SlideShare a Scribd company logo
ASSEMBLY LINE BALANCING
Module 1
08.8.01: Facilities Planning & Management
ASSEMBLY-LINE BALANCING
 Situation: Assembly-line production.
 Many tasks must be performed, and the sequence is
flexible
 Parts at each station same time
 Tasks take different amounts of time
 How to give everyone enough, but not too much work for
the limited time.
PRODUCT-ORIENTED LAYOUT
Belt Conveyor
Operations
A
PRECEDENCE DIAGRAM
Draw precedence graph
(times in minutes)
C
F
D
B
E
H
G
I J
20
5
15
12
5 10
8
3
7
12
LEGAL ARRANGEMENTS
 Feasible : AC|BD|EG|FH|IJ
 ABG|CDE|FHI|J or C|ADB|FG|EHI|J
 NOT feasible : BAG|DCH|EFJ|I
 DAC|HFE|GBJ|I
A
C
F
D
B
E
H
G
I J
20
5
15
12
5 10
8
3
7
12
LEGAL ARRANGEMENTS
 AC|BD|EG|FH|IJ = max(25,15,23,15,19) = 25
 ABG|CDE|FHI|J = max(40,23,27,7) = 40
 C|ADB|FG|EHI|J = max(5,35,18,32,7) = 35
A
C
F
D
B
E
H
G
I J
20
5
15
12
5 10
8
3
7
12
AC BD EG FH IJ
CYCLE TIME
 The more units you want to produce per hour, the
less time a part can spend at each station.
 Cycle time = time spent at each spot
 C = 800 min / 32 = 25 min
 800 min = 13:20
C =
Production Time in each day
Required output per day (in units)
NUMBER OF WORKSTATIONS
 Given required cycle time, find out the theoretical
minimum number of stations
 N = 97 / 25 = 3.88 = 4 (must round up)
N =
Sum of task times (T)
Cycle Time (C)
ASSIGNMENTS
Assign tasks by choosing tasks:
 with largest number of following tasks
OR
 by longest time to complete
Break ties by using the other rule
NUMBER OF FOLLOWING TASKS
Nodes # after
C 6
D 5
A 4
B,E,F 3
G,H 2
I 1
Choose C first, then, if possible,
add D to it, then A, if possible.
A
C
F
D
B
E
H
G
I J
20
5
15
12
5 10
8
3
7
12
A
PRECEDENCE DIAGRAM
Draw precedence graph
(times in seconds)
C
F
D
B
E
H
G
I J
20
5
15
12
5 10
8
3
7
12
NUMBER OF FOLLOWING TASKS
Nodes # after
A 4
B,E,F 3
G,H 2
I 1
A could not be added to first
station, so a new station must be
created with A.
B, E, F all have 3 stations after,
so use tiebreaker rule: time.
B = 5
E = 8
F = 3
Use E, then B, then F.
A
C
F
D
B
E
H
G
I J
20
5
15
12
5 10
8
3
7
12
A
PRECEDENCE DIAGRAM
E cannot be added to A, but E can be added to C&D.
C
F
D
B
E
H
G
I J
20
5
15
12
5 10
8
3
7
12
A
PRECEDENCE DIAGRAM
Next priority B can be added to A.
C
F
D
B
E
H
G
I J
20
5
15
12
5 10
8
3
7
12
A
PRECEDENCE DIAGRAM
Next priority B can be added to A.
Next priority F can’t be added to either.
C
F
D
B
E
H
G
I J
20
5
15
12
5 10
8
3
7
12
NUMBER OF FOLLOWING TASKS
Nodes # after
G,H2
I 1 G and H tie on number coming after.
G takes 15, H is 12, so G goes first.
A
PRECEDENCE DIAGRAM
G can be added to F.
H cannot be added.
C
F
D
B
E
H
G
I J
20
5
15
12
5 10
8
3
7
12
A
PRECEDENCE DIAGRAM
I is next, and can be added to H, but J cannot be added
also.
C
F
D
B
E
H
G
I J
20
5
15
12
5 10
8
3
7
12
PRECEDENCE REQUIREMENTS
Why not put J with F&G?
A
C
F
D
B
E
H
G
I J
20
5
15
12
5 10
8
3
7
12
AB CDE
FG J
HI
CALCULATE EFFICIENCY
 We know that at least 4 workstations will be
needed. We needed 5.
 = 97 / ( 5 * 25 ) = 0.776
 We are paying for 125 minutes of work, where it
only takes 97.
Efficiencyt =
Sum of task times (T)
Actual no. of WS * Cycle Time
A
LONGEST FIRST
Try choosing longest activities first.
A is first, then G, which can’t be added to A.
C
F
D
B
E
H
G
I J
20
5
15
12
5 10
8
3
7
12
A
LONGEST FIRST
H and I both take 12, but H has more coming after it,
then add I.
C
F
D
B
E
H
G
I J
20
5
15
12
5 10
8
3
7
12
A
LONGEST FIRST
D is next. We could combine it with G, which we’ll do later. E is next,
so for now combine D&E, but we could have combined E&G.
We’ll also try that later.
C
F
D
B
E
H
G
I J
20
5
15
12
5 10
8
3
7
12
A
LONGEST FIRST
J is next, all alone, followed by C and B.
C
F
D
B
E
H
G
I J
20
5
15
12
5 10
8
3
7
12
LONGEST FIRST
F is last. We end up with 5 workstations.
3
A
C
F
D
B
E
H
G
I J
20
5
15
12
5 10
8
7
12
CT = 25, so efficiency is again
Eff = 97/(5*25) = 0.776
A
LONGEST FIRST- COMBINE E&G
Go back and try combining G and E instead of D and E.
C
F
D
B
E
H
G
I J
20
5
15
12
5 10
8
3
7
12
A
LONGEST FIRST- COMBINE E&G
J is next, all alone. C is added to D, and B is added to
A.
C
F
D
B
E
H
G
I J
20
5
15
12
5 10
8
3
7
12
A
LONGEST FIRST- COMBINE E&G
F can be added to C&D. Five WS again. CT is again 25,
so efficiency is again 0.776
C
F
D
B
E
H
G
I J
20
5
15
12
5 10
8
3
7
12
A
LONGEST FIRST - COMBINE D&G
Back up and combine D&G. No precedence violation.
C
F
D
B
E
H
G
I J
20
5
15
12
5 10
8
3
7
12
A
LONGEST FIRST - COMBINE D&G
Unhook H&I so J isn’t stranded again, I&J is 19, that’s better than 7.
E&H get us to 20. This is feeling better, maybe?
C
F
D
B
E
H
G
I J
20
5
15
12
5 10
8
3
7
12
A
LONGEST FIRST - COMBINE D&G
5 Again! CT is again 25, so efficiency is again 97/(5*25) =
0.776
C
F
D
B
E
H
G
I J
20
5
15
12
5 10
8
3
7
12
A
CAN WE DO BETTER?
C
F
D
B
E
H
G
I J
20
5
15
12
5 10
8
3
7
12
A
CAN WE DO BETTER?
If we have to use 5 stations, we can get a solution with
CT = 20.
C
F
D
B
E
H
G
I J
20
5
15
12
5 10
8
3
7
12
CALCULATE EFFICIENCY
 With 5 WS at CT = 20
 = 97 / ( 5 * 20 ) = 0.97
 We are paying for 100 minutes of work, where it
only takes 97.
Efficiencyt =
Sum of task times (T)
Actual # WS * Cycle Time
OUTPUT AND LABOR COSTS
 With 20 min CT, and 800 minute workday
 Output = 800 min / 20 min/unit = 40 units
 Don’t need to work 800 min
 Goal 32 units: 32 * 20 = 640 min/day
 5 workers * 640 min = 3,200 labor min.
 We were trying to achieve
 4 stations * 800 min = 3,200 labor min.
 Same labor cost, but more workers on shorter
workday
HANDLING LONG TASKS
 Long tasks make it hard to get efficient
combinations.
 Consider splitting tasks, if physically possible.
 If not:
 Parallel workstations
 use skilled (faster) worker to speed up
SUMMARY
 Compute desired cycle time, based on Market
Demand, and total time of work needed
 Methods to use:
 Largest first, most following steps, trial and error
 Compute efficiency of solutions
 A shorter CT can sometimes lead to greater
efficiencies
 Changing CT affected length of work day, looked at
labor costs

More Related Content

PPTX
Line balancing
PPTX
Assembly line balancing
PPT
79971255 assembly-line-balancing
PPTX
assembly line balancing
DOCX
Assembly Line Balancing -Example
DOCX
Assembly Line Balancing
PPTX
risk and return.pptx
PPTX
Line balancing
Line balancing
Assembly line balancing
79971255 assembly-line-balancing
assembly line balancing
Assembly Line Balancing -Example
Assembly Line Balancing
risk and return.pptx
Line balancing

What's hot (20)

PPTX
Lean basics
PPTX
Line balancing
PPTX
Operations Management : Line Balancing
PPTX
Aggregate planning
PPT
Line balancing and its formulation
PPTX
Work study work measurement
PPTX
Manufacturing & operations management
PPT
79971255 assembly-line-balancing
PPTX
ALLOWANCES
PDF
8. chapter 7 work study (time and motion study)
PPTX
Time study
PPTX
Just in time manufacturing ppt
PDF
Job shop scheduling
PPT
Work Study
PPT
just in time manufacturing
PPTX
Work study
PPT
production scheduling
PPT
Lean Manufacturing and Principles
PPTX
CIM 15ME62 Module-3
PPT
Jit & Lean Operations
Lean basics
Line balancing
Operations Management : Line Balancing
Aggregate planning
Line balancing and its formulation
Work study work measurement
Manufacturing & operations management
79971255 assembly-line-balancing
ALLOWANCES
8. chapter 7 work study (time and motion study)
Time study
Just in time manufacturing ppt
Job shop scheduling
Work Study
just in time manufacturing
Work study
production scheduling
Lean Manufacturing and Principles
CIM 15ME62 Module-3
Jit & Lean Operations
Ad

Similar to Assembly line balancing (9)

PPT
Sequencing
PPT
Lect 11 - industrial Line balancing & EOQ
PDF
Critical path analysis
PPTX
Sequencing problems & mathematical Solution
DOCX
MGT 150. Project ManagementCourse AssignmentsAssignment .docx
PPT
Tutorial mathematical equation
DOCX
Assly linbalance
PDF
Process layout Q&A
Sequencing
Lect 11 - industrial Line balancing & EOQ
Critical path analysis
Sequencing problems & mathematical Solution
MGT 150. Project ManagementCourse AssignmentsAssignment .docx
Tutorial mathematical equation
Assly linbalance
Process layout Q&A
Ad

More from MANJUNATH N (20)

PPTX
Energy conservation boiler
PPT
Stoichiometric calculations
PPT
Introduction to stoichiometry
PPTX
Materials selection for Design
PPTX
Engineering design
PPTX
Introduction to Engineering Design
PPT
Turbines
PPT
Steam boiler
PPTX
Gear drives
PPTX
Alloys
PPTX
Machining
PPTX
Manufacturing process
PPTX
Clutches & brakes
PPTX
Belt, rope and chain drives
PPT
Gear and Gear trains
PPTX
Material Handling
PPTX
Warehousing 2
PPT
Industrial aaventilation
PPTX
Industrial lighting
PPTX
Facilities systems
Energy conservation boiler
Stoichiometric calculations
Introduction to stoichiometry
Materials selection for Design
Engineering design
Introduction to Engineering Design
Turbines
Steam boiler
Gear drives
Alloys
Machining
Manufacturing process
Clutches & brakes
Belt, rope and chain drives
Gear and Gear trains
Material Handling
Warehousing 2
Industrial aaventilation
Industrial lighting
Facilities systems

Recently uploaded (20)

PPTX
FINAL REVIEW FOR COPD DIANOSIS FOR PULMONARY DISEASE.pptx
PPTX
Sustainable Sites - Green Building Construction
PDF
Well-logging-methods_new................
PPTX
CYBER-CRIMES AND SECURITY A guide to understanding
PPTX
Internet of Things (IOT) - A guide to understanding
PPTX
web development for engineering and engineering
PDF
composite construction of structures.pdf
PDF
Operating System & Kernel Study Guide-1 - converted.pdf
PDF
keyrequirementskkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
PDF
Embodied AI: Ushering in the Next Era of Intelligent Systems
PDF
Digital Logic Computer Design lecture notes
PPTX
MET 305 2019 SCHEME MODULE 2 COMPLETE.pptx
PDF
BMEC211 - INTRODUCTION TO MECHATRONICS-1.pdf
PPTX
CH1 Production IntroductoryConcepts.pptx
PPTX
M Tech Sem 1 Civil Engineering Environmental Sciences.pptx
PPTX
Infosys Presentation by1.Riyan Bagwan 2.Samadhan Naiknavare 3.Gaurav Shinde 4...
PDF
The CXO Playbook 2025 – Future-Ready Strategies for C-Suite Leaders Cerebrai...
PPT
Project quality management in manufacturing
PDF
Evaluating the Democratization of the Turkish Armed Forces from a Normative P...
DOCX
ASol_English-Language-Literature-Set-1-27-02-2023-converted.docx
FINAL REVIEW FOR COPD DIANOSIS FOR PULMONARY DISEASE.pptx
Sustainable Sites - Green Building Construction
Well-logging-methods_new................
CYBER-CRIMES AND SECURITY A guide to understanding
Internet of Things (IOT) - A guide to understanding
web development for engineering and engineering
composite construction of structures.pdf
Operating System & Kernel Study Guide-1 - converted.pdf
keyrequirementskkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
Embodied AI: Ushering in the Next Era of Intelligent Systems
Digital Logic Computer Design lecture notes
MET 305 2019 SCHEME MODULE 2 COMPLETE.pptx
BMEC211 - INTRODUCTION TO MECHATRONICS-1.pdf
CH1 Production IntroductoryConcepts.pptx
M Tech Sem 1 Civil Engineering Environmental Sciences.pptx
Infosys Presentation by1.Riyan Bagwan 2.Samadhan Naiknavare 3.Gaurav Shinde 4...
The CXO Playbook 2025 – Future-Ready Strategies for C-Suite Leaders Cerebrai...
Project quality management in manufacturing
Evaluating the Democratization of the Turkish Armed Forces from a Normative P...
ASol_English-Language-Literature-Set-1-27-02-2023-converted.docx

Assembly line balancing

  • 1. ASSEMBLY LINE BALANCING Module 1 08.8.01: Facilities Planning & Management
  • 2. ASSEMBLY-LINE BALANCING  Situation: Assembly-line production.  Many tasks must be performed, and the sequence is flexible  Parts at each station same time  Tasks take different amounts of time  How to give everyone enough, but not too much work for the limited time.
  • 4. A PRECEDENCE DIAGRAM Draw precedence graph (times in minutes) C F D B E H G I J 20 5 15 12 5 10 8 3 7 12
  • 5. LEGAL ARRANGEMENTS  Feasible : AC|BD|EG|FH|IJ  ABG|CDE|FHI|J or C|ADB|FG|EHI|J  NOT feasible : BAG|DCH|EFJ|I  DAC|HFE|GBJ|I A C F D B E H G I J 20 5 15 12 5 10 8 3 7 12
  • 6. LEGAL ARRANGEMENTS  AC|BD|EG|FH|IJ = max(25,15,23,15,19) = 25  ABG|CDE|FHI|J = max(40,23,27,7) = 40  C|ADB|FG|EHI|J = max(5,35,18,32,7) = 35 A C F D B E H G I J 20 5 15 12 5 10 8 3 7 12 AC BD EG FH IJ
  • 7. CYCLE TIME  The more units you want to produce per hour, the less time a part can spend at each station.  Cycle time = time spent at each spot  C = 800 min / 32 = 25 min  800 min = 13:20 C = Production Time in each day Required output per day (in units)
  • 8. NUMBER OF WORKSTATIONS  Given required cycle time, find out the theoretical minimum number of stations  N = 97 / 25 = 3.88 = 4 (must round up) N = Sum of task times (T) Cycle Time (C)
  • 9. ASSIGNMENTS Assign tasks by choosing tasks:  with largest number of following tasks OR  by longest time to complete Break ties by using the other rule
  • 10. NUMBER OF FOLLOWING TASKS Nodes # after C 6 D 5 A 4 B,E,F 3 G,H 2 I 1 Choose C first, then, if possible, add D to it, then A, if possible. A C F D B E H G I J 20 5 15 12 5 10 8 3 7 12
  • 11. A PRECEDENCE DIAGRAM Draw precedence graph (times in seconds) C F D B E H G I J 20 5 15 12 5 10 8 3 7 12
  • 12. NUMBER OF FOLLOWING TASKS Nodes # after A 4 B,E,F 3 G,H 2 I 1 A could not be added to first station, so a new station must be created with A. B, E, F all have 3 stations after, so use tiebreaker rule: time. B = 5 E = 8 F = 3 Use E, then B, then F. A C F D B E H G I J 20 5 15 12 5 10 8 3 7 12
  • 13. A PRECEDENCE DIAGRAM E cannot be added to A, but E can be added to C&D. C F D B E H G I J 20 5 15 12 5 10 8 3 7 12
  • 14. A PRECEDENCE DIAGRAM Next priority B can be added to A. C F D B E H G I J 20 5 15 12 5 10 8 3 7 12
  • 15. A PRECEDENCE DIAGRAM Next priority B can be added to A. Next priority F can’t be added to either. C F D B E H G I J 20 5 15 12 5 10 8 3 7 12
  • 16. NUMBER OF FOLLOWING TASKS Nodes # after G,H2 I 1 G and H tie on number coming after. G takes 15, H is 12, so G goes first.
  • 17. A PRECEDENCE DIAGRAM G can be added to F. H cannot be added. C F D B E H G I J 20 5 15 12 5 10 8 3 7 12
  • 18. A PRECEDENCE DIAGRAM I is next, and can be added to H, but J cannot be added also. C F D B E H G I J 20 5 15 12 5 10 8 3 7 12
  • 19. PRECEDENCE REQUIREMENTS Why not put J with F&G? A C F D B E H G I J 20 5 15 12 5 10 8 3 7 12 AB CDE FG J HI
  • 20. CALCULATE EFFICIENCY  We know that at least 4 workstations will be needed. We needed 5.  = 97 / ( 5 * 25 ) = 0.776  We are paying for 125 minutes of work, where it only takes 97. Efficiencyt = Sum of task times (T) Actual no. of WS * Cycle Time
  • 21. A LONGEST FIRST Try choosing longest activities first. A is first, then G, which can’t be added to A. C F D B E H G I J 20 5 15 12 5 10 8 3 7 12
  • 22. A LONGEST FIRST H and I both take 12, but H has more coming after it, then add I. C F D B E H G I J 20 5 15 12 5 10 8 3 7 12
  • 23. A LONGEST FIRST D is next. We could combine it with G, which we’ll do later. E is next, so for now combine D&E, but we could have combined E&G. We’ll also try that later. C F D B E H G I J 20 5 15 12 5 10 8 3 7 12
  • 24. A LONGEST FIRST J is next, all alone, followed by C and B. C F D B E H G I J 20 5 15 12 5 10 8 3 7 12
  • 25. LONGEST FIRST F is last. We end up with 5 workstations. 3 A C F D B E H G I J 20 5 15 12 5 10 8 7 12 CT = 25, so efficiency is again Eff = 97/(5*25) = 0.776
  • 26. A LONGEST FIRST- COMBINE E&G Go back and try combining G and E instead of D and E. C F D B E H G I J 20 5 15 12 5 10 8 3 7 12
  • 27. A LONGEST FIRST- COMBINE E&G J is next, all alone. C is added to D, and B is added to A. C F D B E H G I J 20 5 15 12 5 10 8 3 7 12
  • 28. A LONGEST FIRST- COMBINE E&G F can be added to C&D. Five WS again. CT is again 25, so efficiency is again 0.776 C F D B E H G I J 20 5 15 12 5 10 8 3 7 12
  • 29. A LONGEST FIRST - COMBINE D&G Back up and combine D&G. No precedence violation. C F D B E H G I J 20 5 15 12 5 10 8 3 7 12
  • 30. A LONGEST FIRST - COMBINE D&G Unhook H&I so J isn’t stranded again, I&J is 19, that’s better than 7. E&H get us to 20. This is feeling better, maybe? C F D B E H G I J 20 5 15 12 5 10 8 3 7 12
  • 31. A LONGEST FIRST - COMBINE D&G 5 Again! CT is again 25, so efficiency is again 97/(5*25) = 0.776 C F D B E H G I J 20 5 15 12 5 10 8 3 7 12
  • 32. A CAN WE DO BETTER? C F D B E H G I J 20 5 15 12 5 10 8 3 7 12
  • 33. A CAN WE DO BETTER? If we have to use 5 stations, we can get a solution with CT = 20. C F D B E H G I J 20 5 15 12 5 10 8 3 7 12
  • 34. CALCULATE EFFICIENCY  With 5 WS at CT = 20  = 97 / ( 5 * 20 ) = 0.97  We are paying for 100 minutes of work, where it only takes 97. Efficiencyt = Sum of task times (T) Actual # WS * Cycle Time
  • 35. OUTPUT AND LABOR COSTS  With 20 min CT, and 800 minute workday  Output = 800 min / 20 min/unit = 40 units  Don’t need to work 800 min  Goal 32 units: 32 * 20 = 640 min/day  5 workers * 640 min = 3,200 labor min.  We were trying to achieve  4 stations * 800 min = 3,200 labor min.  Same labor cost, but more workers on shorter workday
  • 36. HANDLING LONG TASKS  Long tasks make it hard to get efficient combinations.  Consider splitting tasks, if physically possible.  If not:  Parallel workstations  use skilled (faster) worker to speed up
  • 37. SUMMARY  Compute desired cycle time, based on Market Demand, and total time of work needed  Methods to use:  Largest first, most following steps, trial and error  Compute efficiency of solutions  A shorter CT can sometimes lead to greater efficiencies  Changing CT affected length of work day, looked at labor costs