaches for LD between event data
Silk scalability issues
Time complexity
Quadratic a-priori runtime
Completeness
Missing links
Scalability
Diverse KBs
Georgala Sherif Ngonga Ngomo (InfAI) AEGLE September 14, 2016 5 / 1
Event Definition
Definition (Event)
Events can be modeled as time intervals: v = (b(v), e(v))
b(v) is the beginning time (:beginDate)
e(v) is the end time (:endDate)
b(v) < e(v)
Georgala Sherif Ngonga Ngomo (InfAI) AEGLE September 14, 2016 6 / 1
Allen’s Interval Algebra
Relation Notation Inverse Illustration
X before Y bf (X, Y ) bfi(X, Y )
X
Y
X meets Y m(X, Y ) mi(X, Y )
X
Y
X finishes Y f (X, Y ) fi(X, Y )
X
Y
X starts Y st(X, Y ) sti(X, Y )
X
Y
X during Y d(X, Y ) di(X, Y )
X
Y
X equal Y eq(X, Y ) eq(X, Y )
X
Y
X overlaps with Y ov(X, Y ) ovi(X, Y )
X
Y
Georgala Sherif Ngonga Ngomo (InfAI) AEGLE September 14, 2016 7 / 1
Our Solution
Aegle: Allen’s intErval alGebra for Link
discovEry
Efficient computation of temporal
relations between events
Allen’s Interval Algebra: distinct,
exhaustive, and qualitative relations
between time intervals
Georgala Sherif Ngonga Ngomo (InfAI) AEGLE September 14, 2016 8 / 1
Our Contribution
Efficient Link Discovery between Events by:
1 Expressing 13 Allen relations using 8 atomic relations
2 Time is ordered: Find matching entities using two sorted lists
Georgala Sherif Ngonga Ngomo (InfAI) AEGLE September 14, 2016 9 / 1
Express st(s, t) using atomic relations
s
t
b(s) = b(t)
Georgala Sherif Ngonga Ngomo (InfAI) AEGLE September 14, 2016 10 / 1
Express st(s, t) using atomic relations
s
t
b(s) = b(t)
s
t
b(s) < e(t)
Georgala Sherif Ngonga Ngomo (InfAI) AEGLE September 14, 2016 10 / 1
Express st(s, t) using atomic relations
s
t
b(s) = b(t)
s
t
b(s) < e(t)
s
t
e(s) > b(t)
Georgala Sherif Ngonga Ngomo (InfAI) AEGLE September 14, 2016 10 / 1
Express st(s, t) using atomic relations
s
t
b(s) = b(t)
s
t
b(s) < e(t)
s
t
e(s) > b(t)
s
t
e(s) < e(t)
Georgala Sherif Ngonga Ngomo (InfAI) AEGLE September 14, 2016 10 / 1
AEGLE
Compute 8 atomic Boolean relations between begin and end points
BeginBegin (BB) for b(s), b(t):
BB1(s, t) ⇔ (b(s) < b(t))
BB0(s, t) ⇔ (b(s) = b(t))
BB−1(s, t) ⇔ (b(s) > b(t)) ⇔ ¬(BB1(s, t) ∨ BB0(s, t))
BeginEnd(BE) for b(s), e(t)
EndBegin(EB) for e(s), b(t)
EndEnd(EE) for e(s), e(t)
Georgala Sherif Ngonga Ngomo (InfAI) AEGLE September 14, 2016 11 / 1
Combine the atomic relations
s
t
st(s, t) ⇔ BB0
(s, t) ∧ BE1
(s, t) ∧ EB−1
(s, t) ∧ EE1
(s, t) ⇔ {BB0
(s, t) ∧ EE1
(s, t) }
Georgala Sherif Ngonga Ngomo (InfAI) AEGLE September 14, 2016 12 / 1
Combine the atomic relations
s
t
st(s, t) ⇔ BB0
(s, t) ∧ BE1
(s, t) ∧ EB−1
(s, t) ∧ EE1
(s, t) ⇔ {BB0
(s, t) ∧ EE1
(s, t) }
t
s
sti(s, t) ⇔ BB0
(s, t) ∧ BE1
(s, t) ∧ EB−1
(s, t) ∧ EE−1
(s, t) ⇔
{BB0
(s, t) ∧ EE−1
(s, t)} =
{ BB0
(s, t) ∧¬(EE0
(s, t)∨ EE1
(s, t))}
Georgala Sherif Ngonga Ngomo (InfAI) AEGLE September 14, 2016 12 / 1
Combine the atomic relations
s
t
st(s, t) ⇔ BB0
(s, t) ∧ BE1
(s, t) ∧ EB−1
(s, t) ∧ EE1
(s, t) ⇔ {BB0
(s, t) ∧ EE1
(s, t) }
t
s
sti(s, t) ⇔ BB0
(s, t) ∧ BE1
(s, t) ∧ EB−1
(s, t) ∧ EE−1
(s, t) ⇔
{BB0
(s, t) ∧ EE−1
(s, t)} =
{ BB0
(s, t) ∧¬(EE0
(s, t)∨ EE1
(s, t))}
Georgala Sherif Ngonga Ngomo (InfAI) AEGLE September 14, 2016 12 / 1
Algorithm for st, sti
Source
s1
s2
Target
t1
t2
Georgala Sherif Ngonga Ngomo (InfAI) AEGLE September 14, 2016 13 / 1
Algorithm for st, sti
Source
s1
s2
Target
t1
t2
For st:
Georgala Sherif Ngonga Ngomo (InfAI) AEGLE September 14, 2016 13 / 1
Algorithm for st, sti
Source
s1
s2
Target
t1
t2
For st:
Compute BB0
:
Georgala Sherif Ngonga Ngomo (InfAI) AEGLE September 14, 2016 13 / 1
Algorithm for st, sti
Source
s1
s2
Target
t1
t2
For st:
Compute BB0
:
s1 s2 t1 t2
{(s1, t1), (s2, t1)}
Georgala Sherif Ngonga Ngomo (InfAI) AEGLE September 14, 2016 13 / 1
Algorithm for st, sti
Source
s1
s2
Target
t1
t2
For st:
Compute BB0
:
s1 s2 t1 t2
{(s1, t1), (s2, t1)}
Compute EE1
:
s1 s2 t1 t2
{(s1, t1), (s2, t1), (s1, t2)}
Georgala Sherif Ngonga Ngomo (InfAI) AEGLE September 14, 2016 13 / 1
Algorithm for st, sti
Source
s1
s2
Target
t1
t2
For st:
Compute BB0
:
s1 s2 t1 t2
{(s1, t1), (s2, t1)}
Compute EE1
:
s1 s2 t1 t2
{(s1, t1), (s2, t1), (s1, t2)}
Intersection between BB0
and EE1
:
{(s1, t1), (s2, t1)}
Georgala Sherif Ngonga Ngomo (InfAI) AEGLE September 14, 2016 13 / 1
Algorithm for st, sti
Source
s1
s2
Target
t1
t2
For sti:
Georgala Sherif Ngonga Ngomo (InfAI) AEGLE September 14, 2016 14 / 1
Algorithm for st, sti
Source
s1
s2
Target
t1
t2
For sti:
Retrieve BB0
and EE1
:
Georgala Sherif Ngonga Ngomo (InfAI) AEGLE September 14, 2016 14 / 1
Algorithm for st, sti
Source
s1
s2
Target
t1
t2
For sti:
Retrieve BB0
and EE1
:
Compute EE0
:
s1 s2 t1 t2
{(s2, t2)}
Georgala Sherif Ngonga Ngomo (InfAI) AEGLE September 14, 2016 14 / 1
Algorithm for st, sti
Source
s1
s2
Target
t1
t2
For sti:
Retrieve BB0
and EE1
:
Compute EE0
:
s1 s2 t1 t2
{(s2, t2)}
Union between EE0
and EE1
:
{(s1, t1), (s2, t1), (s2, t1), (s2, t2)}
Georgala Sherif Ngonga Ngomo (InfAI) AEGLE September 14, 2016 14 / 1
Algorithm for st, sti
Source
s1
s2
Target
t1
t2
For sti:
Retrieve BB0
and EE1
:
Compute EE0
:
s1 s2 t1 t2
{(s2, t2)}
Union between EE0
and EE1
:
{(s1, t1), (s2, t1), (s2, t1), (s2, t2)}
Difference between BB0
and EE0
, EE1
:
{(s1, t2), (s2, t2)}
Georgala Sherif Ngonga Ngomo (InfAI) AEGLE September 14, 2016 14 / 1
Experimental Set-Up
Datasets: S = T
Log Type Dataset name Size Unique b(s) Unique e(s)
Machinery
3KMachines 3,154 960 960
30KMachines 28,869 960 960
300KMachines 288,690 960 960
Query
3KQueries 3,888 3,636 3,638
30KQueries 30,635 3,070 3,070
300KQueries 303,991 184 184
Georgala Sherif Ngonga Ngomo (InfAI) AEGLE September 14, 2016 15 / 1
Experimental Set-Up
Datasets: S = T
Log Type Dataset name Size Unique b(s) Unique e(s)
Machinery
3KMachines 3,154 960 960
30KMachines 28,869 960 960
300KMachines 288,690 960 960
Query
3KQueries 3,888 3,636 3,638
30KQueries 30,635 3,070 3,070
300KQueries 303,991 184 184
State-of-the-art:
Silk extended to deal with spatio-temporal data
Baseline for eq using brute-force
Georgala Sherif Ngonga Ngomo (InfAI) AEGLE September 14, 2016 15 / 1
Experimental Set-Up
Datasets: S = T
Log Type Dataset name Size Unique b(s) Unique e(s)
Machinery
3KMachines 3,154 960 960
30KMachines 28,869 960 960
300KMachines 288,690 960 960
Query
3KQueries 3,888 3,636 3,638
30KQueries 30,635 3,070 3,070
300KQueries 303,991 184 184
State-of-the-art:
Silk extended to deal with spatio-temporal data
Baseline for eq using brute-force
Evaluation measures:
atomic runtime of each of the atomic relations
relation runtime required to compute each Allen’s relation
total runtime required to compute all 13 relations
Georgala Sherif Ngonga Ngomo (InfAI) AEGLE September 14, 2016 15 / 1
Results
Q1: Does the reduction of Allen relations to 8 atomic relations influence the
overall runtime of the approach?
Georgala Sherif Ngonga Ngomo (InfAI) AEGLE September 14, 2016 16 / 1
Results
Q2: How does Aegle perform when compared with the state of the art in
terms of time efficiency?
Log Type Dataset Name
Total Runtime
Aegle Aegle * Silk
Machine
3KMachines 11.26 5.51 294.00
30KMachines 1,016.21 437.79 29,846.00
300KMachines 189,442.16 78,416.61 NA
Query
3KQueries 26.94 17.91 541.00
30KQueries 988.78 463.27 33,502.00
300KQueries 211,996.88 86,884.98 NA
Georgala Sherif Ngonga Ngomo (InfAI) AEGLE September 14, 2016 17 / 1
Results
Machine Query
Relation Approach 3KMachines 30KMachines 300KMachines 3KQueries 30KQueries 300KQueries
m
Aegle 0.02 0.19 3.42 0.02 0.21 3.89
Silk 23.00 2,219.00 NA 41.00 2,466.00 NA
eq
Aegle 0.05 0.79 49.84 0.05 0.45 348.51
Silk 23.00 2,250.00 NA 41.00 2,473.00 NA
baseline 2.05 171.10 23,436.30 3.15 196.09 31,452.54
ovi
Aegle 3.16 222.27 38,226.32 11.97 257.59 42,121.68
Silk 22.00 2,189.00 NA 42.00 2,503.00 NA
Georgala Sherif Ngonga Ngomo (InfAI) AEGLE September 14, 2016 18 / 1
Conclusions
Aegle: reduction of 13 Allen Interval relations to 8 atomic relations
efficiency: simple sorting with complexity O(n log n)
scalable LD
outperforms the state-of-the-art
Future Work:
Implement Aegle in parallel
Incremental computation of temporal links on streams of data
Georgala Sherif Ngonga Ngomo (InfAI) AEGLE September 14, 2016 19 / 1
Thank you!
Visit http://aksw.org/Projects/LIMES.html
Questions?
Kleanthi Georgala
AKSW Research Group
Augustusplatz 10, Room P905
04109 Leipzig, Germany
georgala@informatik.uni-leipzig.de
http://aksw.org/KleanthiGeorgala.html
Georgala Sherif Ngonga Ngomo (InfAI) AEGLE September 14, 2016 20 / 1

More Related Content

PDF
Gestor de proyecto educativo tic
PDF
tugas 1 e commerce
PPT
tugas 6 e commerce
PDF
VisualPoeticDogma2009DanutZbarcea
PDF
HTTP_SS_CONSUMER_EN
PDF
Indifference as Visual Self Ideology- Danut Zbarcea
PPT
презентация Microsoft power point
PPTX
Company profile and a gist of media research
Gestor de proyecto educativo tic
tugas 1 e commerce
tugas 6 e commerce
VisualPoeticDogma2009DanutZbarcea
HTTP_SS_CONSUMER_EN
Indifference as Visual Self Ideology- Danut Zbarcea
презентация Microsoft power point
Company profile and a gist of media research

Similar to An Efficient Approach for the Generation of Allen Relations (10)

PDF
Relational Algebra Various Operations
PPT
Formal- Relational- Query- Languages.ppt
PPT
Formal-Relational-Query-Languages.ppt for education
PPTX
3_1-_Chapterehehhsbsbsbsbdbdbdbdbdbdbdndndndndnđbbđnnd_2_-_Relational_Model_O...
PDF
Realtime Analytics
PDF
D3.js workshop
PPT
Relational Algebra
PPTX
Relational Algebra Introduction
PDF
Novel set approximations in generalized multi valued decision information sys...
PDF
RelationalAlgebra-RelationalCalculus-SQL.pdf
Relational Algebra Various Operations
Formal- Relational- Query- Languages.ppt
Formal-Relational-Query-Languages.ppt for education
3_1-_Chapterehehhsbsbsbsbdbdbdbdbdbdbdndndndndnđbbđnnd_2_-_Relational_Model_O...
Realtime Analytics
D3.js workshop
Relational Algebra
Relational Algebra Introduction
Novel set approximations in generalized multi valued decision information sys...
RelationalAlgebra-RelationalCalculus-SQL.pdf
Ad

More from Holistic Benchmarking of Big Linked Data (20)

PDF
EARL: Joint Entity and Relation Linking for Question Answering over Knowledge...
PDF
Benchmarking Big Linked Data: The case of the HOBBIT Project
PDF
Assessing Linked Data Versioning Systems: The Semantic Publishing Versioning ...
PDF
The DEBS Grand Challenge 2018
PPTX
Benchmarking of distributed linked data streaming systems
PDF
SQCFramework: SPARQL Query Containment Benchmarks Generation Framework
PDF
LargeRDFBench: A billion triples benchmark for SPARQL endpoint federation
PPTX
The DEBS Grand Challenge 2017
PDF
4th Natural Language Interface over the Web of Data (NLIWoD) workshop and QAL...
PDF
Scalable Link Discovery for Modern Data-Driven Applications (poster)
PDF
An Evaluation of Models for Runtime Approximation in Link Discovery
PDF
Scalable Link Discovery for Modern Data-Driven Applications
PDF
Extending LargeRDFBench for Multi-Source Data at Scale for SPARQL Endpoint F...
PPTX
SPgen: A Benchmark Generator for Spatial Link Discovery Tools
PDF
Introducing the HOBBIT platform into the Ontology Alignment Evaluation Campaign
PDF
OKE2018 Challenge @ ESWC2018
PDF
MOCHA 2018 Challenge @ ESWC2018
PDF
Dynamic planning for link discovery - ESWC 2018
PDF
Hobbit project overview presented at EBDVF 2017
PDF
Leopard ISWC Semantic Web Challenge 2017 (poster)
EARL: Joint Entity and Relation Linking for Question Answering over Knowledge...
Benchmarking Big Linked Data: The case of the HOBBIT Project
Assessing Linked Data Versioning Systems: The Semantic Publishing Versioning ...
The DEBS Grand Challenge 2018
Benchmarking of distributed linked data streaming systems
SQCFramework: SPARQL Query Containment Benchmarks Generation Framework
LargeRDFBench: A billion triples benchmark for SPARQL endpoint federation
The DEBS Grand Challenge 2017
4th Natural Language Interface over the Web of Data (NLIWoD) workshop and QAL...
Scalable Link Discovery for Modern Data-Driven Applications (poster)
An Evaluation of Models for Runtime Approximation in Link Discovery
Scalable Link Discovery for Modern Data-Driven Applications
Extending LargeRDFBench for Multi-Source Data at Scale for SPARQL Endpoint F...
SPgen: A Benchmark Generator for Spatial Link Discovery Tools
Introducing the HOBBIT platform into the Ontology Alignment Evaluation Campaign
OKE2018 Challenge @ ESWC2018
MOCHA 2018 Challenge @ ESWC2018
Dynamic planning for link discovery - ESWC 2018
Hobbit project overview presented at EBDVF 2017
Leopard ISWC Semantic Web Challenge 2017 (poster)
Ad

Recently uploaded (20)

PPTX
Information Storage and Retrieval Techniques Unit III
PDF
Accra-Kumasi Expressway - Prefeasibility Report Volume 1 of 7.11.2018.pdf
PPTX
Module 8- Technological and Communication Skills.pptx
PPTX
Artificial Intelligence
PDF
A SYSTEMATIC REVIEW OF APPLICATIONS IN FRAUD DETECTION
PDF
distributed database system" (DDBS) is often used to refer to both the distri...
PPT
Occupational Health and Safety Management System
PDF
PREDICTION OF DIABETES FROM ELECTRONIC HEALTH RECORDS
PPTX
Nature of X-rays, X- Ray Equipment, Fluoroscopy
PDF
III.4.1.2_The_Space_Environment.p pdffdf
PPTX
Software Engineering and software moduleing
PPTX
communication and presentation skills 01
PPTX
Graph Data Structures with Types, Traversals, Connectivity, and Real-Life App...
PPTX
AUTOMOTIVE ENGINE MANAGEMENT (MECHATRONICS).pptx
PDF
Design Guidelines and solutions for Plastics parts
PPTX
Feature types and data preprocessing steps
PDF
Influence of Green Infrastructure on Residents’ Endorsement of the New Ecolog...
PDF
August 2025 - Top 10 Read Articles in Network Security & Its Applications
PDF
BIO-INSPIRED ARCHITECTURE FOR PARSIMONIOUS CONVERSATIONAL INTELLIGENCE : THE ...
PDF
Abrasive, erosive and cavitation wear.pdf
Information Storage and Retrieval Techniques Unit III
Accra-Kumasi Expressway - Prefeasibility Report Volume 1 of 7.11.2018.pdf
Module 8- Technological and Communication Skills.pptx
Artificial Intelligence
A SYSTEMATIC REVIEW OF APPLICATIONS IN FRAUD DETECTION
distributed database system" (DDBS) is often used to refer to both the distri...
Occupational Health and Safety Management System
PREDICTION OF DIABETES FROM ELECTRONIC HEALTH RECORDS
Nature of X-rays, X- Ray Equipment, Fluoroscopy
III.4.1.2_The_Space_Environment.p pdffdf
Software Engineering and software moduleing
communication and presentation skills 01
Graph Data Structures with Types, Traversals, Connectivity, and Real-Life App...
AUTOMOTIVE ENGINE MANAGEMENT (MECHATRONICS).pptx
Design Guidelines and solutions for Plastics parts
Feature types and data preprocessing steps
Influence of Green Infrastructure on Residents’ Endorsement of the New Ecolog...
August 2025 - Top 10 Read Articles in Network Security & Its Applications
BIO-INSPIRED ARCHITECTURE FOR PARSIMONIOUS CONVERSATIONAL INTELLIGENCE : THE ...
Abrasive, erosive and cavitation wear.pdf

An Efficient Approach for the Generation of Allen Relations

  • 1. An Efficient Approach for the Generation of Allen Relations Kleanthi Georgala and Mohamed Ahmed Sherif and Axel-Cyrille Ngonga Ngomo University of Leipzig Institute for Applied Informatics September 2nd, 2016 The Hague, Netherlands Georgala Sherif Ngonga Ngomo (InfAI) AEGLE September 14, 2016 1 / 1
  • 2. Overview Georgala Sherif Ngonga Ngomo (InfAI) AEGLE September 14, 2016 2 / 1
  • 3. Why Link Discovery between events?
  • 4. Why Link Discovery between events? :E1 rdfs:label "Engine failure"@en :E1 rdf:type :Error :E1 :beginDate :"2015-04-22T11:39:35" :E1 :endDate :"2015-04-22T11:39:37"
  • 5. Why Link Discovery between events? :E1 rdfs:label "Engine failure"@en :E1 rdf:type :Error :E1 :beginDate :"2015-04-22T11:39:35" :E1 :endDate :"2015-04-22T11:39:37" :E2 rdfs:label "Car accident"@en :E2 rdf:type :Accident :E2 :beginDate :"2015-06-28T11:45:22" :E2 :endDate :"2015-06-28T11:45:24" Georgala Sherif Ngonga Ngomo (InfAI) AEGLE September 14, 2016 3 / 1
  • 6. Link Discovery Linked Data 4th principle: Include links to other URIs so that they can discover more things. Definition (Link Discovery) Given sets S and T of resources and relation R Find M = {(s, t) ∈ S × T : R(s, t)} Example: R = :failureType Georgala Sherif Ngonga Ngomo (InfAI) AEGLE September 14, 2016 4 / 1
  • 7. Do you have time to talk about.. time? What if R = :startsBefore ? No dedicated approaches for LD between event data Silk scalability issues Time complexity Quadratic a-priori runtime Completeness Missing links Scalability Diverse KBs Georgala Sherif Ngonga Ngomo (InfAI) AEGLE September 14, 2016 5 / 1
  • 8. Event Definition Definition (Event) Events can be modeled as time intervals: v = (b(v), e(v)) b(v) is the beginning time (:beginDate) e(v) is the end time (:endDate) b(v) < e(v) Georgala Sherif Ngonga Ngomo (InfAI) AEGLE September 14, 2016 6 / 1
  • 9. Allen’s Interval Algebra Relation Notation Inverse Illustration X before Y bf (X, Y ) bfi(X, Y ) X Y X meets Y m(X, Y ) mi(X, Y ) X Y X finishes Y f (X, Y ) fi(X, Y ) X Y X starts Y st(X, Y ) sti(X, Y ) X Y X during Y d(X, Y ) di(X, Y ) X Y X equal Y eq(X, Y ) eq(X, Y ) X Y X overlaps with Y ov(X, Y ) ovi(X, Y ) X Y Georgala Sherif Ngonga Ngomo (InfAI) AEGLE September 14, 2016 7 / 1
  • 10. Our Solution Aegle: Allen’s intErval alGebra for Link discovEry Efficient computation of temporal relations between events Allen’s Interval Algebra: distinct, exhaustive, and qualitative relations between time intervals Georgala Sherif Ngonga Ngomo (InfAI) AEGLE September 14, 2016 8 / 1
  • 11. Our Contribution Efficient Link Discovery between Events by: 1 Expressing 13 Allen relations using 8 atomic relations 2 Time is ordered: Find matching entities using two sorted lists Georgala Sherif Ngonga Ngomo (InfAI) AEGLE September 14, 2016 9 / 1
  • 12. Express st(s, t) using atomic relations s t b(s) = b(t) Georgala Sherif Ngonga Ngomo (InfAI) AEGLE September 14, 2016 10 / 1
  • 13. Express st(s, t) using atomic relations s t b(s) = b(t) s t b(s) < e(t) Georgala Sherif Ngonga Ngomo (InfAI) AEGLE September 14, 2016 10 / 1
  • 14. Express st(s, t) using atomic relations s t b(s) = b(t) s t b(s) < e(t) s t e(s) > b(t) Georgala Sherif Ngonga Ngomo (InfAI) AEGLE September 14, 2016 10 / 1
  • 15. Express st(s, t) using atomic relations s t b(s) = b(t) s t b(s) < e(t) s t e(s) > b(t) s t e(s) < e(t) Georgala Sherif Ngonga Ngomo (InfAI) AEGLE September 14, 2016 10 / 1
  • 16. AEGLE Compute 8 atomic Boolean relations between begin and end points BeginBegin (BB) for b(s), b(t): BB1(s, t) ⇔ (b(s) < b(t)) BB0(s, t) ⇔ (b(s) = b(t)) BB−1(s, t) ⇔ (b(s) > b(t)) ⇔ ¬(BB1(s, t) ∨ BB0(s, t)) BeginEnd(BE) for b(s), e(t) EndBegin(EB) for e(s), b(t) EndEnd(EE) for e(s), e(t) Georgala Sherif Ngonga Ngomo (InfAI) AEGLE September 14, 2016 11 / 1
  • 17. Combine the atomic relations s t st(s, t) ⇔ BB0 (s, t) ∧ BE1 (s, t) ∧ EB−1 (s, t) ∧ EE1 (s, t) ⇔ {BB0 (s, t) ∧ EE1 (s, t) } Georgala Sherif Ngonga Ngomo (InfAI) AEGLE September 14, 2016 12 / 1
  • 18. Combine the atomic relations s t st(s, t) ⇔ BB0 (s, t) ∧ BE1 (s, t) ∧ EB−1 (s, t) ∧ EE1 (s, t) ⇔ {BB0 (s, t) ∧ EE1 (s, t) } t s sti(s, t) ⇔ BB0 (s, t) ∧ BE1 (s, t) ∧ EB−1 (s, t) ∧ EE−1 (s, t) ⇔ {BB0 (s, t) ∧ EE−1 (s, t)} = { BB0 (s, t) ∧¬(EE0 (s, t)∨ EE1 (s, t))} Georgala Sherif Ngonga Ngomo (InfAI) AEGLE September 14, 2016 12 / 1
  • 19. Combine the atomic relations s t st(s, t) ⇔ BB0 (s, t) ∧ BE1 (s, t) ∧ EB−1 (s, t) ∧ EE1 (s, t) ⇔ {BB0 (s, t) ∧ EE1 (s, t) } t s sti(s, t) ⇔ BB0 (s, t) ∧ BE1 (s, t) ∧ EB−1 (s, t) ∧ EE−1 (s, t) ⇔ {BB0 (s, t) ∧ EE−1 (s, t)} = { BB0 (s, t) ∧¬(EE0 (s, t)∨ EE1 (s, t))} Georgala Sherif Ngonga Ngomo (InfAI) AEGLE September 14, 2016 12 / 1
  • 20. Algorithm for st, sti Source s1 s2 Target t1 t2 Georgala Sherif Ngonga Ngomo (InfAI) AEGLE September 14, 2016 13 / 1
  • 21. Algorithm for st, sti Source s1 s2 Target t1 t2 For st: Georgala Sherif Ngonga Ngomo (InfAI) AEGLE September 14, 2016 13 / 1
  • 22. Algorithm for st, sti Source s1 s2 Target t1 t2 For st: Compute BB0 : Georgala Sherif Ngonga Ngomo (InfAI) AEGLE September 14, 2016 13 / 1
  • 23. Algorithm for st, sti Source s1 s2 Target t1 t2 For st: Compute BB0 : s1 s2 t1 t2 {(s1, t1), (s2, t1)} Georgala Sherif Ngonga Ngomo (InfAI) AEGLE September 14, 2016 13 / 1
  • 24. Algorithm for st, sti Source s1 s2 Target t1 t2 For st: Compute BB0 : s1 s2 t1 t2 {(s1, t1), (s2, t1)} Compute EE1 : s1 s2 t1 t2 {(s1, t1), (s2, t1), (s1, t2)} Georgala Sherif Ngonga Ngomo (InfAI) AEGLE September 14, 2016 13 / 1
  • 25. Algorithm for st, sti Source s1 s2 Target t1 t2 For st: Compute BB0 : s1 s2 t1 t2 {(s1, t1), (s2, t1)} Compute EE1 : s1 s2 t1 t2 {(s1, t1), (s2, t1), (s1, t2)} Intersection between BB0 and EE1 : {(s1, t1), (s2, t1)} Georgala Sherif Ngonga Ngomo (InfAI) AEGLE September 14, 2016 13 / 1
  • 26. Algorithm for st, sti Source s1 s2 Target t1 t2 For sti: Georgala Sherif Ngonga Ngomo (InfAI) AEGLE September 14, 2016 14 / 1
  • 27. Algorithm for st, sti Source s1 s2 Target t1 t2 For sti: Retrieve BB0 and EE1 : Georgala Sherif Ngonga Ngomo (InfAI) AEGLE September 14, 2016 14 / 1
  • 28. Algorithm for st, sti Source s1 s2 Target t1 t2 For sti: Retrieve BB0 and EE1 : Compute EE0 : s1 s2 t1 t2 {(s2, t2)} Georgala Sherif Ngonga Ngomo (InfAI) AEGLE September 14, 2016 14 / 1
  • 29. Algorithm for st, sti Source s1 s2 Target t1 t2 For sti: Retrieve BB0 and EE1 : Compute EE0 : s1 s2 t1 t2 {(s2, t2)} Union between EE0 and EE1 : {(s1, t1), (s2, t1), (s2, t1), (s2, t2)} Georgala Sherif Ngonga Ngomo (InfAI) AEGLE September 14, 2016 14 / 1
  • 30. Algorithm for st, sti Source s1 s2 Target t1 t2 For sti: Retrieve BB0 and EE1 : Compute EE0 : s1 s2 t1 t2 {(s2, t2)} Union between EE0 and EE1 : {(s1, t1), (s2, t1), (s2, t1), (s2, t2)} Difference between BB0 and EE0 , EE1 : {(s1, t2), (s2, t2)} Georgala Sherif Ngonga Ngomo (InfAI) AEGLE September 14, 2016 14 / 1
  • 31. Experimental Set-Up Datasets: S = T Log Type Dataset name Size Unique b(s) Unique e(s) Machinery 3KMachines 3,154 960 960 30KMachines 28,869 960 960 300KMachines 288,690 960 960 Query 3KQueries 3,888 3,636 3,638 30KQueries 30,635 3,070 3,070 300KQueries 303,991 184 184 Georgala Sherif Ngonga Ngomo (InfAI) AEGLE September 14, 2016 15 / 1
  • 32. Experimental Set-Up Datasets: S = T Log Type Dataset name Size Unique b(s) Unique e(s) Machinery 3KMachines 3,154 960 960 30KMachines 28,869 960 960 300KMachines 288,690 960 960 Query 3KQueries 3,888 3,636 3,638 30KQueries 30,635 3,070 3,070 300KQueries 303,991 184 184 State-of-the-art: Silk extended to deal with spatio-temporal data Baseline for eq using brute-force Georgala Sherif Ngonga Ngomo (InfAI) AEGLE September 14, 2016 15 / 1
  • 33. Experimental Set-Up Datasets: S = T Log Type Dataset name Size Unique b(s) Unique e(s) Machinery 3KMachines 3,154 960 960 30KMachines 28,869 960 960 300KMachines 288,690 960 960 Query 3KQueries 3,888 3,636 3,638 30KQueries 30,635 3,070 3,070 300KQueries 303,991 184 184 State-of-the-art: Silk extended to deal with spatio-temporal data Baseline for eq using brute-force Evaluation measures: atomic runtime of each of the atomic relations relation runtime required to compute each Allen’s relation total runtime required to compute all 13 relations Georgala Sherif Ngonga Ngomo (InfAI) AEGLE September 14, 2016 15 / 1
  • 34. Results Q1: Does the reduction of Allen relations to 8 atomic relations influence the overall runtime of the approach? Georgala Sherif Ngonga Ngomo (InfAI) AEGLE September 14, 2016 16 / 1
  • 35. Results Q2: How does Aegle perform when compared with the state of the art in terms of time efficiency? Log Type Dataset Name Total Runtime Aegle Aegle * Silk Machine 3KMachines 11.26 5.51 294.00 30KMachines 1,016.21 437.79 29,846.00 300KMachines 189,442.16 78,416.61 NA Query 3KQueries 26.94 17.91 541.00 30KQueries 988.78 463.27 33,502.00 300KQueries 211,996.88 86,884.98 NA Georgala Sherif Ngonga Ngomo (InfAI) AEGLE September 14, 2016 17 / 1
  • 36. Results Machine Query Relation Approach 3KMachines 30KMachines 300KMachines 3KQueries 30KQueries 300KQueries m Aegle 0.02 0.19 3.42 0.02 0.21 3.89 Silk 23.00 2,219.00 NA 41.00 2,466.00 NA eq Aegle 0.05 0.79 49.84 0.05 0.45 348.51 Silk 23.00 2,250.00 NA 41.00 2,473.00 NA baseline 2.05 171.10 23,436.30 3.15 196.09 31,452.54 ovi Aegle 3.16 222.27 38,226.32 11.97 257.59 42,121.68 Silk 22.00 2,189.00 NA 42.00 2,503.00 NA Georgala Sherif Ngonga Ngomo (InfAI) AEGLE September 14, 2016 18 / 1
  • 37. Conclusions Aegle: reduction of 13 Allen Interval relations to 8 atomic relations efficiency: simple sorting with complexity O(n log n) scalable LD outperforms the state-of-the-art Future Work: Implement Aegle in parallel Incremental computation of temporal links on streams of data Georgala Sherif Ngonga Ngomo (InfAI) AEGLE September 14, 2016 19 / 1
  • 38. Thank you! Visit http://aksw.org/Projects/LIMES.html Questions? Kleanthi Georgala AKSW Research Group Augustusplatz 10, Room P905 04109 Leipzig, Germany georgala@informatik.uni-leipzig.de http://aksw.org/KleanthiGeorgala.html Georgala Sherif Ngonga Ngomo (InfAI) AEGLE September 14, 2016 20 / 1