SlideShare a Scribd company logo
Discrete Mathematics
Defecation of Discrete Mathematics:
Concerns processesthatconsist of a sequence of individual step are calledDiscrete Mathematics
Continuous Discrete
LOGIC:
Logic studyof principlesandmethodthatdistinguishes/differenceb/w validandinvalidargumentis
calledlogic.
Simple statement:
A statementisdeclarativesentence thatiseithertrue orfalse butnotboth.
A statementisalsoreferredtoasa proposition
Examples:
1. If a propositionistrue thenwe saythata value istrue.
2. Andif propositionisfalse thenwe saythattruth value isfalse.
3. Truth & false are denotedbyT and F
Examples:
Propositions: NotProposition:
1. Grass is green. Close the door.
2. 4+3=6. X isgreaterthan 2.
3. 4+2=6. He isveryrich.
Rules:
If the sentence isprecededbyothersentencesthatmake the pronounorvariable referenceclear,then
the sentence isa statement.
Examples:
False True
I. X=1 Bill gatesisan American
II. x>3 He is veryRich
III. x>3 is a statementwithtruth-value He is veryrichis a statementwith
truth-value
UNDERSTANDINGSTATEMENTS:
1. X+2 ispositive Nota statement
2. May I come in? Nota statement
3. Logic isinteresting A statement
4. It ishot today A statement
Compound Statement:
Simple statementcouldbe usedtobuildacompoundstatement.
Examples:
1. 3+2=5 and Multan isa city of Pakistan
2. The grass is greenor itis hottoday
3. Ali isnot veryrich
And,Not,ORare called Logical Connectives.
SYMBOLICREPRESENTATION:
Statementis symbolicallyrepresentedbyletterssuchas“p,q, r…
EXAMPLES:
p=”Multan isa cityof Pakistan”
q=”17 is divisible by3”
CONNECTIV MEANING SYMBOL CALLED
NEGATION NOT ˜ TILDE
CONJUNCTION AND ^ HAT
DISJUNCTION OR v VEL
CONDITIONAL IF……THEN  ARROW
BICONDITIONAL IF ANDONLY IF  DOUBLE ARROW
EXAMPLES:
p=”Multan isa cityof Pakistan”
q=”Ali isa Muslim”
p ^ q=”Multanis a city of Pakistan”AND“Ali isa Muslim”
p v q=” Multan isa cityof Pakistan”OR”Ali isa Muslim”
˜p=”Multanis nota cityof Pakistan”
TRANSLATINGFROMENGLISHTO SYMBOLIS:
Let p=”itis cold”,AND“it isAli”
SENTENCE SYMBOLIC
1. It isnot cold ˜P
2. It iscold ANDAli P ^ q
3. It iscold OR Ali p v q
4. It isNOT coldBUT Ali ˜p ^ q
COMPOUNDSTATEMENTEXAMPLES:
Let a=”Ali isHealthy” b=”Ali isWealthy” c=”Ali is Wise”
i. Ali ishealthyANDwealthyButNOTwise. (a ^ b) ^ (˜c)
ii. Ali isNOT healthyBUThe iswealthyANDwise. (˜a) ^ (b^ c)
iii. Ali isNEITHER healthy,WealthyNORwise. (˜a ^ ~ b v ~ c)
TRANSLATINGFROMSYMBOLSTO ENGLISH:
Let: m=”Ali isa good inmath” c=”Ali is a com. science student”
I. ~ C Ali is“NOT” com. Science student.
II. C v m Ali iscom. Science student”OR“goodinmath.
III. M ^ ~ c Ali isgoodin math” BUT AND NOT“a com. Science student.
WHAT IS TRUTH TABLE?
A truthtable specifiesthe truthvalue of acompoundpropositionforall possibletruthvaluesof its
constituentproposition.
A convenientmethodforanalyzingacompoundstatement istomake a truth table toit
NEGATION (~)
 If p=statementvariable,thennegationof p“NOTp”, isdenotedby“~p”
 If p istrue,~p is false
 If p isfalse ~p istrue
TRUTH TABLE FOR ~P
P ~P
T F
F T
CONJUNCTION (^)
 If p andq is statementthenconjunctionis“pand q”
 Denotedby“p ^q”
 If p andq are true thentrue
 If both or eitherfalse thenFalse
P ^q
P q P ^q
T T T
T F F
F T F
F F F
DISJUNCTION (v)
 If P and q is statementthen“por q”
 Denotedby“p v q”
 If both are false thenfalse
 If both or eitheristrue thentrue
 P v q
P q P v q
T T T
T F T
F T T
F F F
 Truth Table for this statement ~p^ q
P q ~p ~p ^q
T T F F
T F F F
F T T T
F F T F
 Truth Table for ~p^ (qv ~r)
P q r ~r (q v ~r) ~p ~p ^(q v ~r)
T T T F T F F
T T F T T F F
T F T F F F F
T F F T T F F
F T T F T T T
F T F T T T T
F F T F F T F
F F F T T T T
 Truth table for (p v q) ^ ~ (p^q)
P q (p v q) (p ^ q) ~(p ^q) (p v q)^~(p ^q)
T T T T F F
T F T F T T
F T T F T T
F F F F T F
Double negationproperty ~ (~p) =p
P (~p) ~(~p)
T F T
F T F
So itis clearthat “p” and double negationof “p”isequal.
Example
Englishtosymbolic
P= I am Umair Shah
~p= I am not Umair Shah
~ (~p) = I am Umair Shah
So itis clearthat double negationof “p”isalsoequal to “p”.
 ~ (p^q) & ~p ^~q are not Equal.
P q (p ^q) ~(p ^q) ~p ~q ~p ^~q
T T T F F F F
T F F T F T F
F T F T T F F
F F F T T T T
So itis clearthat “~ (p^q) & ~p ^~q” are not equal
De Morgan’sLaw
1. The negationof “AND” statementislogicallyequivalenttothe “OR” statementinwhicheach
componentisnegated.
 Symbolically~(p ^q) = ~p v ~q
P q P ^q ~(p ^q) ~p ~q ~p v ~q
T T T F F F F
T F F T F T T
F T F T T F T
F F F T T T T
So itis clearthat ~ (p^q) = ~p v ~q are logicallyequivalent
2. The negationof “OR” statementislogicallyequivalenttothe “AND”statementinwhichcomponent
isnegated.
 Symbolically~(p v q) = ~p ^ ~q
P q (P v q) ~(p v q) ~p ~q ~p ^ ~q
T T T F F F F
T F T F F T F
F T T F T F F
F F F T T T T
So itis clearthat ~ (pv q) = ~p ^ ~q is Equal.
Application
Negationforeachof the following:
a. The fanis slowor itis veryhot
b. Ali isfitor Awaisis injured.
Solution:
a. The fan isnot slow“AND”it is not veryhot
b. Ali is not fit“AND” Awaisisnotinjured
InequalitiesandDE MORGANESlaw:
Exercise:
1. (p ^q) ^ r = P^(q ^ r)
p q r (p ^q) (p ^q)^r (q ^r) P^(q ^r)
T T T T T T T
T T F T F F F
T F T F F F F
T F F F F F F
F T T F F T F
F T F F F F F
F F T F F F F
F F F F F F F
So itclearsthat Colum5 and Colum7 are equal
2. (P ^q) v r = p ^ (qv r)?????
P q r (p ^q) (p ^q) v r (q v r) P ^(q v r)
T T T T T T T
T T F T T T T
T F T F T T T
T F F F F F F
F T T F T T F
F T F F F T F
F F T F T T F
F F F F F F F
So itclear that Colum5 and Colum7 are not equal.

More Related Content

PPTX
Propositional logic
DOCX
Truth table a.r
PPTX
Logic - Logical Propositions
DOCX
Exercise 1
PPTX
Discrete math Truth Table
PPT
Logic (PROPOSITIONS)
PPT
Truth tables
PPT
Translating English to Propositional Logic
Propositional logic
Truth table a.r
Logic - Logical Propositions
Exercise 1
Discrete math Truth Table
Logic (PROPOSITIONS)
Truth tables
Translating English to Propositional Logic

What's hot (18)

PPTX
PPT
PDF
Propositional logic by shawan
PPTX
3 computing truth tables
PPTX
Propositional Logic (Descreate Mathematics)
PDF
Truth, deduction, computation lecture 6
PPT
Logic&proof
PPTX
Truth table
PPTX
CMSC 56 | Lecture 2: Propositional Equivalences
PDF
Chapter 1 Logic of Compound Statements
PDF
Formal Logic - Lesson 4 - Tautology, Contradiction and Contingency
PPTX
Logic (LESSON) - Truth Table, Negation, Conjunction, Dis junction,
PPT
Logic Notes
DOCX
PPTX
Mathematical Logic
PPT
Discrete mathematics Ch2 Propositional Logic_Dr.khaled.Bakro د. خالد بكرو
PPT
Discrete mathematics
PPT
Mathematical Logic - Part 1
Propositional logic by shawan
3 computing truth tables
Propositional Logic (Descreate Mathematics)
Truth, deduction, computation lecture 6
Logic&proof
Truth table
CMSC 56 | Lecture 2: Propositional Equivalences
Chapter 1 Logic of Compound Statements
Formal Logic - Lesson 4 - Tautology, Contradiction and Contingency
Logic (LESSON) - Truth Table, Negation, Conjunction, Dis junction,
Logic Notes
Mathematical Logic
Discrete mathematics Ch2 Propositional Logic_Dr.khaled.Bakro د. خالد بكرو
Discrete mathematics
Mathematical Logic - Part 1
Ad

Similar to Assignement of discrete mathematics (20)

PPT
CS202Ch1.ppt
PDF
Logic and proof
PDF
slides slides slides slides discrete mat
PPTX
Disrete mathematics and_its application_by_rosen _7th edition_lecture_1
PPTX
Computer Organization and Assembly Language
PPT
lectures in prolog in order to advance in artificial intelligence
PPT
Chapter 1: The Foundations: Logic and Proofs
PPT
Bab 1 proposisi
PDF
MFCS PPT.pdf
PPT
Discrete Maths141 - Course Outline and Lecture Slides
PDF
logicproof-141212042039-conversion-gate01.pdf
PPT
Per3 logika&pembuktian
PPT
PPT
1019Lec1.ppt
PPTX
Discreate Truth tables and laws of logic
PPTX
General concepts of digital electronics and
PDF
1-Discrete Mathematics - 1 - Unit - 1.pdf
PPTX
DISCRETE MATHEMATICS for IT students.pptx
PPTX
DOCX
CS202Ch1.ppt
Logic and proof
slides slides slides slides discrete mat
Disrete mathematics and_its application_by_rosen _7th edition_lecture_1
Computer Organization and Assembly Language
lectures in prolog in order to advance in artificial intelligence
Chapter 1: The Foundations: Logic and Proofs
Bab 1 proposisi
MFCS PPT.pdf
Discrete Maths141 - Course Outline and Lecture Slides
logicproof-141212042039-conversion-gate01.pdf
Per3 logika&pembuktian
1019Lec1.ppt
Discreate Truth tables and laws of logic
General concepts of digital electronics and
1-Discrete Mathematics - 1 - Unit - 1.pdf
DISCRETE MATHEMATICS for IT students.pptx
Ad

More from Syed Umair (20)

TXT
Assignement code
DOCX
Tree 4
DOCX
Title page
DOCX
DOCX
DOCX
DOCX
Perception
DOCX
New microsoft office word document
DOCX
New microsoft office word document (2)
DOCX
DOCX
C++ 4
DOCX
DOCX
Assignement of programming & problem solving
DOCX
Assignement of discrete mathematics
DOCX
DOCX
DOCX
DOCX
Assignment c++12
DOCX
Assignement c++
DOCX
Static keyword u.s ass.(2)
Assignement code
Tree 4
Title page
Perception
New microsoft office word document
New microsoft office word document (2)
C++ 4
Assignement of programming & problem solving
Assignement of discrete mathematics
Assignment c++12
Assignement c++
Static keyword u.s ass.(2)

Recently uploaded (20)

PDF
The Lost Whites of Pakistan by Jahanzaib Mughal.pdf
PDF
Complications of Minimal Access Surgery at WLH
PDF
Computing-Curriculum for Schools in Ghana
PDF
3rd Neelam Sanjeevareddy Memorial Lecture.pdf
PDF
STATICS OF THE RIGID BODIES Hibbelers.pdf
PPTX
Pharmacology of Heart Failure /Pharmacotherapy of CHF
PDF
102 student loan defaulters named and shamed – Is someone you know on the list?
PPTX
Cell Structure & Organelles in detailed.
PDF
Black Hat USA 2025 - Micro ICS Summit - ICS/OT Threat Landscape
PDF
Module 4: Burden of Disease Tutorial Slides S2 2025
PDF
Sports Quiz easy sports quiz sports quiz
PDF
2.FourierTransform-ShortQuestionswithAnswers.pdf
PDF
BÀI TẬP BỔ TRỢ 4 KỸ NĂNG TIẾNG ANH 9 GLOBAL SUCCESS - CẢ NĂM - BÁM SÁT FORM Đ...
PDF
Physiotherapy_for_Respiratory_and_Cardiac_Problems WEBBER.pdf
PPTX
Cell Types and Its function , kingdom of life
PPTX
PPH.pptx obstetrics and gynecology in nursing
PPTX
PPT- ENG7_QUARTER1_LESSON1_WEEK1. IMAGERY -DESCRIPTIONS pptx.pptx
PDF
01-Introduction-to-Information-Management.pdf
PPTX
Microbial diseases, their pathogenesis and prophylaxis
PPTX
Renaissance Architecture: A Journey from Faith to Humanism
The Lost Whites of Pakistan by Jahanzaib Mughal.pdf
Complications of Minimal Access Surgery at WLH
Computing-Curriculum for Schools in Ghana
3rd Neelam Sanjeevareddy Memorial Lecture.pdf
STATICS OF THE RIGID BODIES Hibbelers.pdf
Pharmacology of Heart Failure /Pharmacotherapy of CHF
102 student loan defaulters named and shamed – Is someone you know on the list?
Cell Structure & Organelles in detailed.
Black Hat USA 2025 - Micro ICS Summit - ICS/OT Threat Landscape
Module 4: Burden of Disease Tutorial Slides S2 2025
Sports Quiz easy sports quiz sports quiz
2.FourierTransform-ShortQuestionswithAnswers.pdf
BÀI TẬP BỔ TRỢ 4 KỸ NĂNG TIẾNG ANH 9 GLOBAL SUCCESS - CẢ NĂM - BÁM SÁT FORM Đ...
Physiotherapy_for_Respiratory_and_Cardiac_Problems WEBBER.pdf
Cell Types and Its function , kingdom of life
PPH.pptx obstetrics and gynecology in nursing
PPT- ENG7_QUARTER1_LESSON1_WEEK1. IMAGERY -DESCRIPTIONS pptx.pptx
01-Introduction-to-Information-Management.pdf
Microbial diseases, their pathogenesis and prophylaxis
Renaissance Architecture: A Journey from Faith to Humanism

Assignement of discrete mathematics

  • 1. Discrete Mathematics Defecation of Discrete Mathematics: Concerns processesthatconsist of a sequence of individual step are calledDiscrete Mathematics Continuous Discrete LOGIC: Logic studyof principlesandmethodthatdistinguishes/differenceb/w validandinvalidargumentis calledlogic. Simple statement: A statementisdeclarativesentence thatiseithertrue orfalse butnotboth. A statementisalsoreferredtoasa proposition Examples: 1. If a propositionistrue thenwe saythata value istrue. 2. Andif propositionisfalse thenwe saythattruth value isfalse. 3. Truth & false are denotedbyT and F Examples: Propositions: NotProposition: 1. Grass is green. Close the door. 2. 4+3=6. X isgreaterthan 2. 3. 4+2=6. He isveryrich. Rules: If the sentence isprecededbyothersentencesthatmake the pronounorvariable referenceclear,then the sentence isa statement.
  • 2. Examples: False True I. X=1 Bill gatesisan American II. x>3 He is veryRich III. x>3 is a statementwithtruth-value He is veryrichis a statementwith truth-value UNDERSTANDINGSTATEMENTS: 1. X+2 ispositive Nota statement 2. May I come in? Nota statement 3. Logic isinteresting A statement 4. It ishot today A statement Compound Statement: Simple statementcouldbe usedtobuildacompoundstatement. Examples: 1. 3+2=5 and Multan isa city of Pakistan 2. The grass is greenor itis hottoday 3. Ali isnot veryrich And,Not,ORare called Logical Connectives. SYMBOLICREPRESENTATION: Statementis symbolicallyrepresentedbyletterssuchas“p,q, r… EXAMPLES: p=”Multan isa cityof Pakistan” q=”17 is divisible by3” CONNECTIV MEANING SYMBOL CALLED NEGATION NOT ˜ TILDE CONJUNCTION AND ^ HAT DISJUNCTION OR v VEL CONDITIONAL IF……THEN  ARROW BICONDITIONAL IF ANDONLY IF  DOUBLE ARROW
  • 3. EXAMPLES: p=”Multan isa cityof Pakistan” q=”Ali isa Muslim” p ^ q=”Multanis a city of Pakistan”AND“Ali isa Muslim” p v q=” Multan isa cityof Pakistan”OR”Ali isa Muslim” ˜p=”Multanis nota cityof Pakistan” TRANSLATINGFROMENGLISHTO SYMBOLIS: Let p=”itis cold”,AND“it isAli” SENTENCE SYMBOLIC 1. It isnot cold ˜P 2. It iscold ANDAli P ^ q 3. It iscold OR Ali p v q 4. It isNOT coldBUT Ali ˜p ^ q COMPOUNDSTATEMENTEXAMPLES: Let a=”Ali isHealthy” b=”Ali isWealthy” c=”Ali is Wise” i. Ali ishealthyANDwealthyButNOTwise. (a ^ b) ^ (˜c) ii. Ali isNOT healthyBUThe iswealthyANDwise. (˜a) ^ (b^ c) iii. Ali isNEITHER healthy,WealthyNORwise. (˜a ^ ~ b v ~ c) TRANSLATINGFROMSYMBOLSTO ENGLISH: Let: m=”Ali isa good inmath” c=”Ali is a com. science student” I. ~ C Ali is“NOT” com. Science student. II. C v m Ali iscom. Science student”OR“goodinmath. III. M ^ ~ c Ali isgoodin math” BUT AND NOT“a com. Science student.
  • 4. WHAT IS TRUTH TABLE? A truthtable specifiesthe truthvalue of acompoundpropositionforall possibletruthvaluesof its constituentproposition. A convenientmethodforanalyzingacompoundstatement istomake a truth table toit NEGATION (~)  If p=statementvariable,thennegationof p“NOTp”, isdenotedby“~p”  If p istrue,~p is false  If p isfalse ~p istrue TRUTH TABLE FOR ~P P ~P T F F T CONJUNCTION (^)  If p andq is statementthenconjunctionis“pand q”  Denotedby“p ^q”  If p andq are true thentrue  If both or eitherfalse thenFalse P ^q P q P ^q T T T T F F F T F F F F DISJUNCTION (v)  If P and q is statementthen“por q”  Denotedby“p v q”  If both are false thenfalse  If both or eitheristrue thentrue
  • 5.  P v q P q P v q T T T T F T F T T F F F  Truth Table for this statement ~p^ q P q ~p ~p ^q T T F F T F F F F T T T F F T F  Truth Table for ~p^ (qv ~r) P q r ~r (q v ~r) ~p ~p ^(q v ~r) T T T F T F F T T F T T F F T F T F F F F T F F T T F F F T T F T T T F T F T T T T F F T F F T F F F F T T T T  Truth table for (p v q) ^ ~ (p^q) P q (p v q) (p ^ q) ~(p ^q) (p v q)^~(p ^q) T T T T F F T F T F T T F T T F T T F F F F T F Double negationproperty ~ (~p) =p P (~p) ~(~p) T F T F T F So itis clearthat “p” and double negationof “p”isequal. Example Englishtosymbolic P= I am Umair Shah
  • 6. ~p= I am not Umair Shah ~ (~p) = I am Umair Shah So itis clearthat double negationof “p”isalsoequal to “p”.  ~ (p^q) & ~p ^~q are not Equal. P q (p ^q) ~(p ^q) ~p ~q ~p ^~q T T T F F F F T F F T F T F F T F T T F F F F F T T T T So itis clearthat “~ (p^q) & ~p ^~q” are not equal De Morgan’sLaw 1. The negationof “AND” statementislogicallyequivalenttothe “OR” statementinwhicheach componentisnegated.  Symbolically~(p ^q) = ~p v ~q P q P ^q ~(p ^q) ~p ~q ~p v ~q T T T F F F F T F F T F T T F T F T T F T F F F T T T T So itis clearthat ~ (p^q) = ~p v ~q are logicallyequivalent 2. The negationof “OR” statementislogicallyequivalenttothe “AND”statementinwhichcomponent isnegated.  Symbolically~(p v q) = ~p ^ ~q P q (P v q) ~(p v q) ~p ~q ~p ^ ~q T T T F F F F T F T F F T F F T T F T F F F F F T T T T So itis clearthat ~ (pv q) = ~p ^ ~q is Equal. Application Negationforeachof the following: a. The fanis slowor itis veryhot
  • 7. b. Ali isfitor Awaisis injured. Solution: a. The fan isnot slow“AND”it is not veryhot b. Ali is not fit“AND” Awaisisnotinjured InequalitiesandDE MORGANESlaw: Exercise: 1. (p ^q) ^ r = P^(q ^ r) p q r (p ^q) (p ^q)^r (q ^r) P^(q ^r) T T T T T T T T T F T F F F T F T F F F F T F F F F F F F T T F F T F F T F F F F F F F T F F F F F F F F F F F So itclearsthat Colum5 and Colum7 are equal 2. (P ^q) v r = p ^ (qv r)????? P q r (p ^q) (p ^q) v r (q v r) P ^(q v r) T T T T T T T T T F T T T T T F T F T T T T F F F F F F F T T F T T F F T F F F T F F F T F T T F F F F F F F F So itclear that Colum5 and Colum7 are not equal.