1. Evolutionary algorithms aim to iteratively improve solutions through random mutation and fitness evaluation, but can become trapped in local optima. The author developed a "greedy random" mutation approach that preferentially adds rather than removes values.
2. Experiments showed this greedy random mutation was sometimes more effective at solving harder Sudoku puzzles than traditional evolutionary algorithms. This implies the quality of random mutation can significantly impact evolutionary algorithm performance with Sudoku.
3. The greedy random mutation was integrated into the evolutionary algorithm lifecycle to balance exploration and exploitation. Candidates were assessed after a removal to concentrate entropy around boundary solutions.
Related topics: