SlideShare a Scribd company logo
The Dynamics of Tethered
Debris With Flexible
Appendages and Residual Fuel
(current status of the research)
Vladimir	
  S.	
  Aslanov	
  and	
  Vadim	
  V.	
  Yudintsev	
  
	
  
	
  
3rd	
  European	
  Workshop	
  of	
  Space	
  Debris	
  Modelling	
  and	
  Remedia;on	
  -­‐	
  CNES	
  HQ,	
  June	
  16-­‐18	
  2014	
  
Samara	
  State	
  Aerospace	
  University,	
  Russia	
  
1	
  
Purpose	
  
Development	
  of	
  mathema;cal	
  model	
  	
  for	
  
analysis	
  of	
  	
  an	
  aLtude	
  mo;on	
  of	
  large	
  debris	
  
using	
  tethered	
  space	
  tug	
  
3rd	
  European	
  Workshop	
  of	
  Space	
  Debris	
  Modelling	
  and	
  Remedia;on	
  -­‐	
  CNES	
  HQ,	
  June	
  16-­‐18	
  2014	
   2	
  
Large	
  Space	
  Debris:	
  Types	
  
Satellite	
  	
  
as	
  a	
  rigid	
  body	
  	
  
Satellite	
  	
  
with	
  flexible	
  
appendages	
  
Upper	
  stages	
  
	
  and	
  saQellte	
  	
  
with	
  fuel	
  
3rd	
  European	
  Workshop	
  of	
  Space	
  Debris	
  Modelling	
  and	
  Remedia;on	
  -­‐	
  CNES	
  HQ,	
  June	
  16-­‐18	
  2014	
   3	
  
Three	
  transportaEon	
  schemes	
  
3rd	
  European	
  Workshop	
  of	
  Space	
  Debris	
  Modelling	
  and	
  Remedia;on	
  -­‐	
  CNES	
  HQ,	
  June	
  16-­‐18	
  2014	
   4	
  
1.	
  Space	
  tug	
  
2.	
  Space	
  tug	
  +	
  Balloon	
  
3.	
  Balloon	
  
MathemaEcal	
  model	
  structure	
  
3rd	
  European	
  Workshop	
  of	
  Space	
  Debris	
  Modelling	
  and	
  Remedia;on	
  -­‐	
  CNES	
  HQ,	
  June	
  16-­‐18	
  2014	
  
1.	
  Equa;ons	
  of	
  the	
  center	
  
of	
  mass	
  
2.	
  Equa;ons	
  of	
  the	
  
rela;ve	
  mo;on	
  of	
  the	
  
bodies	
  
3.	
  Equa;ons	
  for	
  addi;onal	
  
elements	
  (fuel,	
  flexible	
  
appendages)	
  
5	
  
•  Tug’s	
  thrust	
  
•  Tether	
  tension	
  (depend	
  on	
  Young's	
  
modulus,	
  cross	
  sec;on	
  area,	
  
damping)	
  
•  Aerodynamic	
  forces	
  
•  Gravita;onal	
  forces	
  and	
  torques	
  
•  Magne;c	
  forces	
  and	
  torques	
  	
  
•  Solar	
  pressure	
  
•  Control	
  forces	
  and	
  torques	
  
Forces	
  and	
  Torques	
  
3rd	
  European	
  Workshop	
  of	
  Space	
  Debris	
  Modelling	
  and	
  Remedia;on	
  -­‐	
  CNES	
  HQ,	
  June	
  16-­‐18	
  2014	
   6	
  
ax	
  ,	
  ay	
  ,	
  az	
  	
  are	
  disturbance	
  accelera;ons,	
  that	
  depend	
  on	
  tug’s	
  thrust,	
  
drag,	
  gravity	
  gradient,	
  …	
  
	
  	
  	
  
EquaEons	
  of	
  the	
  mass	
  center	
  	
  
in	
  osculaEng	
  elements	
  
3rd	
  European	
  Workshop	
  of	
  Space	
  Debris	
  Modelling	
  and	
  Remedia;on	
  -­‐	
  CNES	
  HQ,	
  June	
  16-­‐18	
  2014	
  
02 y
p
a
dp
t
r
d µ
= 0 0
sin 1 cosx y
er rp
a a
p p
de
dt
θ θ
µ
⎛ ⎞
= ⎜ ⎟
⎝ ⎠
⎡ ⎤⎛ ⎞
+ + +⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦
0
0
1
cos 1 sinx y
p rp
a a
d
dt r e p
µθ
θ θ
µ
⎛ ⎞⎛ ⎞
− − + +⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠
=
0
cos( )z
di
d
r
a
pt
θ ω
µ
+=
0 01
cos 1 sin cot sin( )x y z
d
dt
r rp
a a a e i
e p p
θ θ θ ω
µ
ω ⎡ ⎤⎛ ⎞
− + + − +⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦
=0 sin( )
sin
z
d
dt
r
a
ip
θ ω
µ
Ω
=
+
7	
  
The	
  aLtude	
  mo;on	
  of	
  the	
  space	
  
debris	
  can	
  be	
  described	
  by	
  well	
  known	
  
equa;ons	
  
	
  
	
  
where	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  and	
  
Ao2	
  is	
  a	
  matrix	
  that	
  transforms	
  
coordinates	
  from	
  the	
  space	
  debris	
  
principal	
  frame	
  to	
  the	
  orbital	
  frame	
  	
  	
  
	
  	
  	
  	
  	
  	
  	
  is	
  an	
  angular	
  velocity	
  tensor	
  
associated	
  to	
  the	
  angular	
  velocity	
  of	
  
the	
  debris	
  rela;ve	
  to	
  the	
  orbital	
  frame	
  
	
  	
  	
  	
  	
  is	
  an	
  angular	
  velocity	
  vector	
  of	
  the	
  
orbital	
  frame	
  rela;ve	
  to	
  an	
  iner;al	
  
frame	
  
AOtude	
  moEon	
  of	
  space	
  debris	
  
3rd	
  European	
  Workshop	
  of	
  Space	
  Debris	
  Modelling	
  and	
  Remedia;on	
  -­‐	
  CNES	
  HQ,	
  June	
  16-­‐18	
  2014	
   8	
  
2 2 2 2 2 2ω ω ω+ × =J J M
dAo2
dt
= − !Ω2
Ao2
!Ω2
ω2
= Ω2
+ωo
ωo
System’s	
  center	
  of	
  mass	
  
viscous-­‐elas;c	
  tether	
  
Space debris as a rigid body
3rd	
  European	
  Workshop	
  of	
  Space	
  Debris	
  Modelling	
  and	
  Remedia;on	
  -­‐	
  CNES	
  HQ,	
  June	
  16-­‐18	
  2014	
  
MoEon	
  of	
  the	
  rigid	
  space	
  debris	
  
•  The	
  space	
  debris	
  is	
  considered	
  as	
  a	
  rigid	
  body.	
  	
  
•  The	
  space	
  tag	
  is	
  a	
  mass	
  point.	
  	
  
•  The	
  space	
  tug	
  equipped	
  with	
  a	
  rocket	
  thruster	
  and	
  connected	
  to	
  the	
  passive	
  
spacecra_	
  by	
  the	
  viscous-­‐elas;c	
  tether.	
  
3rd	
  European	
  Workshop	
  of	
  Space	
  Debris	
  Modelling	
  and	
  Remedia;on	
  -­‐	
  CNES	
  HQ,	
  June	
  16-­‐18	
  2014	
   10	
  
System’s	
  center	
  of	
  mass	
  
Influence	
  of	
  several	
  factors	
  to	
  the	
  moEon	
  	
  
of	
  the	
  space	
  debris	
  	
  
•  Tether	
  proper;es	
  	
  
•  Gravita;onal	
  torque	
  	
  
•  …	
  
3rd	
  European	
  Workshop	
  of	
  Space	
  Debris	
  Modelling	
  and	
  Remedia;on	
  -­‐	
  CNES	
  HQ,	
  June	
  16-­‐18	
  2014	
   11	
  
System’s	
  center	
  of	
  mass	
  
The	
  influence	
  of	
  the	
  tether	
  damping	
  
3rd	
  European	
  Workshop	
  of	
  Space	
  Debris	
  Modelling	
  and	
  Remedia;on	
  -­‐	
  CNES	
  HQ,	
  June	
  16-­‐18	
  2014	
   12	
  
•  Tether	
  is	
  slack:	
  L0=27	
  <	
  L	
  =	
  30	
  m	
  
•  Tether	
  Young's	
  modulus:	
  60	
  Gpa	
  	
  
•  Tether	
  diameter:	
  2	
  mm	
  	
  
•  Tether	
  damping:	
  dT	
  =	
  16	
  Ns/m	
  
•  Tug’s	
  force:	
  20	
  N	
  
•  ϑ0	
  =	
  0.6	
  rad	
  
•  The	
  effect	
  of	
  the	
  tether	
  damping	
  on	
  
the	
  aLtude	
  oscilla;on	
  of	
  the	
  space	
  
debris	
  rela;ve	
  to	
  the	
  tether	
  is	
  
insignificant	
  
The	
  influence	
  of	
  gravitaEonal	
  torque	
  
•  If	
  tug’s	
  thrust	
  is	
  low	
  high	
  amplitude	
  oscilla;on	
  of	
  the	
  
tether	
  can	
  occur	
  rela;ve	
  to	
  the	
  ro	
  direc;on	
  due	
  to	
  the	
  
ac;on	
  of	
  the	
  gravita;onal	
  torque.	
  
	
  
•  The	
  space	
  tug	
  control	
  system	
  should	
  compensate	
  these	
  
high	
  oscilla;ons	
  of	
  the	
  angle	
  a	
  by	
  changing	
  the	
  direc;on	
  
of	
  the	
  thruster	
  force	
  vector	
  F.	
  
3rd	
  European	
  Workshop	
  of	
  Space	
  Debris	
  Modelling	
  and	
  Remedia;on	
  -­‐	
  CNES	
  HQ,	
  June	
  16-­‐18	
  2014	
   13	
  
•  Space	
  debris	
  with	
  the	
  long	
  tether	
  
(l0=150	
  m)	
  and	
  a	
  small	
  value	
  of	
  the	
  
space	
  tug	
  force	
  F=0.2	
  N	
  is	
  
considered.	
  
•  Figure	
  shows	
  oscilla;ons	
  of	
  the	
  
angles	
  α	
  between	
  the	
  tether	
  and	
  
the	
  axis	
  Oyo	
  of	
  the	
  orbital	
  rota;ng	
  
frame	
  with	
  undesirably	
  high	
  
amplitudes	
  while	
  θ	
  is	
  small.	
  
•  Marked	
  oscilla;ons	
  caused	
  by	
  the	
  
gravita;onal	
  torque	
  that	
  is	
  created	
  
by	
  the	
  difference	
  between	
  the	
  
gravity	
  forces	
  act	
  on	
  the	
  space	
  tug	
  
and	
  on	
  the	
  orbital	
  debris.	
  	
  
The	
  influence	
  of	
  gravitaEonal	
  torque:	
  example	
  
3rd	
  European	
  Workshop	
  of	
  Space	
  Debris	
  Modelling	
  and	
  Remedia;on	
  -­‐	
  CNES	
  HQ,	
  June	
  16-­‐18	
  2014	
   14	
  
•  Maximum	
  tether	
  length	
  as	
  a	
  
func;on	
  of	
  the	
  space	
  tug	
  force	
  (F)	
  
and	
  orbit	
  height	
  (h)	
  is	
  expressed	
  as	
  
•  If	
  l>lmax	
  high	
  amplitude	
  oscilla;ons	
  
of	
  α	
  occur	
  
	
  
	
  
	
  
Maximum	
  tether	
  length	
  as	
  a	
  funcEon	
  of	
  tug’s	
  thrust	
  	
  
3rd	
  European	
  Workshop	
  of	
  Space	
  Debris	
  Modelling	
  and	
  Remedia;on	
  -­‐	
  CNES	
  HQ,	
  June	
  16-­‐18	
  2014	
  
( )
3
max
13 m
eF R h
l
µ
+
=
15	
  
lmax(F,h)
For	
  a	
  drag	
  augmenta;on	
  device	
  (e.g.	
  
balloon)	
  maximum	
  tether	
  length	
  is	
  a	
  
func;on	
  of	
  the	
  radius	
  of	
  the	
  balloon	
  
(Rs)	
  and	
  orbit	
  height	
  (h)	
  
Maximum	
  tether	
  length	
  as	
  a	
  funcEon	
  	
  
of	
  the	
  balloon’s	
  radius	
  	
  
3rd	
  European	
  Workshop	
  of	
  Space	
  Debris	
  Modelling	
  and	
  Remedia;on	
  -­‐	
  CNES	
  HQ,	
  June	
  16-­‐18	
  2014	
  
lmax
= Cx
πRs
2
ρV 2
Re
+ h( )
3
6µ m1
16	
  
lmax(Rs,h)
Space debris with flexible
appendages
3rd	
  European	
  Workshop	
  of	
  Space	
  Debris	
  Modelling	
  and	
  Remedia;on	
  -­‐	
  CNES	
  HQ,	
  June	
  16-­‐18	
  2014	
  
•  Space	
  tug	
  
•  Mass:	
  m1	
  
•  Thrust	
  force	
  F	
  
•  Orbital	
  debris	
  
•  Mass:	
  m2	
  
•  Moments	
  of	
  iner;a:	
  J2x,	
  J2y,	
  J2z	
  
Debris	
  with	
  flexible	
  appendages	
  	
  
3rd	
  European	
  Workshop	
  of	
  Space	
  Debris	
  Modelling	
  and	
  Remedia;on	
  -­‐	
  CNES	
  HQ,	
  June	
  16-­‐18	
  2014	
   18	
  
•  Flexible	
  appendages	
  are	
  considered	
  
as	
  in-­‐plane	
  bending	
  homogeneous	
  
beams,	
  characterized	
  by	
  
•  Bending	
  s;ffness:	
  EJi	
  
•  Length:	
  li	
  
•  Mass	
  per	
  unit	
  length:	
  μi	
  
•  To	
  describe	
  the	
  mo;on	
  of	
  flexible	
  
appendages	
  the	
  normal	
  mode	
  
expansion	
  technique	
  is	
  used:	
  
Debris	
  with	
  flexible	
  appendages	
  	
  
3rd	
  European	
  Workshop	
  of	
  Space	
  Debris	
  Modelling	
  and	
  Remedia;on	
  -­‐	
  CNES	
  HQ,	
  June	
  16-­‐18	
  2014	
  
1
( ) ( )i j i ij
j
q tη ξ
∞
=
= Φ∑
19	
  
•  The	
  natural	
  frequency	
  of	
  the	
  
tether	
  is	
  higher	
  	
  than	
  the	
  
frequency	
  of	
  the	
  flexible	
  
appendages.	
  
•  The	
  vibra;ons	
  of	
  the	
  flexible	
  
appendages	
  haven't	
  a	
  significant	
  
influence	
  on	
  the	
  tether	
  
vibra;ons	
  and	
  on	
  the	
  aLtude	
  
mo;on	
  of	
  the	
  debris.	
  
Case	
  1	
  –	
  Far	
  spaced	
  frequencies	
  
3rd	
  European	
  Workshop	
  of	
  Space	
  Debris	
  Modelling	
  and	
  Remedia;on	
  -­‐	
  CNES	
  HQ,	
  June	
  16-­‐18	
  2014	
   20	
  
λt
>> λf
•  The	
  amplitude	
  of	
  the	
  tether	
  
vibra;ons	
  is	
  influenced	
  by	
  the	
  
vibra;ons	
  of	
  the	
  solar	
  panels	
  
and	
  and	
  vice	
  versa.	
  
•  At	
  t=15	
  the	
  deforma;on	
  of	
  the	
  
panel	
  2	
  reach	
  the	
  breaking	
  strain	
  
(doQed	
  red	
  lines)	
  causing	
  
structure	
  failure.	
  
Case	
  2	
  –	
  Closely	
  spaced	
  frequencies	
  
3rd	
  European	
  Workshop	
  of	
  Space	
  Debris	
  Modelling	
  and	
  Remedia;on	
  -­‐	
  CNES	
  HQ,	
  June	
  16-­‐18	
  2014	
  
t fλ λ≈
21	
  
DeterminaEon	
  of	
  the	
  parameters	
  for	
  safe	
  
transportaEon	
  
Let	
  us	
  consider	
  simplified	
  1D	
  equa;ons	
  
for	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  and	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  where	
  	
  	
  	
  	
  	
  
3rd	
  European	
  Workshop	
  of	
  Space	
  Debris	
  Modelling	
  and	
  Remedia;on	
  -­‐	
  CNES	
  HQ,	
  June	
  16-­‐18	
  2014	
  
!!q = cqq
q + cqε
ε
!!ε = cεq
q + cεε
ε + aε
22	
  
aε
=
F
l0
m1
cqq
=
EJla
m2
+ 2ma( )Ι4
µ 2ma
Ι1
2
− m2
+ 2ma( )la
Ι2
⎡
⎣
⎤
⎦
, cqε
=
2ct
l0
Ι1
2ma
Ι1
2
− m2
+ 2ma( )la
Ι2
,
cεq
=
EJla
ma
Ι1
Ι4
µl0
2ma
Ι1
2
− m2
+ 2ma( )la
Ι2
⎡
⎣
⎤
⎦
, cεε
=
ct
la
MΙ2
− 2µΙ1
2
( )
m1
2ma
Ι1
2
− m2
+ 2ma( )la
Ι2
⎡
⎣
⎤
⎦
,
( )1 2 / 2q q q= + ( )0 0/l l lε = −
Frequencies	
  esEmaEon	
  
•  Solu;ons	
  the	
  characteris;c	
  equa;on	
  
	
  
where	
  D	
  	
  is	
  a	
  discriminant	
  	
  
where	
  	
  
	
  
	
  
•  D	
  characterizes	
  the	
  closeness	
  of	
  	
  the	
  frequencies	
  of	
  the	
  tether	
  and	
  flexible	
  
appendages.	
  	
  
•  D	
  should	
  be	
  maximized	
  to	
  avoid	
  mutual	
  influence	
  between	
  tether	
  
oscilla;ons	
  and	
  the	
  oscilla;ons	
  of	
  flexible	
  appendages	
  
3rd	
  European	
  Workshop	
  of	
  Space	
  Debris	
  Modelling	
  and	
  Remedia;on	
  -­‐	
  CNES	
  HQ,	
  June	
  16-­‐18	
  2014	
  
( ) ( )
( )
22 4 4 2 2
1 2 1 1 4 1 2 1 1 4
22 2 2
1 1 1 2
4 4
4 2
t t t tc c M EJm M m c c M EJm
D
M m
M
m M m
µ µ µ µ
µ µ
Ι + Ι − − Ι + Ι − Ι + + Ι⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦
− Ι + − Ι
=
⎡ ⎤⎣ ⎦
1,2
2
b
Dλ = ±
23	
  
Ι1
=
0
la
∫Φ1
η( )dη, Ι2
=
0
la
∫ Φ1
η( )⎡
⎣
⎤
⎦
2
dη, Ι3
=
0
la
∫ηΦ1
η( )dη, Ι4
=
0
la
∫ Φ1
′′ η( )⎡
⎣⎢
⎤
⎦⎥
2
dη
l1
= l2
= la
, M = m1
+ m2
+ 2µla
, EJ1
= EJ2
= EJ
0.00035
0.0005
0.0005
0.002
0.0020.01
0.01
0.05
0.1
0 50 100 150 200 250 300
100
200
300
400
500
600
700
800
ct, N m
m1,kg
O
A
B
C D
Amplitude	
  of	
  the	
  oscillaEons	
  as	
  a	
  funcEon	
  	
  
of	
  the	
  tether	
  sEffness	
  &	
  tug’s	
  mass	
  
3rd	
  European	
  Workshop	
  of	
  Space	
  Debris	
  Modelling	
  and	
  Remedia;on	
  -­‐	
  CNES	
  HQ,	
  June	
  16-­‐18	
  2014	
   24	
  
A:	
  max|q1|=0.035;	
  B:	
  max|q1|=0.005;	
  	
  
C:	
  max|q1|=0.030;	
  D:	
  max|q1|=0.015	
  
D(m,ct
)
The motion of upper stages
with fuel
(preliminary research)
3rd	
  European	
  Workshop	
  of	
  Space	
  Debris	
  Modelling	
  and	
  Remedia;on	
  -­‐	
  CNES	
  HQ,	
  June	
  16-­‐18	
  2014	
  
Upper	
  stage	
  with	
  fuel	
  
1.  Space	
  debris	
  is	
  a	
  orbital	
  stage	
  with	
  par;ally	
  filled	
  tanks.	
  
2.  Thruster	
  burn	
  phase	
  is	
  considered	
  
3.  Tether	
  is	
  weightless	
  and	
  viscoelas;c	
  
4.  F	
  =	
  const	
  
3rd	
  European	
  Workshop	
  of	
  Space	
  Debris	
  Modelling	
  and	
  Remedia;on	
  -­‐	
  CNES	
  HQ,	
  June	
  16-­‐18	
  2014	
   26	
  
Simple	
  fuel	
  slosh	
  model	
  
3rd	
  European	
  Workshop	
  of	
  Space	
  Debris	
  Modelling	
  and	
  Remedia;on	
  -­‐	
  CNES	
  HQ,	
  June	
  16-­‐18	
  2014	
  
•  The	
  space	
  debris	
  is	
  
considered	
  as	
  a	
  rigid	
  body	
  
(m,	
  J).	
  
•  The	
  fuel	
  slosh	
  is	
  modeled	
  as	
  
a	
  pendulum	
  (mf,	
  Jf,	
  lf).	
  
•  The	
  space	
  tag	
  is	
  a	
  mass	
  
point	
  (m1)	
  
•  The	
  space	
  tug	
  equipped	
  
with	
  a	
  rocket	
  thruster	
  and	
  
connected	
  to	
  the	
  passive	
  
spacecra_	
  by	
  the	
  viscous-­‐
elas;c	
  tether	
  (l,	
  ct,	
  E,	
  d)	
  
27	
  
Parameter	
   Value	
   Parameter	
   Value	
  
Tug	
  mass	
   100	
  	
  kg	
   Thrust	
  force	
   20	
  N	
  
Debris	
  mass	
  (dry)	
   500	
  kg	
   Tether	
  length	
   50	
  m	
  
Fuel	
  mass	
   200	
  kg	
   Tether	
  sEffness	
   80	
  MPa	
  
[2.0;	
  0.1]	
   COF	
   2	
  m	
  
Simple	
  example	
  
3rd	
  European	
  Workshop	
  of	
  Space	
  Debris	
  Modelling	
  and	
  Remedia;on	
  -­‐	
  CNES	
  HQ,	
  June	
  16-­‐18	
  2014	
   28	
  
ρA
Case	
  1	
  –	
  fuel	
  is	
  “frozen”	
  
3rd	
  European	
  Workshop	
  of	
  Space	
  Debris	
  Modelling	
  and	
  Remedia;on	
  -­‐	
  CNES	
  HQ,	
  June	
  16-­‐18	
  2014	
  
Ini;al	
  condi;ons	
  
	
  
	
  
Oscilla;ons	
  of	
  α	
  and	
  θ	
  caused	
  by	
  
the	
  shi_ed	
  aQachment	
  point:	
  
ρA=[2;	
  0.1]	
  
	
  
	
  
	
  
	
  
	
  
	
  
29	
  
α0
= 0, θ0
= 0
Ini;al	
  condi;ons	
  
	
  
The	
  influence	
  of	
  the	
  considered	
  fuel	
  
slosh	
  to	
  the	
  mo;on	
  of	
  the	
  debris	
  is	
  
insignificant	
  	
  
	
  
Case	
  2	
  –	
  Orbital	
  debris	
  with	
  fuel	
  slosh	
  
3rd	
  European	
  Workshop	
  of	
  Space	
  Debris	
  Modelling	
  and	
  Remedia;on	
  -­‐	
  CNES	
  HQ,	
  June	
  16-­‐18	
  2014	
   30	
  
α0
= 0, θ0
= 0, ϕ0
= 0.2
What	
  has	
  been	
  done?	
  
• We	
  have	
  been	
  learned	
  to	
  simulate	
  aLtude	
  mo;on	
  of	
  the	
  
system	
  (debris+tether+tug)	
  	
  
	
  
• Some	
  simple	
  examples	
  are	
  shown	
  
	
  
• We	
  found	
  that	
  characteris;cs	
  of	
  a	
  tether	
  and	
  a	
  space	
  tug	
  
affect	
  on	
  the	
  level	
  of	
  vibra;ons	
  of	
  flexible	
  elements	
  
• Wrong	
  choice	
  of	
  the	
  characteris;cs	
  can	
  lead	
  to	
  the	
  
destruc;on	
  of	
  debris	
  
3rd	
  European	
  Workshop	
  of	
  Space	
  Debris	
  Modelling	
  and	
  Remedia;on	
  -­‐	
  CNES	
  HQ,	
  June	
  16-­‐18	
  2014	
   31	
  
What	
  we	
  will	
  intend	
  to	
  do?	
  
• To	
  study	
  the	
  capture	
  dynamics	
  of	
  debris	
  (using	
  
harpoon,	
  net,	
  lasso	
  ...)	
  	
  
	
  
• To	
  examine	
  a	
  stabiliza;on	
  phase	
  a_er	
  capture	
  
debris	
  and	
  find	
  a	
  law	
  of	
  tether	
  control	
  	
  
	
  
• To	
  consider	
  a	
  par;cular	
  type	
  of	
  debris	
  at	
  all	
  
removal	
  stages:	
  from	
  the	
  capture	
  to	
  the	
  
atmospheric	
  stage	
  
3rd	
  European	
  Workshop	
  of	
  Space	
  Debris	
  Modelling	
  and	
  Remedia;on	
  -­‐	
  CNES	
  HQ,	
  June	
  16-­‐18	
  2014	
   32	
  
PublicaEons	
  
Published	
  
•  V.S.	
  Aslanov,	
  V.	
  V.	
  Yudintsev,	
  Dynamics	
  of	
  Large	
  Debris	
  Connected	
  to	
  Space	
  Tug	
  by	
  a	
  Tether,	
  J.	
  
Guid.	
  Control.	
  Dyn.	
  36	
  (2013)	
  1654–1660.	
  	
  
•  V.	
  Aslanov,	
  V.	
  Yudintsev,	
  Dynamics	
  of	
  large	
  space	
  debris	
  removal	
  using	
  tethered	
  space	
  tug,	
  
Acta	
  Astronaut.	
  91	
  (2013)	
  149–156.	
  
•  V.	
  Aslanov,	
  A.	
  Ledkov,	
  Dynamics	
  of	
  towed	
  large	
  space	
  debris	
  taking	
  into	
  account	
  atmospheric	
  
disturbance,	
  Acta	
  Mech.	
  (2014)	
  1–13.	
  	
  
	
  
SubmiQed	
  
•  V.	
  S.	
  Aslanov,	
  V.	
  V.	
  Yudintsev,	
  Behaviour	
  of	
  Tethered	
  Debris	
  With	
  Flexible	
  Appendages	
  	
  (Acta	
  
Astronau;ca)	
  
•  V.	
  S.	
  Aslanov,	
  V.	
  V.	
  Yudintsev,	
  Dynamics,	
  AnalyEcal	
  SoluEons	
  and	
  Parameters	
  EsEmaEon	
  for	
  
Towed	
  Space	
  Debris	
  with	
  Flexible	
  Appendages	
  (Advances	
  in	
  Space	
  Research)	
  
	
  
In	
  work	
  
•  V.	
  S.	
  Aslanov,	
  V.	
  V.	
  Yudintsev,	
  Modeling	
  of	
  Tethered	
  Space	
  Debris	
  with	
  Fuel	
  (Acta	
  Astronau;ca)	
  
	
  
	
   3rd	
  European	
  Workshop	
  of	
  Space	
  Debris	
  Modelling	
  and	
  Remedia;on	
  -­‐	
  CNES	
  HQ,	
  June	
  16-­‐18	
  2014	
   33	
  
Thank	
  You	
  
3rd	
  European	
  Workshop	
  of	
  Space	
  Debris	
  Modelling	
  and	
  Remedia;on	
  -­‐	
  CNES	
  HQ,	
  June	
  16-­‐18	
  2014	
   34	
  
Authors	
  
• Vladimir	
  S.	
  Aslanov	
  
Prof.,	
  Head	
  of	
  the	
  Theore;cal	
  Mechanics	
  Department,	
  	
  
Samara	
  State	
  Aerospace	
  University	
  
aslanov_vs@mail.ru	
  
hQp://aslanov.ssau.ru	
  
• Vadim	
  V.	
  Yudintsev	
  
Associate	
  Prof.,	
  Theore;cal	
  Mechanics	
  Department,	
  	
  
Samara	
  State	
  Aerospace	
  University	
  
yudintsev@classmech.ru	
  
hQp://www.classmech.ru	
  
	
  
	
   3rd	
  European	
  Workshop	
  of	
  Space	
  Debris	
  Modelling	
  and	
  Remedia;on	
  -­‐	
  CNES	
  HQ,	
  June	
  16-­‐18	
  2014	
   35	
  

More Related Content

PPTX
On problems of active space debris removal using tethered towing
PDF
The Removal of Large Space Debris Using Tethered Space Tug
PPTX
Chaotic motions of tethered satellites with low thrust
PDF
Deployers for nanosatellites
PPTX
Master's presentation (English)
PDF
Control ofspacecraftswarmsoct01
PDF
Chaotic motions of tethered satellites with low thrust
PDF
Chaos satellite dynamics 1 aiaa-92-4369
On problems of active space debris removal using tethered towing
The Removal of Large Space Debris Using Tethered Space Tug
Chaotic motions of tethered satellites with low thrust
Deployers for nanosatellites
Master's presentation (English)
Control ofspacecraftswarmsoct01
Chaotic motions of tethered satellites with low thrust
Chaos satellite dynamics 1 aiaa-92-4369

What's hot (20)

PDF
toroidwork07-12-2012
PPTX
Payload Mass Improvements of Supersonic Retropropulsive Flight for Human Clas...
PPTX
Vasimr
PDF
Prediction of the daily global solar irradiance received on a horizontal surf...
PPTX
CubeSat separation dynamics
PDF
Is there Life on Mars? a Sample Return Mission Concept
PDF
Ultra-fast Outflows from Active Galactic Nuclei of Seyfert I Galaxies
PDF
Relativistic Compact Outflows in Radio-quiet AGN
PDF
Temporary Satellite Capture Of Short-Period Jupiter Family Comets From The Pe...
PPTX
Lagrangeon Points
PDF
Photoionization Modeling of Warm Absorbing Outflows in Active Galactic Nuclei
PDF
Presentation for the 19th EUROSTAR Users Conference June 2011
PPTX
EAS6415presentation
PDF
637340main marco pavone_niac
PDF
Control Strategies For Formation Flight In The Vicinity Of The Libration Points
PDF
EAGES Proceedings - D. N. Sinitsyn
PDF
Advances in Satellite Conjunction Analysis with OR.A.SI
PDF
Flight Dynamics Software Presentation Part II Version 7
PDF
LEO OR.A.SI Presentation Version No.17
PDF
Insights to the Morphology of Planetary Nebulae from 3D Spectroscopy
toroidwork07-12-2012
Payload Mass Improvements of Supersonic Retropropulsive Flight for Human Clas...
Vasimr
Prediction of the daily global solar irradiance received on a horizontal surf...
CubeSat separation dynamics
Is there Life on Mars? a Sample Return Mission Concept
Ultra-fast Outflows from Active Galactic Nuclei of Seyfert I Galaxies
Relativistic Compact Outflows in Radio-quiet AGN
Temporary Satellite Capture Of Short-Period Jupiter Family Comets From The Pe...
Lagrangeon Points
Photoionization Modeling of Warm Absorbing Outflows in Active Galactic Nuclei
Presentation for the 19th EUROSTAR Users Conference June 2011
EAS6415presentation
637340main marco pavone_niac
Control Strategies For Formation Flight In The Vicinity Of The Libration Points
EAGES Proceedings - D. N. Sinitsyn
Advances in Satellite Conjunction Analysis with OR.A.SI
Flight Dynamics Software Presentation Part II Version 7
LEO OR.A.SI Presentation Version No.17
Insights to the Morphology of Planetary Nebulae from 3D Spectroscopy
Ad

Viewers also liked (15)

PDF
Метод Й. Виттенбурга (Сферические шарниры)
PDF
Динамика твёрдого тела: случай Лагранжа
PDF
Случай Эйлера
PDF
Кинематические уравнения
PDF
Кватернионы
PPTX
1U-3U+ Cubesat Deployer by JSC SRC "Progress"
PDF
Ортогональные матрицы
PDF
Отделение створок головного обтекателя
PDF
Метод Й. Виттенбурга (Универсальные и цилиндрические шарниры)
PDF
Основы MATLAB. Программирование
PDF
Attitude Dynamics of Re-entry Vehicle
PPTX
Научно-исследовательская работа кафедры Теоретической механики
PDF
Основы MATLAB. Лекция 1.
PDF
FEEDBACK LINEARIZATION AND BACKSTEPPING CONTROLLERS FOR COUPLED TANKS
PDF
Ant Colony Optimization
Метод Й. Виттенбурга (Сферические шарниры)
Динамика твёрдого тела: случай Лагранжа
Случай Эйлера
Кинематические уравнения
Кватернионы
1U-3U+ Cubesat Deployer by JSC SRC "Progress"
Ортогональные матрицы
Отделение створок головного обтекателя
Метод Й. Виттенбурга (Универсальные и цилиндрические шарниры)
Основы MATLAB. Программирование
Attitude Dynamics of Re-entry Vehicle
Научно-исследовательская работа кафедры Теоретической механики
Основы MATLAB. Лекция 1.
FEEDBACK LINEARIZATION AND BACKSTEPPING CONTROLLERS FOR COUPLED TANKS
Ant Colony Optimization
Ad

Similar to The Dynamics of Tethered Debris With Flexible Appendages and Residual Fuel (20)

PDF
Manuscript7
PDF
What are the most viable forms of alternative propulsion for the future of sp...
PPTX
Motion of the space elevator after the ribbon rupture
PDF
Comparison_of_Space_Propulsion_Methods_for_a_Manne (1).pdf
PDF
F1303023038
DOCX
Recent Research for IISE Conference
PDF
Long_Alexandra-8900_final
PDF
EAGES Proceedings - K. V. Rozhdestvenskii 2
PDF
YP in space2018_bcn_all_slides_lab_sesssions_x2
PDF
Rotation_Matricies_Derivation_Kappa_Goniometer
PDF
Simulation of Deployment and Operation of an Earth Observing Satellite
PDF
Damage detection in cfrp plates by means of numerical modeling of lamb waves ...
PDF
Human observation of General-Relativistic Astrophysical Phenomena from the space
PDF
Space Orbit Trajectory
PDF
Ultrafast transfer of low-mass payloads to Mars and beyond using aerographite...
DOCX
Write up Final
PDF
Analysis Of Owl-Like Airfoil Aerodynamics At Low Reynolds Number Flow
PDF
Fluorescence detector Array of Single-pixel Telescopes (FAST) project
PDF
General Velocity-Altitude Flight-Regime Diagram for Aeronautics and Astronautics
PDF
Report on the atmospheric railway
Manuscript7
What are the most viable forms of alternative propulsion for the future of sp...
Motion of the space elevator after the ribbon rupture
Comparison_of_Space_Propulsion_Methods_for_a_Manne (1).pdf
F1303023038
Recent Research for IISE Conference
Long_Alexandra-8900_final
EAGES Proceedings - K. V. Rozhdestvenskii 2
YP in space2018_bcn_all_slides_lab_sesssions_x2
Rotation_Matricies_Derivation_Kappa_Goniometer
Simulation of Deployment and Operation of an Earth Observing Satellite
Damage detection in cfrp plates by means of numerical modeling of lamb waves ...
Human observation of General-Relativistic Astrophysical Phenomena from the space
Space Orbit Trajectory
Ultrafast transfer of low-mass payloads to Mars and beyond using aerographite...
Write up Final
Analysis Of Owl-Like Airfoil Aerodynamics At Low Reynolds Number Flow
Fluorescence detector Array of Single-pixel Telescopes (FAST) project
General Velocity-Altitude Flight-Regime Diagram for Aeronautics and Astronautics
Report on the atmospheric railway

More from Theoretical mechanics department (20)

PDF
Космический мусор
PDF
PDF
PDF
Модификация механизма Йо-Йо
PDF
Python. Объектно-ориентированное программирование
PDF
Python. Обработка ошибок
PDF
Python: ввод и вывод
PDF
Python: Модули и пакеты
PDF
Основы Python. Функции
PDF
Основы языка Питон: типы данных, операторы
PDF
Машинная арифметика. Cтандарт IEEE-754
PPTX
Docking with noncooperative spent orbital stage using probe-cone mechanism
PDF
Алгоритмы и языки программирования
PDF
Chaotic Behavior of a Passive Satellite During Towing by a Tether
PDF
Основы MATLAB. Численные методы
PPTX
Транспортно-пусковой контейнер для наноспутников типоразмера 3U, 3U+
PDF
Методы решения нелинейных уравнений
PDF
Наноспутники формата кубсат
PDF
Метод Кейна
PDF
Метод отдельных тел
Космический мусор
Модификация механизма Йо-Йо
Python. Объектно-ориентированное программирование
Python. Обработка ошибок
Python: ввод и вывод
Python: Модули и пакеты
Основы Python. Функции
Основы языка Питон: типы данных, операторы
Машинная арифметика. Cтандарт IEEE-754
Docking with noncooperative spent orbital stage using probe-cone mechanism
Алгоритмы и языки программирования
Chaotic Behavior of a Passive Satellite During Towing by a Tether
Основы MATLAB. Численные методы
Транспортно-пусковой контейнер для наноспутников типоразмера 3U, 3U+
Методы решения нелинейных уравнений
Наноспутники формата кубсат
Метод Кейна
Метод отдельных тел

Recently uploaded (20)

PDF
diccionario toefl examen de ingles para principiante
PPTX
Cell Membrane: Structure, Composition & Functions
PDF
The scientific heritage No 166 (166) (2025)
PDF
CAPERS-LRD-z9:AGas-enshroudedLittleRedDotHostingaBroad-lineActive GalacticNuc...
PDF
Sciences of Europe No 170 (2025)
PDF
. Radiology Case Scenariosssssssssssssss
PPT
Chemical bonding and molecular structure
PPTX
2. Earth - The Living Planet earth and life
PPT
protein biochemistry.ppt for university classes
PDF
Mastering Bioreactors and Media Sterilization: A Complete Guide to Sterile Fe...
PPTX
Introduction to Fisheries Biotechnology_Lesson 1.pptx
PPTX
Vitamins & Minerals: Complete Guide to Functions, Food Sources, Deficiency Si...
PDF
bbec55_b34400a7914c42429908233dbd381773.pdf
PPTX
SCIENCE10 Q1 5 WK8 Evidence Supporting Plate Movement.pptx
PPTX
DRUG THERAPY FOR SHOCK gjjjgfhhhhh.pptx.
PDF
Unveiling a 36 billion solar mass black hole at the centre of the Cosmic Hors...
PPTX
ognitive-behavioral therapy, mindfulness-based approaches, coping skills trai...
PPTX
Derivatives of integument scales, beaks, horns,.pptx
PPTX
microscope-Lecturecjchchchchcuvuvhc.pptx
PPTX
The KM-GBF monitoring framework – status & key messages.pptx
diccionario toefl examen de ingles para principiante
Cell Membrane: Structure, Composition & Functions
The scientific heritage No 166 (166) (2025)
CAPERS-LRD-z9:AGas-enshroudedLittleRedDotHostingaBroad-lineActive GalacticNuc...
Sciences of Europe No 170 (2025)
. Radiology Case Scenariosssssssssssssss
Chemical bonding and molecular structure
2. Earth - The Living Planet earth and life
protein biochemistry.ppt for university classes
Mastering Bioreactors and Media Sterilization: A Complete Guide to Sterile Fe...
Introduction to Fisheries Biotechnology_Lesson 1.pptx
Vitamins & Minerals: Complete Guide to Functions, Food Sources, Deficiency Si...
bbec55_b34400a7914c42429908233dbd381773.pdf
SCIENCE10 Q1 5 WK8 Evidence Supporting Plate Movement.pptx
DRUG THERAPY FOR SHOCK gjjjgfhhhhh.pptx.
Unveiling a 36 billion solar mass black hole at the centre of the Cosmic Hors...
ognitive-behavioral therapy, mindfulness-based approaches, coping skills trai...
Derivatives of integument scales, beaks, horns,.pptx
microscope-Lecturecjchchchchcuvuvhc.pptx
The KM-GBF monitoring framework – status & key messages.pptx

The Dynamics of Tethered Debris With Flexible Appendages and Residual Fuel

  • 1. The Dynamics of Tethered Debris With Flexible Appendages and Residual Fuel (current status of the research) Vladimir  S.  Aslanov  and  Vadim  V.  Yudintsev       3rd  European  Workshop  of  Space  Debris  Modelling  and  Remedia;on  -­‐  CNES  HQ,  June  16-­‐18  2014   Samara  State  Aerospace  University,  Russia   1  
  • 2. Purpose   Development  of  mathema;cal  model    for   analysis  of    an  aLtude  mo;on  of  large  debris   using  tethered  space  tug   3rd  European  Workshop  of  Space  Debris  Modelling  and  Remedia;on  -­‐  CNES  HQ,  June  16-­‐18  2014   2  
  • 3. Large  Space  Debris:  Types   Satellite     as  a  rigid  body     Satellite     with  flexible   appendages   Upper  stages    and  saQellte     with  fuel   3rd  European  Workshop  of  Space  Debris  Modelling  and  Remedia;on  -­‐  CNES  HQ,  June  16-­‐18  2014   3  
  • 4. Three  transportaEon  schemes   3rd  European  Workshop  of  Space  Debris  Modelling  and  Remedia;on  -­‐  CNES  HQ,  June  16-­‐18  2014   4   1.  Space  tug   2.  Space  tug  +  Balloon   3.  Balloon  
  • 5. MathemaEcal  model  structure   3rd  European  Workshop  of  Space  Debris  Modelling  and  Remedia;on  -­‐  CNES  HQ,  June  16-­‐18  2014   1.  Equa;ons  of  the  center   of  mass   2.  Equa;ons  of  the   rela;ve  mo;on  of  the   bodies   3.  Equa;ons  for  addi;onal   elements  (fuel,  flexible   appendages)   5  
  • 6. •  Tug’s  thrust   •  Tether  tension  (depend  on  Young's   modulus,  cross  sec;on  area,   damping)   •  Aerodynamic  forces   •  Gravita;onal  forces  and  torques   •  Magne;c  forces  and  torques     •  Solar  pressure   •  Control  forces  and  torques   Forces  and  Torques   3rd  European  Workshop  of  Space  Debris  Modelling  and  Remedia;on  -­‐  CNES  HQ,  June  16-­‐18  2014   6  
  • 7. ax  ,  ay  ,  az    are  disturbance  accelera;ons,  that  depend  on  tug’s  thrust,   drag,  gravity  gradient,  …         EquaEons  of  the  mass  center     in  osculaEng  elements   3rd  European  Workshop  of  Space  Debris  Modelling  and  Remedia;on  -­‐  CNES  HQ,  June  16-­‐18  2014   02 y p a dp t r d µ = 0 0 sin 1 cosx y er rp a a p p de dt θ θ µ ⎛ ⎞ = ⎜ ⎟ ⎝ ⎠ ⎡ ⎤⎛ ⎞ + + +⎢ ⎥⎜ ⎟ ⎢ ⎥⎝ ⎠⎣ ⎦ 0 0 1 cos 1 sinx y p rp a a d dt r e p µθ θ θ µ ⎛ ⎞⎛ ⎞ − − + +⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠ = 0 cos( )z di d r a pt θ ω µ += 0 01 cos 1 sin cot sin( )x y z d dt r rp a a a e i e p p θ θ θ ω µ ω ⎡ ⎤⎛ ⎞ − + + − +⎢ ⎥⎜ ⎟ ⎝ ⎠⎣ ⎦ =0 sin( ) sin z d dt r a ip θ ω µ Ω = + 7  
  • 8. The  aLtude  mo;on  of  the  space   debris  can  be  described  by  well  known   equa;ons       where                                          and   Ao2  is  a  matrix  that  transforms   coordinates  from  the  space  debris   principal  frame  to  the  orbital  frame                    is  an  angular  velocity  tensor   associated  to  the  angular  velocity  of   the  debris  rela;ve  to  the  orbital  frame            is  an  angular  velocity  vector  of  the   orbital  frame  rela;ve  to  an  iner;al   frame   AOtude  moEon  of  space  debris   3rd  European  Workshop  of  Space  Debris  Modelling  and  Remedia;on  -­‐  CNES  HQ,  June  16-­‐18  2014   8   2 2 2 2 2 2ω ω ω+ × =J J M dAo2 dt = − !Ω2 Ao2 !Ω2 ω2 = Ω2 +ωo ωo System’s  center  of  mass   viscous-­‐elas;c  tether  
  • 9. Space debris as a rigid body 3rd  European  Workshop  of  Space  Debris  Modelling  and  Remedia;on  -­‐  CNES  HQ,  June  16-­‐18  2014  
  • 10. MoEon  of  the  rigid  space  debris   •  The  space  debris  is  considered  as  a  rigid  body.     •  The  space  tag  is  a  mass  point.     •  The  space  tug  equipped  with  a  rocket  thruster  and  connected  to  the  passive   spacecra_  by  the  viscous-­‐elas;c  tether.   3rd  European  Workshop  of  Space  Debris  Modelling  and  Remedia;on  -­‐  CNES  HQ,  June  16-­‐18  2014   10   System’s  center  of  mass  
  • 11. Influence  of  several  factors  to  the  moEon     of  the  space  debris     •  Tether  proper;es     •  Gravita;onal  torque     •  …   3rd  European  Workshop  of  Space  Debris  Modelling  and  Remedia;on  -­‐  CNES  HQ,  June  16-­‐18  2014   11   System’s  center  of  mass  
  • 12. The  influence  of  the  tether  damping   3rd  European  Workshop  of  Space  Debris  Modelling  and  Remedia;on  -­‐  CNES  HQ,  June  16-­‐18  2014   12   •  Tether  is  slack:  L0=27  <  L  =  30  m   •  Tether  Young's  modulus:  60  Gpa     •  Tether  diameter:  2  mm     •  Tether  damping:  dT  =  16  Ns/m   •  Tug’s  force:  20  N   •  ϑ0  =  0.6  rad   •  The  effect  of  the  tether  damping  on   the  aLtude  oscilla;on  of  the  space   debris  rela;ve  to  the  tether  is   insignificant  
  • 13. The  influence  of  gravitaEonal  torque   •  If  tug’s  thrust  is  low  high  amplitude  oscilla;on  of  the   tether  can  occur  rela;ve  to  the  ro  direc;on  due  to  the   ac;on  of  the  gravita;onal  torque.     •  The  space  tug  control  system  should  compensate  these   high  oscilla;ons  of  the  angle  a  by  changing  the  direc;on   of  the  thruster  force  vector  F.   3rd  European  Workshop  of  Space  Debris  Modelling  and  Remedia;on  -­‐  CNES  HQ,  June  16-­‐18  2014   13  
  • 14. •  Space  debris  with  the  long  tether   (l0=150  m)  and  a  small  value  of  the   space  tug  force  F=0.2  N  is   considered.   •  Figure  shows  oscilla;ons  of  the   angles  α  between  the  tether  and   the  axis  Oyo  of  the  orbital  rota;ng   frame  with  undesirably  high   amplitudes  while  θ  is  small.   •  Marked  oscilla;ons  caused  by  the   gravita;onal  torque  that  is  created   by  the  difference  between  the   gravity  forces  act  on  the  space  tug   and  on  the  orbital  debris.     The  influence  of  gravitaEonal  torque:  example   3rd  European  Workshop  of  Space  Debris  Modelling  and  Remedia;on  -­‐  CNES  HQ,  June  16-­‐18  2014   14  
  • 15. •  Maximum  tether  length  as  a   func;on  of  the  space  tug  force  (F)   and  orbit  height  (h)  is  expressed  as   •  If  l>lmax  high  amplitude  oscilla;ons   of  α  occur         Maximum  tether  length  as  a  funcEon  of  tug’s  thrust     3rd  European  Workshop  of  Space  Debris  Modelling  and  Remedia;on  -­‐  CNES  HQ,  June  16-­‐18  2014   ( ) 3 max 13 m eF R h l µ + = 15   lmax(F,h)
  • 16. For  a  drag  augmenta;on  device  (e.g.   balloon)  maximum  tether  length  is  a   func;on  of  the  radius  of  the  balloon   (Rs)  and  orbit  height  (h)   Maximum  tether  length  as  a  funcEon     of  the  balloon’s  radius     3rd  European  Workshop  of  Space  Debris  Modelling  and  Remedia;on  -­‐  CNES  HQ,  June  16-­‐18  2014   lmax = Cx πRs 2 ρV 2 Re + h( ) 3 6µ m1 16   lmax(Rs,h)
  • 17. Space debris with flexible appendages 3rd  European  Workshop  of  Space  Debris  Modelling  and  Remedia;on  -­‐  CNES  HQ,  June  16-­‐18  2014  
  • 18. •  Space  tug   •  Mass:  m1   •  Thrust  force  F   •  Orbital  debris   •  Mass:  m2   •  Moments  of  iner;a:  J2x,  J2y,  J2z   Debris  with  flexible  appendages     3rd  European  Workshop  of  Space  Debris  Modelling  and  Remedia;on  -­‐  CNES  HQ,  June  16-­‐18  2014   18  
  • 19. •  Flexible  appendages  are  considered   as  in-­‐plane  bending  homogeneous   beams,  characterized  by   •  Bending  s;ffness:  EJi   •  Length:  li   •  Mass  per  unit  length:  μi   •  To  describe  the  mo;on  of  flexible   appendages  the  normal  mode   expansion  technique  is  used:   Debris  with  flexible  appendages     3rd  European  Workshop  of  Space  Debris  Modelling  and  Remedia;on  -­‐  CNES  HQ,  June  16-­‐18  2014   1 ( ) ( )i j i ij j q tη ξ ∞ = = Φ∑ 19  
  • 20. •  The  natural  frequency  of  the   tether  is  higher    than  the   frequency  of  the  flexible   appendages.   •  The  vibra;ons  of  the  flexible   appendages  haven't  a  significant   influence  on  the  tether   vibra;ons  and  on  the  aLtude   mo;on  of  the  debris.   Case  1  –  Far  spaced  frequencies   3rd  European  Workshop  of  Space  Debris  Modelling  and  Remedia;on  -­‐  CNES  HQ,  June  16-­‐18  2014   20   λt >> λf
  • 21. •  The  amplitude  of  the  tether   vibra;ons  is  influenced  by  the   vibra;ons  of  the  solar  panels   and  and  vice  versa.   •  At  t=15  the  deforma;on  of  the   panel  2  reach  the  breaking  strain   (doQed  red  lines)  causing   structure  failure.   Case  2  –  Closely  spaced  frequencies   3rd  European  Workshop  of  Space  Debris  Modelling  and  Remedia;on  -­‐  CNES  HQ,  June  16-­‐18  2014   t fλ λ≈ 21  
  • 22. DeterminaEon  of  the  parameters  for  safe   transportaEon   Let  us  consider  simplified  1D  equa;ons   for                                                        and                                              where             3rd  European  Workshop  of  Space  Debris  Modelling  and  Remedia;on  -­‐  CNES  HQ,  June  16-­‐18  2014   !!q = cqq q + cqε ε !!ε = cεq q + cεε ε + aε 22   aε = F l0 m1 cqq = EJla m2 + 2ma( )Ι4 µ 2ma Ι1 2 − m2 + 2ma( )la Ι2 ⎡ ⎣ ⎤ ⎦ , cqε = 2ct l0 Ι1 2ma Ι1 2 − m2 + 2ma( )la Ι2 , cεq = EJla ma Ι1 Ι4 µl0 2ma Ι1 2 − m2 + 2ma( )la Ι2 ⎡ ⎣ ⎤ ⎦ , cεε = ct la MΙ2 − 2µΙ1 2 ( ) m1 2ma Ι1 2 − m2 + 2ma( )la Ι2 ⎡ ⎣ ⎤ ⎦ , ( )1 2 / 2q q q= + ( )0 0/l l lε = −
  • 23. Frequencies  esEmaEon   •  Solu;ons  the  characteris;c  equa;on     where  D    is  a  discriminant     where         •  D  characterizes  the  closeness  of    the  frequencies  of  the  tether  and  flexible   appendages.     •  D  should  be  maximized  to  avoid  mutual  influence  between  tether   oscilla;ons  and  the  oscilla;ons  of  flexible  appendages   3rd  European  Workshop  of  Space  Debris  Modelling  and  Remedia;on  -­‐  CNES  HQ,  June  16-­‐18  2014   ( ) ( ) ( ) 22 4 4 2 2 1 2 1 1 4 1 2 1 1 4 22 2 2 1 1 1 2 4 4 4 2 t t t tc c M EJm M m c c M EJm D M m M m M m µ µ µ µ µ µ Ι + Ι − − Ι + Ι − Ι + + Ι⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ − Ι + − Ι = ⎡ ⎤⎣ ⎦ 1,2 2 b Dλ = ± 23   Ι1 = 0 la ∫Φ1 η( )dη, Ι2 = 0 la ∫ Φ1 η( )⎡ ⎣ ⎤ ⎦ 2 dη, Ι3 = 0 la ∫ηΦ1 η( )dη, Ι4 = 0 la ∫ Φ1 ′′ η( )⎡ ⎣⎢ ⎤ ⎦⎥ 2 dη l1 = l2 = la , M = m1 + m2 + 2µla , EJ1 = EJ2 = EJ
  • 24. 0.00035 0.0005 0.0005 0.002 0.0020.01 0.01 0.05 0.1 0 50 100 150 200 250 300 100 200 300 400 500 600 700 800 ct, N m m1,kg O A B C D Amplitude  of  the  oscillaEons  as  a  funcEon     of  the  tether  sEffness  &  tug’s  mass   3rd  European  Workshop  of  Space  Debris  Modelling  and  Remedia;on  -­‐  CNES  HQ,  June  16-­‐18  2014   24   A:  max|q1|=0.035;  B:  max|q1|=0.005;     C:  max|q1|=0.030;  D:  max|q1|=0.015   D(m,ct )
  • 25. The motion of upper stages with fuel (preliminary research) 3rd  European  Workshop  of  Space  Debris  Modelling  and  Remedia;on  -­‐  CNES  HQ,  June  16-­‐18  2014  
  • 26. Upper  stage  with  fuel   1.  Space  debris  is  a  orbital  stage  with  par;ally  filled  tanks.   2.  Thruster  burn  phase  is  considered   3.  Tether  is  weightless  and  viscoelas;c   4.  F  =  const   3rd  European  Workshop  of  Space  Debris  Modelling  and  Remedia;on  -­‐  CNES  HQ,  June  16-­‐18  2014   26  
  • 27. Simple  fuel  slosh  model   3rd  European  Workshop  of  Space  Debris  Modelling  and  Remedia;on  -­‐  CNES  HQ,  June  16-­‐18  2014   •  The  space  debris  is   considered  as  a  rigid  body   (m,  J).   •  The  fuel  slosh  is  modeled  as   a  pendulum  (mf,  Jf,  lf).   •  The  space  tag  is  a  mass   point  (m1)   •  The  space  tug  equipped   with  a  rocket  thruster  and   connected  to  the  passive   spacecra_  by  the  viscous-­‐ elas;c  tether  (l,  ct,  E,  d)   27  
  • 28. Parameter   Value   Parameter   Value   Tug  mass   100    kg   Thrust  force   20  N   Debris  mass  (dry)   500  kg   Tether  length   50  m   Fuel  mass   200  kg   Tether  sEffness   80  MPa   [2.0;  0.1]   COF   2  m   Simple  example   3rd  European  Workshop  of  Space  Debris  Modelling  and  Remedia;on  -­‐  CNES  HQ,  June  16-­‐18  2014   28   ρA
  • 29. Case  1  –  fuel  is  “frozen”   3rd  European  Workshop  of  Space  Debris  Modelling  and  Remedia;on  -­‐  CNES  HQ,  June  16-­‐18  2014   Ini;al  condi;ons       Oscilla;ons  of  α  and  θ  caused  by   the  shi_ed  aQachment  point:   ρA=[2;  0.1]               29   α0 = 0, θ0 = 0
  • 30. Ini;al  condi;ons     The  influence  of  the  considered  fuel   slosh  to  the  mo;on  of  the  debris  is   insignificant       Case  2  –  Orbital  debris  with  fuel  slosh   3rd  European  Workshop  of  Space  Debris  Modelling  and  Remedia;on  -­‐  CNES  HQ,  June  16-­‐18  2014   30   α0 = 0, θ0 = 0, ϕ0 = 0.2
  • 31. What  has  been  done?   • We  have  been  learned  to  simulate  aLtude  mo;on  of  the   system  (debris+tether+tug)       • Some  simple  examples  are  shown     • We  found  that  characteris;cs  of  a  tether  and  a  space  tug   affect  on  the  level  of  vibra;ons  of  flexible  elements   • Wrong  choice  of  the  characteris;cs  can  lead  to  the   destruc;on  of  debris   3rd  European  Workshop  of  Space  Debris  Modelling  and  Remedia;on  -­‐  CNES  HQ,  June  16-­‐18  2014   31  
  • 32. What  we  will  intend  to  do?   • To  study  the  capture  dynamics  of  debris  (using   harpoon,  net,  lasso  ...)       • To  examine  a  stabiliza;on  phase  a_er  capture   debris  and  find  a  law  of  tether  control       • To  consider  a  par;cular  type  of  debris  at  all   removal  stages:  from  the  capture  to  the   atmospheric  stage   3rd  European  Workshop  of  Space  Debris  Modelling  and  Remedia;on  -­‐  CNES  HQ,  June  16-­‐18  2014   32  
  • 33. PublicaEons   Published   •  V.S.  Aslanov,  V.  V.  Yudintsev,  Dynamics  of  Large  Debris  Connected  to  Space  Tug  by  a  Tether,  J.   Guid.  Control.  Dyn.  36  (2013)  1654–1660.     •  V.  Aslanov,  V.  Yudintsev,  Dynamics  of  large  space  debris  removal  using  tethered  space  tug,   Acta  Astronaut.  91  (2013)  149–156.   •  V.  Aslanov,  A.  Ledkov,  Dynamics  of  towed  large  space  debris  taking  into  account  atmospheric   disturbance,  Acta  Mech.  (2014)  1–13.       SubmiQed   •  V.  S.  Aslanov,  V.  V.  Yudintsev,  Behaviour  of  Tethered  Debris  With  Flexible  Appendages    (Acta   Astronau;ca)   •  V.  S.  Aslanov,  V.  V.  Yudintsev,  Dynamics,  AnalyEcal  SoluEons  and  Parameters  EsEmaEon  for   Towed  Space  Debris  with  Flexible  Appendages  (Advances  in  Space  Research)     In  work   •  V.  S.  Aslanov,  V.  V.  Yudintsev,  Modeling  of  Tethered  Space  Debris  with  Fuel  (Acta  Astronau;ca)       3rd  European  Workshop  of  Space  Debris  Modelling  and  Remedia;on  -­‐  CNES  HQ,  June  16-­‐18  2014   33  
  • 34. Thank  You   3rd  European  Workshop  of  Space  Debris  Modelling  and  Remedia;on  -­‐  CNES  HQ,  June  16-­‐18  2014   34  
  • 35. Authors   • Vladimir  S.  Aslanov   Prof.,  Head  of  the  Theore;cal  Mechanics  Department,     Samara  State  Aerospace  University   aslanov_vs@mail.ru   hQp://aslanov.ssau.ru   • Vadim  V.  Yudintsev   Associate  Prof.,  Theore;cal  Mechanics  Department,     Samara  State  Aerospace  University   yudintsev@classmech.ru   hQp://www.classmech.ru       3rd  European  Workshop  of  Space  Debris  Modelling  and  Remedia;on  -­‐  CNES  HQ,  June  16-­‐18  2014   35