This document provides an overview of artificial neural networks (ANNs). It discusses how ANNs are inspired by biological neural networks and consist of interconnected artificial neurons that process information. The document describes common ANN architectures like multilayer perceptrons and radial basis function networks. It also summarizes different ANN learning paradigms such as supervised, unsupervised, and reinforcement learning. Specific learning rules and algorithms are mentioned, including the perceptron rule, Hebbian learning, competitive learning, and backpropagation. Applications of ANNs discussed include pattern recognition, clustering, prediction, and data compression.