SlideShare a Scribd company logo
sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr
Hydraulic	 dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura:	 TMB½r 1	
ω
ε =
Ω
3
m
Q = εφω 2gH ,
s
Q = μω 2gH
μ = ε × φ =0.6 0.62
ε
φ
ω
H
A
ω
emKuNénrnæEdlRtUvbeB©jTwk
0.8eTA 0.9 kkitedayel,ÓnTwk
0.8eTA 0.9 muxkat;rnæbeBa©jTwk
0.8eTA 0.9 muxkMBs;Twk ;rn
0.8eTA 0.9 muxCaTUeTAeKyktMélrbs; µ = 0.6 eTA 0.9
ɛ = 0.62 eTA0.64
φ = 0.97
2
αν
2g
1
Z 2
rMhUrqøgkat;rnæ nigeRkamTVaTwk
sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr
Hydraulic	 dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura:	 TMB½r 2	
a kMBs;TVaTwkebIk ,m
cth kMBs;Twks,Wt ,m
cth'' kMBs;Twks¶b;xageRkay ,m
cth =ε'×a
1
ct
j
a x
=
+å
emKuNel,Ón
0.95 0.97j = 
a
H
0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75
ε' 0.615 0.618 0.620 0.625 0.628 0.628 0.638 0.638 0.645 0.650 0.650 0.650 0.690 0.705
2
0
α2J
H = H + , m
2g
rUbTI1
cth cth''
H
0H
0J
cth
TVVVVVVVVVaTwk
xagmux
H
rUbTI2
taragbgðajGMBIε'
cth
H
0H
0J
a 2h
2J
2
2 g
a J
rlkTwkxageRkay
h av
sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr
Hydraulic	 dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura:	 TMB½r 3	
B rgVHTwk ,m rUbmnþ
b )atRbLay ,m
m eCIget
H kMBs;Twk , m
N PaBeRKImrbs;TMr ,mm
DkMBs;bMrug ,m
rUbmnþTUeTA
edIm,IeGaymuxkat;RbLaymanlk<N³smRsbeKeRbIrUbmnþ
3
0 ct
mQ = φ × ε' × a × b × 2g(H -h ) ,
s
a kMBs;TVaTwkEdlebIk , m
b TTwgTVaTwk , m
ε' emKuNénpleFobkarebIkTVaTwk
H0 kMBs;Twkxagmux ,m
Hct kMBs;TwkxageRkayTVa
x Gab;sIuelanPaBkkit
n n
B
b
H
m h a´ ´ D
2
2
2
1 21
6 32
2 1
3
3 2
ω = bh + mh = (b+mh)h
P = b + 2h 1+m
ω ( b + mh )
R = =
P b+2h 1+m
1
tgθ =
m
a
m = Cotg =
h
Q = ω × J = ω × c R
1 1
= R × R × = × R × × ω
n n
1 mQ = × R × ,
sn
i
i i
i
b
β =
h
sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr
Hydraulic	 dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura:	 TMB½r 4	
cMNaM
J > 0.5 eTA 0.6 m/s rt;kñúgRbLaykñúgkrNIEdlel,Ónrt;kñúgmanbBaðaBIrKW
J eRcaHdac; = KQ0.1
kkpk;
mmA = 0.33 , ω < 1.5
mmA = 0.44 , ω = 1.5 35
s
mmA = 0.55 , ω > 3.5
s
s

K emKuNeRcaHdac;
Q brimaNFaTwkkúñgRbLay m3
/s
W el,ÓnFøak;cuHRKab;dI mm/s
lkçx½NÐ
rMhUrqøgkat;rgVHragRtIekaN
J = AQ0.2
J kkPk < J < J eRcaHdac; ( el,Ónrt;kñúgRbLay)
Q h
P
B
b
z
32.5 mQ = 1.14h ,
s
sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr
Hydraulic	 dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura:	 TMB½r 5	
sMKal;
H kMBs;Twk , m
D Ggát;p©itrbs;rnæ ,mm
ctω RkLaépÞrbs;vtßúravkkit ,m2
ωRkLaépÞ rnæ
EdlehAfarMhUrqøgkat;rnæ KWCaclnaTwkEdlrt;ecjtam RbehagRbeLaHhUrecjeTAeRkA edayb:HCamYy
briyakas; rWb:HCamYynwgvtßúravxøÜnÉg . ]TahrN_ GagsþúkTwk TVaTwk .l.
Hydrolic
CMBUkTI1
rMhUrrbs;vtßúravqøgkat;rnæ
c
c
atmP
H
A A
o
d
ctω
ωbriyakas;
(NUey)
sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr
Hydraulic	 dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura:	 TMB½r 6	
eRbIsMrabépÞFM eRbIsMrabépÞtUc
3
mQ =
s
m emKuNbrimaNFaTwk
ωmuxkat;épÞTwk m2
H0 kMBs;TwklMeHogedayEpñk ,m
g = 9.81m/s2
rUbmnþ
1 rMhUrvtßúravqøgkCBa¢aMgesþIgEdlmankMBs;Twkefr
tamsmIkar Bernoulli BI AA eTA CC
2 2
o 0 0 c
P.C
P α J αJ tP
H + + = 0 + + + h
g 2g 2g 2gr
P0 sm<aFxageRkARtg; AA
P sm<aFxagkñúgRtg; CC
0J el,ÓnTwkrt;BIépÞb:HxagelImkrnrnæ ,m/s
ctJ el,Ónecjrnæ m/s
P.Ch kMhatbg; ,m
e m.p
e
R 100 0.6
R > 100000 μ = 0.60 0.62
ε = 0.62 0.64
φ = 0.97
x£  =
 

2
0 0 0
0H H + +
2
P P
g g
a J
r
-
=
2
ct
0H ( )
2g
J
a x= +S
0
3
Ω
H H Ω 4ω < 15%
ω
= 1% 5ω
mQ = μω 2gh ,
s
 ³ 
W  W ³

snμt; 1
=j
a x+S
ct 0= 2gHJ j
0Q = μω 2gH Q = μω 2gH
c
c
atm 0P = P
H
A A
o
0H ctω
ctJ
sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr
Hydraulic	 dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura:	 TMB½r 7	
kñúgkrNIEdl
0 atm
2
0 0
0
0
0
P = P = P
α
H = H+
2g
H = H
Q
=
J
J
W
W muxkat;rbs;épÞTwkénGag
2
0
2 2
2
0
μω 2ghα Q
Q = μω 2g(H+ ) or Q =
2gΩ ω
1-μ α
Ω
cMeBaH
0
3
Ω
H H Ω 4ω < 15%
ω
= 1% 5ω
mQ = μω 2gh ,
s
 ³ 
W  W ³

eKdwgfaemKuNénkarkkitRtg;Rckecj
ε , φ Gnuvtþn_tamlkçN³
e
2gh
R , = 2ghJ
n
=
dUcenH
e m.p
e
R 100 0.6
R > 100000 μ = 0.60 0.62
ε = 0.62 0.64
x£  =
 

(emKuNrbs;el,ÓnTwk )
sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr
Hydraulic	 dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura:	 TMB½r 8	
rUbmnþ
cth = ε' × a
a kMBs;ebIkTVaTwk ,m
ε' emKuNkkitrvagTwkCamYyTVaTwk
cth kMBs;TwkEdles,WtRtg;cMnucEdlTabCageK ,m
rMhUrqøgkat;TVaTwk
H
haJ
a
0J
a
cth
2
0
2g
aJatmP
ah J
Up Down
haJ kMBs;Twks¶b;xageRkayTVaTwk , m
a kMBs;ebIkTVaTwk , m
0J el,ÓnTwkxagmuxTVaTwk ,m
H kMBs;TwkxagmuxTVaTwk ,m
0H kMBs;TwklMeGogedayEPñk ,m
cth kMBs;TwkkkitenARtg;Rckecj,m
hz
kMBs;TwkenAEk,rTVaTwk ,m
2J el,ÓnTwkenAeRkayTVaTwk m/s
H 0H
a
ctJ
zh
2J
0J
zh haJ=
2
21
1
b
cth
sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr
Hydraulic	 dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura:	 TMB½r 9	
cMeBaHel,ÓnTwkrt;xageRkamTVaTwk
ct 0 ctφ 2g(H -h )J =
nigbrimaNFaTwk
ct ct 0 ctQ = ω = ε'×a×b×φ 2g(H -h )ctJ´
sMKal;
b TTwgTVaTwk , m
dUcenH
3
ct 0 ct
mQ = φ × ε' × a × b 2g(H -h ) ,
s
2
0
0
ct
1
H = H ,m , φ =
2 α +Σξg
aJ
+ emKuNrbs;el,Ón
cMeBaH φ = 0.95 eTA 0.97 bRgYmmkvijeKGacsresr
ε' × φ = μ emKuNrbs;brimaNFarTwkhUreRkamTVaTwk
3
ct 0 ct
mQ = μ × a × b × 2h(H -h ) ,
s lkçN³edNUey (mincal;)
3
ct 0 ct
mQ = μ × a × b × 2h(H -h ) ,
s lkçN³NUey (mincal;eRkay)
a
H
0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75
ε' 0.615 0.618 0.620 0.622 0.625 0.628 0.630 0.638 0.645 0.650 0.660 0.675 0.690 0.705
ctha
rUbPaBebIkTVaTwk
kñúgkarGnuvtþn_ε' = 0.64
taragbgðajGMBItMél
sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr
Hydraulic	 dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura:	 TMB½r 10	
CMBUkTI 2
rMhUrÉksNæanenAkñúgépÞTwkcMh
α
a
2
1α
2g
J
1P
gr
1Z i 
h = const
2
2α
2g
J
2P
gr
2Z
pc lh = h
L
'L
sMKal;
p lI = I CMralrbs;épÞTwk
i CMral)atRbLay
2
α
2g
J
famBlsIuenTic ,m
1 2P P
,
g gr r
famBlsMBaF ,m
1 2Z , Z famBlbU:tgEsül ,m
h kMBs;Twkefr,m
'a mMulMgak
L RbevgbeNþayRbLay
L' RbevgbeNþayRbLay ,m
p lh = h kMhatbg;tambeNþayRbLay,m
sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr
Hydraulic	 dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura:	 TMB½r 11	
1 brimaNFaTwkefr ( Q = Const )
2 kMBs;TwkesμIKñaRKb;cMNuc h = Const efr
3 TwkeLIgcuHtamlkçN³esrI
4 )atRbLaymanCMrali > 0 , i = Sinα = Const
5 CBa¢aMRbLaymanPaBeRKImefr n = Const
6 bBaðaepSg²EdlmanGMeBIvaRtUvmin)anKit
rUbmnþGnuvtþn_
2
ω = Const ,m muxkat;RbLay
X = P = Const , m brimaNRbLay
R kaMrsμIGIuRdUlik ω
R = ,m
P
IP = IL //i CMralépÞTwkRsbCamYyCMral)atRbLay
h kMBs;TwkkñúgRbLayefrCanic© ,m
= c RiJ el,ÓnmFüm m/s
eday i = I
3
Q = ωc Ri or
mQ = k i ,
s
rUnmnþrbs;elak CHEZY
k = ωc R
C emKuNrbs;el,Ón
R kaMGIuRdUlik , m
ωmuxkat;RbLay
k emKuNbrimaNFaTwk
i = I = 1
I lkç½NÐ rMhUrÉksNæan
sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr
Hydraulic	 dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura:	 TMB½r 12	
D
B
b
m=1.5
H
0H
BMnuHkat;AA
sMKal;
b )atRbLay ,m
B rgVHmat;RbLay ,m
D kMBs;suvtßiPaB , m (0.2 eTA 2m )
GaRs½yFaTwk 3
mQ =
s
m= 1.5 nig m=1 CaCMraleCIgeTrkñúgnigeRkAénRbLay
h kMBs;TwkkñúgRbLayRtg;muxkat;NamYy ,m
H = h + Δ ,m
A
A
m=1
m=1.5
sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr
Hydraulic	 dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura:	 TMB½r 13	
II rUbmnþsMrab;KNnaemKuN Chezy nigemKuNénPaBeRKImrbs;RbLay
0.5y1 mC = R , (Pavlovski)
sn
n PaBeRKImrbs;RbLay
R kaMGIuRdUlik,m
y s½VyKuN
y = 2.5 n - 0.13 - 0.75 R( n-0.10)
y = 1.5 n cMeBaH R < 1m
y = 1.3 n cMeBaH R > 1m
kúñgkrNI n = 0.009 eTA 0.040  R=0.1 eTA 3m
c = 4 2g (k+lgR)
0.51 mc = + 17.72lgR ,
sn
0.51/61 m** c = R , Manning
sn
(enAelITIpSareKniymeRbICaCnCatiGg;eKøs)
2/3 1/21 m= R × i ,
sn
J
emKuNénPaBeRKImeRcInRbePT
( )
1/2N
2
i i
1
equiralent 1/2
x n
n =
x
é ù
ê ú
ê úë û
å
sMKal;
xi kMras;énPaBeRKImnimYy ,m
ni RKab;dInimYYy² ,m
rUbmnþenHbgðajGMBImuxkarRbLayragctuekaNBañaynig)ar:abUlik
Agroskine
sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr
Hydraulic	 dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura:	 TMB½r 14	
 
h H
D
B
a
θ
b
sMKal;
b TTwg)atRbLay ,m
m. eCIgeTxagkñúgRbLay,m
h kMBs;TwkkñúgRbLay,m
D kMBs;suvtßiPaB,m
w RkLaépÞRbLay,m
2
ω = bh + mh = (b+mh)h
P brimaRtrbs;RbLay,m
B rgVHTwkxagelI,m
H = h´DkMBs;Twksurb,m
θ mMulMgak;rbs;RbLay a
m = cotgθ = ,m=0
h
2
2
P = b+2h 1+m or P=b+m'h
m' = 2 1+m
R kaMGIuRdUlik ,m
2
ω bh+mh
R = =
P b+m'h
edUm,IeGayrUbragRbLayctuekaNBañaymanlkçN³l¥RbesIrKWeKRtUvGnuvtþrUbm
nþ
0
2
0
m hb
β = and δ =
h b+mh
m = m' - m = 2 1+m - m
B = b + 2mh
rUbmnþ)ar:abUlik
sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr
Hydraulic	 dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura:	 TMB½r 15	
muxkat;
Q = k i
RbEvgbrimaRtesIm
x = P 2τ(1+2τ)+ln( 2τ+ 1+2τ)
ω 2Bh
R = =
x 2PN
é ù
ê úë û
EdltMél N man
N = 2τ(1+2τ) + ln( 2τ+ 1+2τ)
kúñgkrNI
B h³
eK)an
x B
rUbmnþbgðajmuxkat;RbLayragctuekaNBñay nig)ar:abUlik
  B
D
H
b
 
P
2 θ
h
H
A
B
x
y
rUbmnþ
x2
=2Py
P)ar:Em:Rtrbs;)ar:abUlik
H CMerATwk ,m
H = h+D ,m
B rgVHmat;elI ,m
D kMBs;bMrug ,m
h
τ-
P
CMerATwkR)akd
1
m-
2τ
CMerArbs;épÞTwk
2
ω = B×h ,m B = b ,m
P = B ,m
ω B×h
R = = = h ,m
P B
sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr
Hydraulic	 dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura:	 TMB½r 16	
taragbgðajGMBIemKuNeCIgeTr
RbePTdI ,m m
dIdæ 1 eTA 1.25
dIl,aydIdæ 1.25 eTA 1.50
dIl,ayxSac; 1.50 eTA 1.75
dIxSac;suTæ 1.70 eTA 2.25
cMNaM
muxkat;)atRbLay b = 0.4m CatMélGb,brima ( Minivaum ) eKGacKNnatamviFImü:ageTot rbs;
RbLayeRsacRsBtamlkçx½NÐrbs;elak Ghirshkan
cMeBaHtMélDvijKWRtUvGnuvtþtamsþg;darUsSI
3
mQ
s ,mD
<1 0.25
1 eTA 10 0.4
10 eTA 30 0.5
>30 0.6
sikSaGMBIlkçx½NÐénel,ÓnTwk m,
s
J mankrNI2y:agKW J eRcaHdac; nig J kkPk; .
rUbmnþtamlkçx½NÐ
afJ J£ el,ÓneRcaHdac;
J el,ÓnFmμtarbs;TwkkñúgRbLay ,m/s
0.1
af = kQJ
K emKuNénel,ÓneRcaHdac;
3
4
h = (0.7 1.0) Q
β = 3 Q - m
B = ( 3 5 ) Q


sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr
Hydraulic	 dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura:	 TMB½r 17	
rUbmnþbgðajGMBImuxkat;RbLayragctuekaNBñay nig)ar:abUlik
RbePTdI K
dIdæ 0.75
dIdæsuTæ 0.85
dIl,ayxSac; 0.53
dImemak 0.57 eTA 0.68
rUbmnþrbs;el,ÓnkkPk;
0.2
an = AQ ,m sJJ
A emKuNénel,ÓnmFümRKab;dIEdlFøak;cuHeTAkñúg)atRbLay
mmA = 0.33 w < 1.5
s
mmA = 0.44 w = 3.5
s
mmA = 0.55 w >3.5
s



WrYm = ( Σw tamEpñkP)/100
Q
× k = = α
τ
´k
wS el,ÓnRKab;dIepSg²Føak;cuHmm/s
Pi PaKryénRKab;epSg²
Q = k i
sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr
Hydraulic	 dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura:	 TMB½r 18	
V < gh
1rF <
r
V > gh
F 1>
cariklkçN³rbs;RbLaycMhman 4FM²
1 Stationary
V = 0
Fr ( froud ) = 0
2 Subcritical
3 Studding ware flout
4 Super critical
Critical Flow
sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr
Hydraulic	 dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura:	 TMB½r 19	
- Vc Velocity critical ,m/s
- H Hydraulic depth ,m
- G 9.81 m/s2
- Fr Froude umber
rMhUrminÉksNæan
eKGacniyayfarMhUrclnavtßúravkñúgRbLaycMhminÉksNæanKW
- CMral)at I i¹ CMralrbs;épÞTwk
- H CakMlBs;TwkERbRbYlenAkñúgRbLay
- CMerAekIneLIgtamTisedAénclnavtßúrav
- CMerAfycuHtamTisedApÞúyénclnavtßúrav
Vc
Fr = = 1
gh
begÁa
h
0i >
ExSekagrWm:U (l,akTwkekInrYcFøakcuH)
ExSekagedRKuy ( l,ak;TwkFøak )
a
0i > 
a) TwsedATwkRsktamCMral)at

b) i=0 TwsedATwkRsbtamCMral)at
a
0i <
c) TwsedATwkpÞúyBICMral
sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr
Hydraulic	 dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura:	 TMB½r 20	
rUbmnþEdlRtUveRbIKW
0 0 0 0 0 0Q = ω c R i = k i
sMKal;
0 0 0 0ω , c , i , R CatMélEdlRtUv h = h0
sMrab;
1) i0 = i TisedARsb
2) i0 = i TisedARsbtMélviC¢man
3) i0 < i TisedApÞúy( KitkñúgtMéldac;xat)
eKeRbIkMNt;brimaNFaTwkQ’ tamclnaTisedATwki0 > 0 .
bB¢ak; ³ Q’CabrimaNFaTwkRtg;cMNucNamYyEdleyIgRtUvsÁal;beNþayRbLayeQñaH ( edb‘IhVicTis ) .
KMnUsbMRBYjrbs;épÞdIeRsacRsB
* muxkat; ED = F1 ,ha
* muxkat; DC = F1+F2 ,ha
* muxkat; CB = F1+F2 + F3 ,ha
* muxkat; BA = F1+F2 + F3+ F4 ,ha
RbPBTwk
4F
3F
2F
1F
D
B
C
E
2h
2h
3h
BMnuHkat;beNþaysMng;Farasa®sþ
sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr
Hydraulic	 dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura:	 TMB½r 21	
rUbmnþEdlbB¢ak;GMBIclnaTwkKW
2
cin3
αQ B
= P = 1
gω
sMKal;
cinP )ar:aEm:RtsIueNTic
α emKuNkUrIyUlIs 1.0 eTA 1.01
Q brimaNFaTwkrt;kñúgRbLay m3
/s
bB¢ak;
Q’ CabrimaNFaTwkRtg;cMNucNamYyEdleyIgRtUvsÁal;tambeNþayRbLayeQμaH ( edb‘ÍhVicTis )
B rgVHxagelIrbs;RbLay ,m
ω RkLaépÞRtg;muxkat;tamcMnucnimYy²
snμt;cMeBaHrbbrMhUr
cinP > 1 rMhUrtUr:g;Esül ( rMhUr Turbulence ) Twktic
cinP = 1 Downtream rMhURRKITic
cinP < 1 rMhUrPøúyvIy:al ( rMhUr Laminar )TwkCn
b
B
rUbCamYyKña nigrUbelIsþaMEdrenHemIlkat;TTwg .
sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr
Hydraulic	 dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura:	 TMB½r 22	
P CMerArbs;r)aMgxageRkay ,m
haJ kMBs;Twks¶b;xageRkaysMNg;begðór ,m
Z kMBs;eFobrvagnIvUTwkxageRkaysMNg;,m
b rgVHTwkhUr ,m
B muxkat;RbLayxagelI ,m
CMBUkTI3
rMhUrqøgkat;sMNg;begðór
sMKal;
P1 kMBs;r)aMgrbs;sMNg;begðór ,m
l’ 3 eTA 5 dgén H
0J el,ÓnTwkhUrxagmuxsMNg;begðór , m/s
S kMBs;rbs;r)aMg,m
1 cMNat;fñak;rbs;sMNgbegðór
sMNg;begðórmanEckCaeRcIny:agKW
a. sMNg;begðórmanCBa¢aMgesþIg
P
Z
h a J
1P
0J
 H
Q
V H S
l
D ow ntream
BMnuHkat;beNþaysMNg;begðór
sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr
Hydraulic	 dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura:	 TMB½r 23	
H0H e
1P
0V
S
xül; P
avh
2
0
2
v
g
a
l = 3 5m for H
lkçx½NÐ
-S < 0.5H
-
2
0
0
αr
H = H + ,
2g
m
b. sMNg;begðórr)aMgRkas;
C. sMNg;begðórsßitkñúglkçN³Fmμta
0H H 0J
J
P
h
haJ
her
l S
2H < S < 10H
haJ
P
1P
H0H
l S
2
0
2g
aJ
2
0
2g
aJ
P
0H H
haJ
1P
Sl
0.5H < S < 2H
sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr
Hydraulic	 dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura:	 TMB½r 24	
ctuekaNEkg ctuekaNBñay
RtIekaN rgVg;
H
P
0J
0J
d. rgVHrMHUrrbs;sMNg;begðór
e. sMNg;begðórragekag
f. rgVHsMNg;begðórRtg;
g. rgVHsMng;begðórbBaäit
H
P
P
H
H
P
0J
0H 1P
P
r
0
2g
aJ
cthl S
rlkTwkxμÜlsμaj;
r kaMrgVg;
sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr
Hydraulic	 dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura:	 TMB½r 25	
h. rgVHsMNg;begðórLaetral;
i. rgVHsMNg;begðórxusFmμta
sMNg;begðórBhuekaN
sMNg;begðórragekag
sMNg;begðórmat;ragmUl
0J 0J
0J 0J
0J
sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr
Hydraulic	 dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura:	 TMB½r 26	
mankarkkittic
B=b
mankarkkitxøaMg
B > b
2 cMNat;fñak; énsMNg;begðór
EdlrMhUrmanlkçN³ceg¥ót niglkçN³TUlay
3 RbePTrMhUrrbs;Twk
rUbmnþ
3/2
0Q = mb 2gH sMrab;rMhUredNUey
m emKuNbrimaNFaTwk
b rgVHsMng;begðór ,m
2
0
0
α
H = H + ,m
2g
J
TwkxagmuxsMNg;begðór ,m
33/2
n
mQ = σ mb 2gH ,
s
( sMrab;NUey )
nσ < 1
0J B b
0J
B
b
P1P
H0H
haJ
rMhUredNUey
2
0
2g
aJ
P1P
H0H
haJ
rMhUrNUey
2
0
2g
aJ
sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr
Hydraulic	 dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura:	 TMB½r 27	
4.sMNg;begðórragctuekaNEkgRtg;lkçN³edNUeyEdlmanCBa¢aMesIþg
5. sMNg;begðórEdlmanCBa¢aMgesþIgedayragctuekaNEkg
a
b
xül;
c
0.27H
3H 0.67H
0.112H
0.22H0.15H0.003H
H
a
a
H
P
h
A
θ 1θ
b
P
H
a
B
sMrab;RtIekaN
2 3
5 mQ = 1.14H
s
sMrab;ctuekaNBañy
3 3
5 mQ = 1.86bH
s
eday b> 3H
sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr
Hydraulic	 dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura:	 TMB½r 28	
0H H
1P
P
erh h
Sl
b
b
Bil
TVaTwk
6. sMNg;begðórEdlmanCBa¢aMgRkas;
3
0
mQ = ω × = φ × b × h 2g(H -h) ,
s
J
0
2
h= H
3
or
3
3
2 mQ = mb 2gH ,
s
( edNUey )
m = 0.35 eTA0.36
cMeBaHsMNg;begðórkñúglkçN³NUey
3
2 3
n 0
n
mQ = σ mb 2gH ,
s
b <1
7. sMNg;begðórEdlmanragCaekagCaExSekag
3
2
0Q = mb 2gH
m = 0.48 0.49
8. sMNg;BIlEdlfitenAsMNg;begðór
sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr
Hydraulic	 dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura:	 TMB½r 29	
P
2h
2h
1Q
2Q
2h
rUbmnþ
3
2 3
0
0
0
mQ = ε m b 2gH ,
s
H
ε =1 - a
b+H
a emKuNrbs;rUbragBil
9 sMNg;begðórLaetral;
QLaetral; = mLaetral; x b x
3
2
02gH
3
m,
s
mLaetral; = 0.25 + 0.167( 2
1
2
H
-
H
cinP )
2
2
2
cin
2
P
gh
J
=
10>sMNg;begðóreFμjrNa
A=0.20
r=0.5t
A=0.11 A=0.11 A=0.06
t t t
1b
2b
b
B
n n n
B
h
sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr
Hydraulic	 dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura:	 TMB½r 30	
3 3
2
0
3
2
0
max
mQ = mb 2gH ,
s
Q
b =
m 2gH
h
n =
(0.25 1.50)h
h kMBs;TwkFmμta ,m
maxh kMBs;TwkGtibrima ,m
n cMnYnrgVH
sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr
Hydraulic	 dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura:	 TMB½r 31	
CMBUkTI 4
rlkTwkeRkaysMNg;begðór
I rUbPaBénsMNg;Farasa®sþ
rMhUrmanBIry:ag
- cr cinh < h and P > 1
rUr:gEsül ( Twktic )
- cr cinh > h and P < 1
PøúyrIy:al; ( TwkCn )
0J
0H H
cth
haJ
1P P
Upstream Down stream
0J0H H
cth
haJ
1P
P
Q
sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr
Hydraulic	 dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura:	 TMB½r 32	
a
h
cth
2 3
1 2 3
ah J
resL a eL J
II TRmg;rMhUrrbs;TwkeRkaysMng;Fara®sþ
Q rlkTwkbkeRkay
Q rlkTwkrt;eTAmux
resL RbEvgrlkkeRBa¢akxøaMg ,m
a eL J RbEvgrlkmanlkçN³s¶b;bnþicmþg² ,m
RbePTénrMhUrrbs;rlkeRkaysMNg;begðór
manEckCaeRcIny:agKW
1 rMhUrrlkl¥tex©aHkrNI
'
cta = (h" - h ) or a>h'
2 rMhUrrlkTwkCn;krNI
a<h
a
cth'
h"
h'
h'
a
crh critich ahJ
eday
crh kMBs;rlkragdUcbUkstVeKa
critich kMBs;Twkrlksmrmü ,m
haJ kMBs;rlks¶b;enAeRkaysMNg; ,m
sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr
Hydraulic	 dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura:	 TMB½r 33	
cth
haJ
clnavtßúrav
3 rMhUrrbs;rlkcal;mkeRkay ( rWm:U )
4 rMhUrCnlicenAxageRkayTVaTwk ( NUey )
5. rMhUrrbs;rlkCnlicxøaMehIyman]bsKÁ
P2 kMllaMgbukb®Ba©asTisrbs;vtßúrav
P1 kMlaMgbukRsbTisedArbs;clnavtßúrav
G TMnajrbs;vtßúravEdlmanlkçN³Ekgbøg;)atEtmantMéltUc G=0
P2 = P1 = 0 eday i = o
cth
h'' haJ
Kμan]bsKÁ
H
a=h''-h'
1P
h'' G
2P
ah J
1
1 Pr
sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr
Hydraulic	 dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura:	 TMB½r 34	
6. rMhUrrlkCnlicxøaMgEtKμan]sKÁkñúglkçN³)atmanragCal,ak;
rUbmnþRKwHrMhUrrbs;rlkeRkaysMNg;begðóreKRtUvsÁal;smμtikmμ
egQ , h' , h'' , h eday Q brimaNFarTwk ,m3
/s
h kMBs;Twks<WtCitTVaTwk
h’’ kMBs;TwkenAbnÞab;BI hct ,m
hcg kMBs;TwkRtg;TIRbCMuTm¶n; ,m
tamkaGnuvtþn_KWRtUvsÁal;
2
cin 3
αQ
*** P = × B = 1
gω
eday ωmanmuxkat;TwkRtg;kMBs;s,Wt , m2
B rgVHTVaTwk ,m
*** kMBs;TwkrlkxageRkaysMNg;
'
cin
''
cin
h'
h" = ( 1+8P - 1 )
2
h''
h' = ( 1+8P - 1 )
2
'
cinP nig ''
cinP Ca)ar:asIuenTicxagmuxkat;rlkxageRkaysMNg;begðór
krNI
'
cin
''
cin
h" 2h' P > 3
P > 0.375
³ 
*karfykMlaMgrbs;TwkenAeRkaysMNg;begðór b¤ehAfakMhatbg;énkMlaMg
rUbmnþ
pc
(h'' - h')
h = ,m
4h'h''
kar)at;bg;famBlrbs;clnavtßúrav enAeRkaysMNg;begðórKW GaRs½yeTA nwgbMErbMrYlénkMBs;TwkxageRkay
fitenAkñúglkçN³tUrg;Esül ( J ekInxøaMg ) kMBs;Twktic b¤PøúyrIy:al;EdleGaymankarekIn b¤fyfamBlrbs;Twk .
sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr
Hydraulic	 dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura:	 TMB½r 35	
eday
pch kMhatbg;rbs;famBlTwk ,m
h' , h'' kMBs;rlkTwkeRkaysMNg; ,m
¼ CaemKuNénkarkat;bnßyrbs;famBlkMhatbg;
*vIFIrkRbEvgrkecalenAeRkaysMNg;begðór b¤TVaTwk
1 rlkrMhUrtex©aH
resa) l = 2.5 ( 1.9h"-h' ) ,Pavloski GñkR)aCJrkeXIj
' 0.81
res cinb) l = 10.3h'( P - 1 ) Teheraussov GñkR)aCJrkeXIj
'
res cinc) l = 4h' 1+2P , Pikalow GñkR)aCJrkeXIj
res ' '
cin cin
19 30
d) l = ( 3 + - ) h"-h"Aivasian
P P
GñkR)aCJrkeXIj
tamrUbmnþ a nig e eKeRbIcMeBaH cinP >10 sMrab; d eRbIcMeBaH cin3 < P < 400rIÉRbEvgrlks¶b;vij
KWGnuvtþtamrUbmnþ
lavr = ( 2.5 eTA 3 ) lres
2 rlkrMhUrCnlic cin cinP <3 or P > 0.375
h"
haJ
'
cth
resl la cJ
a h"
crh =1.116h" haJ
a< '
cth
Ptr kMlaMgkkitrbs;TwkCamYy)at
P1-P2 kMlaMgsm<aFGIuRdUsþaric KWTwkmanclna
dUcenHCaTUeTA
'
3cin
'
ct
P "
( )
h
h
h
=
'
cinh' = h" P krNIEdl '
cinP 1.5<
'
resl =10.6h' ( P - 1 )cin
sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr
Hydraulic	 dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura:	 TMB½r 36	
eRkaysMNg;Farasa®sþ EtgEtmanbBaðaekIteLIg nUvTæiBlrbs;rlk EdlkeRBa¢aly:agxøaMgbNþal
eGaytYsMNg;manlkçN³swkricrilehIy manlkçN³rMj½r nigenAEpñkcugxageRkaybMput éntYsMNg;manlkçN³sIueRcaH
dac; enAxag cug éntYsMNg;enaHedayclnaénvtßúravmineKarBtamlkç½NÐ ' '' ''
ct ct ct ah < h but h >> h J eTAvij .
dUcenHeyIgRtUvERbRbYlsMNg;xuslkç½NÐeTACasMNg;edayRtUvlkç½NÐeTAvijKW
''
ct ah < h J Canic© b¤ a normalh hJ £ rbs;RbLayxageRkay .
'
ct ah >> h J sMNg;manlkçN³KμanlMnwg
nwgeRcaHdac;EpñkRKwHeRkABIeRBaHkMlaMgrbs;rlkenAmanlkçN³xøaMgdUcenHRtUveFVIeGaysMNg;enHeGayman
kMralEvg rWeFIVkUnGag
4 kUnGagCYykat;bnßykMlaMgbukrbsrlkedayGnuvtþn_tameKalkarN_
''
ct a normalh < h hJ = rbs;RbLay
ah J
cth
1P
0H
H
2
0
2g
aJ
1
1 2
2 3
3
P ''
cth
''
cth
cth
P
0H H
sMNg;begðóreFVIGMBIfμlay
eCIgkarBarCMrabTwkxagmux
sMNg;eFVIGMBIebtugGaem
kMral
Gagkat;bnßykMlag
bukrlkeRkaysMNg;
kMralebtugGag bøúkfμ 4 x 6 karBareRcaHdac;
xagmuxsMNg;begðór xageRkaysMNg;begðór kMBs;Twk Normal kñúg
RbLayeRkaysMNg;begðór
normalh
sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr
Hydraulic	 dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura:	 TMB½r 37	
2/3
01
q
H =
2nm gs
æ ö÷ç ÷ç ÷ç ÷÷çè ø
sMKal;
arP dMubøúkebtugGaem
parL RbEvgEdlRtUvdak;dMubøúk ,m
01H kMBs;Twksrub ,m
2
01
01 1
α
h =H + ,m
2g
J
01J el,ÓnTwkeRkaysMNg; ,m/s
rUbmnþ
"
par ct 1P = σh - H
2
01
1 0
α
H = H - ,m
2g
J
2/3
01
g
H =
m 2g
æ ö÷ç ÷ç ÷ç ÷÷çè ø
ns emKuNénTwkCnliceRkaydMubøúkebtug
M emKuNbrimaNFaTwk
q brimaNFaTwkrt;tamTVarTwkmYy²
3
m
,
sm
0H H
1P
P
0E
8D
haJ
basPhaJ
basH
0J
basL
bøúkTI1 bøúkTI2
sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr
Hydraulic	 dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura:	 TMB½r 38	
lMhat;KMrU GMBIsMNg;Farasa®sþ
KMnUsbMRBYjGMBIsMNg;bBa¢ÚlTwk ¬ BMnUHkat; A – A ¦
H=2.24m
10.0265
h =2.04
0.2m
9.8265
10.5865
xagmux xageRkay
TVaTwk
eCIgeTxageRkaysMNg;
1.5m 1.5m
tYsMNg;
tYsMNg;
dgEdk
pøÚvLanebIkbr
bnÞÞÞÞÞHebtugGaem
sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr
Hydraulic	 dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura:	 TMB½r 39	
maxQ = ε × φ × B 2gZ
edIm,IsikSaGMBiMsMNg;Farsa®sþcaM)ac;RtUvsÁas;smμtikmμ ³
-sikSaGMBIemkanicdIedIm,IrkTMhMRKwHrkCMrabTwkkñúgdIrkRbePTdIRTRKwHEdlCaersIusþg;rbs;dI ¬ ÉksaremkanicdI¦
- sikSaGMBIdæanelxa ¬tUb:Ul¦edIm,IrkkUteGay)anc,as;las;mun nigeFIVkarsagsg; . ¬ ÉksartUb:Ul ¦
- BinitüemIlÉksar nigr)aykarN¾rbs;GIuRdUlItEdlTak;Tg nigbBaðaCMrabrbs;Twk eCIgeTrRbEvg)atRbEvg
kMrslx½NÐxagelImuxkat;FarTwknigeRKÓgbgÁMúepSg²rbs;sMNg; . ¬ ÉksarGIuRdUlik ¦
dMeNaHRsayGMBIlMhat;sMNg;Farasa®sþsikSakUdTwkxagmuxsMNg;eGay)anc,as;las; .
-sikSaGMBIrUbmnþEdlRtUvykeTAGnuvtþn_
- sikSaGMBITTwgrgVHpøÚvTwkEdlhUrecj
-sikSaGMBIkMhat;bg;énclnaTwkEdlkkitCamYynigCBa¢aMgCamYy nigTVaTwknigGMBIepSg²xøHdUcCaRckcUl
nigRckecjrbs;clnaTwk
-sikSaGMBIRbEvgclnaTwkEdlmanlkçN³keRBa¢alxøaMgenAEpñkxageRkaysMNg; edIm,IecosvagkMueGayman
PaBeRcaHdac;eTAelIsac;ebtugnigEpñkxageRkamrbs;sMNg;
-TaMgenHKWsikSanUvemeronGIuRdUlIt .
tamrUbmnþRtUvykeTAeRbI
sMKal;
Q brimaNFaTwkEdlRtUvhUrecjGMBIrgVHTVaTwk
ε emKuNEdlclnaTwkrt;cUleTArkrgVHTVaTwk
emKuNel,ÓnTwkEdlRtUvrt;cUlsMNg;FarTwk
ε = 1
 0.95 
sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr
Hydraulic	 dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura:	 TMB½r 40	
3
2
0.714
B = = 7.69m
0.4×1× 2×9.81(0.14)
7.19
7.05
5.75
5.045
5.05 5.55
P
B KWCaTTwgénrgVHpøÚvTwkhUr
g =9.81m/s
Z =Max mux– Max xageRkay
rkTTwgFarTwk B
B=8m
edayeFVIkareRbobeFobrvagbrimaNFarTwkbegðórecj
Qbegðór =0.4 x 8 x √9.81x 2 = 0.72 m3
/s
Q brimaNFarTwkbegðórcaM)ac;=- 0.714m3
/s
dUcenH
Q = 0.72m3/s > Q = 0.714m3
/s
karkMNt;sMNg;begðórrbs;eRKagsMNg;
r)aMeXOnTI2
sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr
Hydraulic	 dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura:	 TMB½r 41	
kMNt;rkCMerAs,WtenAeBlTwkhUrecj
q brimaNFarTwk 1Éktþam2
/s
j emKuNelÓncrnþTwkrYm φ = 0.98
kMNt;rkCMerAs,WtenAeBlTwkhUrecj
q brimaNFarTwk 1 Éktþa m2
/s
φ emKuNel,ÓncrnþTwkrYm
tamkarkMnt;kñúgtarag '
cq & h edayGnuvtþn_tamrUbmnþ ¬A¦xagelIeK)an
'
ch ,(m) 0.016 0.018 0.020 0.025
 2
q m /s 0.082 0.092 0.102 0.127
tamrUbmnþ ¬A¦eyIgGacrkhc'',(m)
2 '
cq = 0.089 m /s h = 0.071
dUcenHkMBs;énPaBke®Ba¢alman
' 2
c
' 3
c
h 8q
hc'' = ( 1 + - 1 )
2 g(h )
2
''
c 3
0.017 8×(0.089)
h = ( 1 + - 1 ) = 0.299m
2 9.81(0.017)
edayeyIgkMNt;r)aMgeXOnmankMBs; h= 0.3m EdlCar)(aMgeXOnTI2 eK)an
2
g = 9.81 m/s
2
o
α
H = H +
2g

2
7.19 7.05 (0.63)
0.16
2 9.81
m
x
   
7.05 5.045
P= - = 2.005m 
' '
c o c
o
2
q = φ × h × 2g(P+H -h )
φ = 0.89 , P = 0.3 m , H = 0.05m
Q 0.714
q = = = 0.1785 m /s
B 4
' '
c o cq = φ × h × 2g(P+H +h ) (A)
sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr
Hydraulic	 dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura:	 TMB½r 42	
 ''
c
min
k×h = 1.2×0.113=0.136
h = 0.5m
B rgVHr)aMg = 4m
TMnak;TMng '
cq & h kMNt;xageRkam
'
ch ,m 0.03 0.04 0.05 0.1 0.2
2
q ( m /s ) 0.073 0.168 0.203 0.217 0.336
tamlTæplkñúgtarageyIg)an
kMBs;ke®Ba¢al
' 2
'' c
c ' 3
c
2
3
h 8×q
h = ( 1+ - 1 ) = 0.113m
2 g×(h )
0.045 8×(0.178)
= ( 1+ - 1 ) = 0.113m
2 g×(0.045)
tamkarepÞógpÞat;
''
min ch > k × h BitCaRtwmRtUvkarkMNt;kMralx½NÐxageRkaysMNg;begðórRbEvgPaBke®Ba¢al ¬Lers ¦
'' '
c clres = 2.5 ( 1.9 h - h )
= 2.5 ( 1.9 × 0.113 - 0.045 ) = 0.424m
lres= 0.424m lres=0.5
RbEvgkUnGag ¬Lb ¦
EteyIgrk
RbEvgkMralbnþGMBIkUnGag
karkMNt;CMerAEdlsuIrUgxageRkaysMNg;
2 '
cq = 0.178 m /s h = 0.04m
bL =1.25 ×lres =1.25×0.5 =0.625m
bL =1m
'
res resL =2.5 ×L =2.5 ×0.5 =1.25m
1.2R
o
q
H =K×
V
sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr
Hydraulic	 dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura:	 TMB½r 43	
edaykarKNnaCMralTwkxageRkamsMNg;Farsa®sþ
sMKal;
1....8 kMNt;elxerogEdlmanenAeRkamsMNg;
 sBaØaRBYjéncrnþTwk
So b RbEvgCMerARKwHEdlRtUvmanGMBICMrabTwk ,m
Tak kMras;dIEdlCaMTwk ,m
taragsþIGMBIRbEvgskmμxagesMNg;
rkRkadüg;énCMrabtamrUbmnþ
 Rkadüg;
LAB RbEvgsrubénCMrabTwkcab;BicMnuc 1 dl;cMnuc TI 8
H kMBs;EpñkmuxsMNg;¬ m ¦
Rkadüg;EdlTwkpulecjrUbmnþ
Lo / So >5.0 5.03.4 3.41.0 1.00
T skmμ 0.5Lo 2.5 So 0.8S0 0.5So 0.5 So 0.3So
8.8m
7.4m
1.2m
0.2m
1.2oS m
2.24H m 7.7865
6.9745
7.5745
10.5865
Ta
ែខ ពីេយសូវែម៉្រត
10.0265
sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr
Hydraulic	 dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura:	 TMB½r 44	
 pul '
o
b
=
S

More Related Content

DOC
PDF
មេកានិកនៃសន្ទនីយ៍
DOC
PDF
Xiv retaining walls
PDF
Xviii stairs
PDF
Xii.lrfd and stan dard aastho design of concrete bridge
PDF
Xi. prestressed concrete circular storage tanks and shell roof
មេកានិកនៃសន្ទនីយ៍
Xiv retaining walls
Xviii stairs
Xii.lrfd and stan dard aastho design of concrete bridge
Xi. prestressed concrete circular storage tanks and shell roof

What's hot (15)

PDF
Ii properties of reinforced concrete
PDF
V. shear and torsional strength design
PDF
Iv.flexural design of prestressed concrete elements
PDF
14. truss analysis using the stiffness method
PDF
13 beams and frames having nonprismatic members
PDF
X. connections for prestressed concrete element
PDF
[Atlassian meets dev ops and itsm] Building organization and collaboration cu...
PDF
11. displacement method of analysis slope deflection equations
PDF
15. beam analysis using the stiffness method
PDF
A.matrix algebra for structural analysisdoc
PDF
1.types of structures and loads
PDF
5. cables and arches
PDF
Cement knowledge revised 160110
PDF
Roof preparation
PDF
Lab Batch Reactors
Ii properties of reinforced concrete
V. shear and torsional strength design
Iv.flexural design of prestressed concrete elements
14. truss analysis using the stiffness method
13 beams and frames having nonprismatic members
X. connections for prestressed concrete element
[Atlassian meets dev ops and itsm] Building organization and collaboration cu...
11. displacement method of analysis slope deflection equations
15. beam analysis using the stiffness method
A.matrix algebra for structural analysisdoc
1.types of structures and loads
5. cables and arches
Cement knowledge revised 160110
Roof preparation
Lab Batch Reactors
Ad

Similar to Assignment fluid year 3 (20)

PDF
Vi deflection and control of cracking
PDF
Xv design for torsion
PDF
6.beam columns
PDF
Ix one way slab
PDF
12. displacement method of analysis moment distribution
PDF
Viii shear and diagonal tension
PDF
11e.deflection of beam the energy methode10
PDF
4.compression members
PDF
6. influence lines for statically determinate structures
PDF
8. deflection
PDF
X axial loaded column
PDF
Xii slender column
PDF
Xi members in compression and bending
PDF
13.combined stresses
PDF
Iii flexural analysis of reinforced concrete
PDF
4.internal loading developed in structural members
PDF
9. deflection using energy method
PDF
9.composite construction
PDF
Appendix a plastic analysis and design
PDF
ប្រវត្តិសាស្ត្រ​កម្ពុជាប្រជាធិបតេយ្យ (1975 1979) និពន្ធ​ដោយ​លោក ឌី ខាំបូលី
Vi deflection and control of cracking
Xv design for torsion
6.beam columns
Ix one way slab
12. displacement method of analysis moment distribution
Viii shear and diagonal tension
11e.deflection of beam the energy methode10
4.compression members
6. influence lines for statically determinate structures
8. deflection
X axial loaded column
Xii slender column
Xi members in compression and bending
13.combined stresses
Iii flexural analysis of reinforced concrete
4.internal loading developed in structural members
9. deflection using energy method
9.composite construction
Appendix a plastic analysis and design
ប្រវត្តិសាស្ត្រ​កម្ពុជាប្រជាធិបតេយ្យ (1975 1979) និពន្ធ​ដោយ​លោក ឌី ខាំបូលី
Ad

More from Thim Mengly(ម៉េងលី,孟李) (20)

PDF
PDF
Matlab by Prof.Keang Sè Pouv
DOC
PDF
ក្រប់គ្រងសំណង់
PDF
Math cad lesson etc by Sok Raksmey
PDF
ប្រវត្តិសម្តេចHun sen
PDF
ប្រវត្តិសម្តេចHun sen
PDF
ស្រីហិតោបទេស​១
PDF
Report of Visit Internship
PDF
Important Comment used in AutoCAD 2D Khmer Guide
PDF
Traveaux Pratique Topographie à l'ITC-I3-GRU32
PDF
Résistance des Matérieaux
PDF
Projet irrigation-samras
PDF
Project Of Irrigation at Stoeung Chhinit, Kg.Thom, KHmer
PDF
Earth dam design and protection new
PDF
Hydrological modelling i5
PDF
បណ្តាយទឹកក្នុងអគារ Installation sanitaire
PDF
Matlab by Prof.Keang Sè Pouv
ក្រប់គ្រងសំណង់
Math cad lesson etc by Sok Raksmey
ប្រវត្តិសម្តេចHun sen
ប្រវត្តិសម្តេចHun sen
ស្រីហិតោបទេស​១
Report of Visit Internship
Important Comment used in AutoCAD 2D Khmer Guide
Traveaux Pratique Topographie à l'ITC-I3-GRU32
Résistance des Matérieaux
Projet irrigation-samras
Project Of Irrigation at Stoeung Chhinit, Kg.Thom, KHmer
Earth dam design and protection new
Hydrological modelling i5
បណ្តាយទឹកក្នុងអគារ Installation sanitaire

Recently uploaded (20)

PPTX
Module 8- Technological and Communication Skills.pptx
PPTX
communication and presentation skills 01
PDF
R24 SURVEYING LAB MANUAL for civil enggi
PDF
August 2025 - Top 10 Read Articles in Network Security & Its Applications
PDF
null (2) bgfbg bfgb bfgb fbfg bfbgf b.pdf
PDF
737-MAX_SRG.pdf student reference guides
PPTX
Fundamentals of Mechanical Engineering.pptx
PDF
BIO-INSPIRED HORMONAL MODULATION AND ADAPTIVE ORCHESTRATION IN S-AI-GPT
PPTX
Software Engineering and software moduleing
PPTX
CURRICULAM DESIGN engineering FOR CSE 2025.pptx
PPT
Total quality management ppt for engineering students
PDF
Accra-Kumasi Expressway - Prefeasibility Report Volume 1 of 7.11.2018.pdf
PDF
Level 2 – IBM Data and AI Fundamentals (1)_v1.1.PDF
PDF
Human-AI Collaboration: Balancing Agentic AI and Autonomy in Hybrid Systems
PDF
Unit I ESSENTIAL OF DIGITAL MARKETING.pdf
PDF
BIO-INSPIRED ARCHITECTURE FOR PARSIMONIOUS CONVERSATIONAL INTELLIGENCE : THE ...
PPTX
Nature of X-rays, X- Ray Equipment, Fluoroscopy
PDF
COURSE DESCRIPTOR OF SURVEYING R24 SYLLABUS
PDF
Influence of Green Infrastructure on Residents’ Endorsement of the New Ecolog...
PPTX
6ME3A-Unit-II-Sensors and Actuators_Handouts.pptx
Module 8- Technological and Communication Skills.pptx
communication and presentation skills 01
R24 SURVEYING LAB MANUAL for civil enggi
August 2025 - Top 10 Read Articles in Network Security & Its Applications
null (2) bgfbg bfgb bfgb fbfg bfbgf b.pdf
737-MAX_SRG.pdf student reference guides
Fundamentals of Mechanical Engineering.pptx
BIO-INSPIRED HORMONAL MODULATION AND ADAPTIVE ORCHESTRATION IN S-AI-GPT
Software Engineering and software moduleing
CURRICULAM DESIGN engineering FOR CSE 2025.pptx
Total quality management ppt for engineering students
Accra-Kumasi Expressway - Prefeasibility Report Volume 1 of 7.11.2018.pdf
Level 2 – IBM Data and AI Fundamentals (1)_v1.1.PDF
Human-AI Collaboration: Balancing Agentic AI and Autonomy in Hybrid Systems
Unit I ESSENTIAL OF DIGITAL MARKETING.pdf
BIO-INSPIRED ARCHITECTURE FOR PARSIMONIOUS CONVERSATIONAL INTELLIGENCE : THE ...
Nature of X-rays, X- Ray Equipment, Fluoroscopy
COURSE DESCRIPTOR OF SURVEYING R24 SYLLABUS
Influence of Green Infrastructure on Residents’ Endorsement of the New Ecolog...
6ME3A-Unit-II-Sensors and Actuators_Handouts.pptx

Assignment fluid year 3

  • 1. sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr Hydraulic dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura: TMB½r 1 ω ε = Ω 3 m Q = εφω 2gH , s Q = μω 2gH μ = ε × φ =0.6 0.62 ε φ ω H A ω emKuNénrnæEdlRtUvbeB©jTwk 0.8eTA 0.9 kkitedayel,ÓnTwk 0.8eTA 0.9 muxkat;rnæbeBa©jTwk 0.8eTA 0.9 muxkMBs;Twk ;rn 0.8eTA 0.9 muxCaTUeTAeKyktMélrbs; µ = 0.6 eTA 0.9 ɛ = 0.62 eTA0.64 φ = 0.97 2 αν 2g 1 Z 2 rMhUrqøgkat;rnæ nigeRkamTVaTwk
  • 2. sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr Hydraulic dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura: TMB½r 2 a kMBs;TVaTwkebIk ,m cth kMBs;Twks,Wt ,m cth'' kMBs;Twks¶b;xageRkay ,m cth =ε'×a 1 ct j a x = +å emKuNel,Ón 0.95 0.97j =  a H 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 ε' 0.615 0.618 0.620 0.625 0.628 0.628 0.638 0.638 0.645 0.650 0.650 0.650 0.690 0.705 2 0 α2J H = H + , m 2g rUbTI1 cth cth'' H 0H 0J cth TVVVVVVVVVaTwk xagmux H rUbTI2 taragbgðajGMBIε' cth H 0H 0J a 2h 2J 2 2 g a J rlkTwkxageRkay h av
  • 3. sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr Hydraulic dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura: TMB½r 3 B rgVHTwk ,m rUbmnþ b )atRbLay ,m m eCIget H kMBs;Twk , m N PaBeRKImrbs;TMr ,mm DkMBs;bMrug ,m rUbmnþTUeTA edIm,IeGaymuxkat;RbLaymanlk<N³smRsbeKeRbIrUbmnþ 3 0 ct mQ = φ × ε' × a × b × 2g(H -h ) , s a kMBs;TVaTwkEdlebIk , m b TTwgTVaTwk , m ε' emKuNénpleFobkarebIkTVaTwk H0 kMBs;Twkxagmux ,m Hct kMBs;TwkxageRkayTVa x Gab;sIuelanPaBkkit n n B b H m h a´ ´ D 2 2 2 1 21 6 32 2 1 3 3 2 ω = bh + mh = (b+mh)h P = b + 2h 1+m ω ( b + mh ) R = = P b+2h 1+m 1 tgθ = m a m = Cotg = h Q = ω × J = ω × c R 1 1 = R × R × = × R × × ω n n 1 mQ = × R × , sn i i i i b β = h
  • 4. sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr Hydraulic dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura: TMB½r 4 cMNaM J > 0.5 eTA 0.6 m/s rt;kñúgRbLaykñúgkrNIEdlel,Ónrt;kñúgmanbBaðaBIrKW J eRcaHdac; = KQ0.1 kkpk; mmA = 0.33 , ω < 1.5 mmA = 0.44 , ω = 1.5 35 s mmA = 0.55 , ω > 3.5 s s  K emKuNeRcaHdac; Q brimaNFaTwkkúñgRbLay m3 /s W el,ÓnFøak;cuHRKab;dI mm/s lkçx½NÐ rMhUrqøgkat;rgVHragRtIekaN J = AQ0.2 J kkPk < J < J eRcaHdac; ( el,Ónrt;kñúgRbLay) Q h P B b z 32.5 mQ = 1.14h , s
  • 5. sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr Hydraulic dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura: TMB½r 5 sMKal; H kMBs;Twk , m D Ggát;p©itrbs;rnæ ,mm ctω RkLaépÞrbs;vtßúravkkit ,m2 ωRkLaépÞ rnæ EdlehAfarMhUrqøgkat;rnæ KWCaclnaTwkEdlrt;ecjtam RbehagRbeLaHhUrecjeTAeRkA edayb:HCamYy briyakas; rWb:HCamYynwgvtßúravxøÜnÉg . ]TahrN_ GagsþúkTwk TVaTwk .l. Hydrolic CMBUkTI1 rMhUrrbs;vtßúravqøgkat;rnæ c c atmP H A A o d ctω ωbriyakas; (NUey)
  • 6. sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr Hydraulic dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura: TMB½r 6 eRbIsMrabépÞFM eRbIsMrabépÞtUc 3 mQ = s m emKuNbrimaNFaTwk ωmuxkat;épÞTwk m2 H0 kMBs;TwklMeHogedayEpñk ,m g = 9.81m/s2 rUbmnþ 1 rMhUrvtßúravqøgkCBa¢aMgesþIgEdlmankMBs;Twkefr tamsmIkar Bernoulli BI AA eTA CC 2 2 o 0 0 c P.C P α J αJ tP H + + = 0 + + + h g 2g 2g 2gr P0 sm<aFxageRkARtg; AA P sm<aFxagkñúgRtg; CC 0J el,ÓnTwkrt;BIépÞb:HxagelImkrnrnæ ,m/s ctJ el,Ónecjrnæ m/s P.Ch kMhatbg; ,m e m.p e R 100 0.6 R > 100000 μ = 0.60 0.62 ε = 0.62 0.64 φ = 0.97 x£  =    2 0 0 0 0H H + + 2 P P g g a J r - = 2 ct 0H ( ) 2g J a x= +S 0 3 Ω H H Ω 4ω < 15% ω = 1% 5ω mQ = μω 2gh , s  ³  W  W ³  snμt; 1 =j a x+S ct 0= 2gHJ j 0Q = μω 2gH Q = μω 2gH c c atm 0P = P H A A o 0H ctω ctJ
  • 7. sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr Hydraulic dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura: TMB½r 7 kñúgkrNIEdl 0 atm 2 0 0 0 0 0 P = P = P α H = H+ 2g H = H Q = J J W W muxkat;rbs;épÞTwkénGag 2 0 2 2 2 0 μω 2ghα Q Q = μω 2g(H+ ) or Q = 2gΩ ω 1-μ α Ω cMeBaH 0 3 Ω H H Ω 4ω < 15% ω = 1% 5ω mQ = μω 2gh , s  ³  W  W ³  eKdwgfaemKuNénkarkkitRtg;Rckecj ε , φ Gnuvtþn_tamlkçN³ e 2gh R , = 2ghJ n = dUcenH e m.p e R 100 0.6 R > 100000 μ = 0.60 0.62 ε = 0.62 0.64 x£  =    (emKuNrbs;el,ÓnTwk )
  • 8. sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr Hydraulic dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura: TMB½r 8 rUbmnþ cth = ε' × a a kMBs;ebIkTVaTwk ,m ε' emKuNkkitrvagTwkCamYyTVaTwk cth kMBs;TwkEdles,WtRtg;cMnucEdlTabCageK ,m rMhUrqøgkat;TVaTwk H haJ a 0J a cth 2 0 2g aJatmP ah J Up Down haJ kMBs;Twks¶b;xageRkayTVaTwk , m a kMBs;ebIkTVaTwk , m 0J el,ÓnTwkxagmuxTVaTwk ,m H kMBs;TwkxagmuxTVaTwk ,m 0H kMBs;TwklMeGogedayEPñk ,m cth kMBs;TwkkkitenARtg;Rckecj,m hz kMBs;TwkenAEk,rTVaTwk ,m 2J el,ÓnTwkenAeRkayTVaTwk m/s H 0H a ctJ zh 2J 0J zh haJ= 2 21 1 b cth
  • 9. sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr Hydraulic dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura: TMB½r 9 cMeBaHel,ÓnTwkrt;xageRkamTVaTwk ct 0 ctφ 2g(H -h )J = nigbrimaNFaTwk ct ct 0 ctQ = ω = ε'×a×b×φ 2g(H -h )ctJ´ sMKal; b TTwgTVaTwk , m dUcenH 3 ct 0 ct mQ = φ × ε' × a × b 2g(H -h ) , s 2 0 0 ct 1 H = H ,m , φ = 2 α +Σξg aJ + emKuNrbs;el,Ón cMeBaH φ = 0.95 eTA 0.97 bRgYmmkvijeKGacsresr ε' × φ = μ emKuNrbs;brimaNFarTwkhUreRkamTVaTwk 3 ct 0 ct mQ = μ × a × b × 2h(H -h ) , s lkçN³edNUey (mincal;) 3 ct 0 ct mQ = μ × a × b × 2h(H -h ) , s lkçN³NUey (mincal;eRkay) a H 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 ε' 0.615 0.618 0.620 0.622 0.625 0.628 0.630 0.638 0.645 0.650 0.660 0.675 0.690 0.705 ctha rUbPaBebIkTVaTwk kñúgkarGnuvtþn_ε' = 0.64 taragbgðajGMBItMél
  • 10. sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr Hydraulic dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura: TMB½r 10 CMBUkTI 2 rMhUrÉksNæanenAkñúgépÞTwkcMh α a 2 1α 2g J 1P gr 1Z i  h = const 2 2α 2g J 2P gr 2Z pc lh = h L 'L sMKal; p lI = I CMralrbs;épÞTwk i CMral)atRbLay 2 α 2g J famBlsIuenTic ,m 1 2P P , g gr r famBlsMBaF ,m 1 2Z , Z famBlbU:tgEsül ,m h kMBs;Twkefr,m 'a mMulMgak L RbevgbeNþayRbLay L' RbevgbeNþayRbLay ,m p lh = h kMhatbg;tambeNþayRbLay,m
  • 11. sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr Hydraulic dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura: TMB½r 11 1 brimaNFaTwkefr ( Q = Const ) 2 kMBs;TwkesμIKñaRKb;cMNuc h = Const efr 3 TwkeLIgcuHtamlkçN³esrI 4 )atRbLaymanCMrali > 0 , i = Sinα = Const 5 CBa¢aMRbLaymanPaBeRKImefr n = Const 6 bBaðaepSg²EdlmanGMeBIvaRtUvmin)anKit rUbmnþGnuvtþn_ 2 ω = Const ,m muxkat;RbLay X = P = Const , m brimaNRbLay R kaMrsμIGIuRdUlik ω R = ,m P IP = IL //i CMralépÞTwkRsbCamYyCMral)atRbLay h kMBs;TwkkñúgRbLayefrCanic© ,m = c RiJ el,ÓnmFüm m/s eday i = I 3 Q = ωc Ri or mQ = k i , s rUnmnþrbs;elak CHEZY k = ωc R C emKuNrbs;el,Ón R kaMGIuRdUlik , m ωmuxkat;RbLay k emKuNbrimaNFaTwk i = I = 1 I lkç½NÐ rMhUrÉksNæan
  • 12. sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr Hydraulic dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura: TMB½r 12 D B b m=1.5 H 0H BMnuHkat;AA sMKal; b )atRbLay ,m B rgVHmat;RbLay ,m D kMBs;suvtßiPaB , m (0.2 eTA 2m ) GaRs½yFaTwk 3 mQ = s m= 1.5 nig m=1 CaCMraleCIgeTrkñúgnigeRkAénRbLay h kMBs;TwkkñúgRbLayRtg;muxkat;NamYy ,m H = h + Δ ,m A A m=1 m=1.5
  • 13. sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr Hydraulic dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura: TMB½r 13 II rUbmnþsMrab;KNnaemKuN Chezy nigemKuNénPaBeRKImrbs;RbLay 0.5y1 mC = R , (Pavlovski) sn n PaBeRKImrbs;RbLay R kaMGIuRdUlik,m y s½VyKuN y = 2.5 n - 0.13 - 0.75 R( n-0.10) y = 1.5 n cMeBaH R < 1m y = 1.3 n cMeBaH R > 1m kúñgkrNI n = 0.009 eTA 0.040  R=0.1 eTA 3m c = 4 2g (k+lgR) 0.51 mc = + 17.72lgR , sn 0.51/61 m** c = R , Manning sn (enAelITIpSareKniymeRbICaCnCatiGg;eKøs) 2/3 1/21 m= R × i , sn J emKuNénPaBeRKImeRcInRbePT ( ) 1/2N 2 i i 1 equiralent 1/2 x n n = x é ù ê ú ê úë û å sMKal; xi kMras;énPaBeRKImnimYy ,m ni RKab;dInimYYy² ,m rUbmnþenHbgðajGMBImuxkarRbLayragctuekaNBañaynig)ar:abUlik Agroskine
  • 14. sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr Hydraulic dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura: TMB½r 14   h H D B a θ b sMKal; b TTwg)atRbLay ,m m. eCIgeTxagkñúgRbLay,m h kMBs;TwkkñúgRbLay,m D kMBs;suvtßiPaB,m w RkLaépÞRbLay,m 2 ω = bh + mh = (b+mh)h P brimaRtrbs;RbLay,m B rgVHTwkxagelI,m H = h´DkMBs;Twksurb,m θ mMulMgak;rbs;RbLay a m = cotgθ = ,m=0 h 2 2 P = b+2h 1+m or P=b+m'h m' = 2 1+m R kaMGIuRdUlik ,m 2 ω bh+mh R = = P b+m'h edUm,IeGayrUbragRbLayctuekaNBañaymanlkçN³l¥RbesIrKWeKRtUvGnuvtþrUbm nþ 0 2 0 m hb β = and δ = h b+mh m = m' - m = 2 1+m - m B = b + 2mh rUbmnþ)ar:abUlik
  • 15. sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr Hydraulic dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura: TMB½r 15 muxkat; Q = k i RbEvgbrimaRtesIm x = P 2τ(1+2τ)+ln( 2τ+ 1+2τ) ω 2Bh R = = x 2PN é ù ê úë û EdltMél N man N = 2τ(1+2τ) + ln( 2τ+ 1+2τ) kúñgkrNI B h³ eK)an x B rUbmnþbgðajmuxkat;RbLayragctuekaNBñay nig)ar:abUlik   B D H b   P 2 θ h H A B x y rUbmnþ x2 =2Py P)ar:Em:Rtrbs;)ar:abUlik H CMerATwk ,m H = h+D ,m B rgVHmat;elI ,m D kMBs;bMrug ,m h τ- P CMerATwkR)akd 1 m- 2τ CMerArbs;épÞTwk 2 ω = B×h ,m B = b ,m P = B ,m ω B×h R = = = h ,m P B
  • 16. sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr Hydraulic dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura: TMB½r 16 taragbgðajGMBIemKuNeCIgeTr RbePTdI ,m m dIdæ 1 eTA 1.25 dIl,aydIdæ 1.25 eTA 1.50 dIl,ayxSac; 1.50 eTA 1.75 dIxSac;suTæ 1.70 eTA 2.25 cMNaM muxkat;)atRbLay b = 0.4m CatMélGb,brima ( Minivaum ) eKGacKNnatamviFImü:ageTot rbs; RbLayeRsacRsBtamlkçx½NÐrbs;elak Ghirshkan cMeBaHtMélDvijKWRtUvGnuvtþtamsþg;darUsSI 3 mQ s ,mD <1 0.25 1 eTA 10 0.4 10 eTA 30 0.5 >30 0.6 sikSaGMBIlkçx½NÐénel,ÓnTwk m, s J mankrNI2y:agKW J eRcaHdac; nig J kkPk; . rUbmnþtamlkçx½NÐ afJ J£ el,ÓneRcaHdac; J el,ÓnFmμtarbs;TwkkñúgRbLay ,m/s 0.1 af = kQJ K emKuNénel,ÓneRcaHdac; 3 4 h = (0.7 1.0) Q β = 3 Q - m B = ( 3 5 ) Q  
  • 17. sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr Hydraulic dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura: TMB½r 17 rUbmnþbgðajGMBImuxkat;RbLayragctuekaNBñay nig)ar:abUlik RbePTdI K dIdæ 0.75 dIdæsuTæ 0.85 dIl,ayxSac; 0.53 dImemak 0.57 eTA 0.68 rUbmnþrbs;el,ÓnkkPk; 0.2 an = AQ ,m sJJ A emKuNénel,ÓnmFümRKab;dIEdlFøak;cuHeTAkñúg)atRbLay mmA = 0.33 w < 1.5 s mmA = 0.44 w = 3.5 s mmA = 0.55 w >3.5 s    WrYm = ( Σw tamEpñkP)/100 Q × k = = α τ ´k wS el,ÓnRKab;dIepSg²Føak;cuHmm/s Pi PaKryénRKab;epSg² Q = k i
  • 18. sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr Hydraulic dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura: TMB½r 18 V < gh 1rF < r V > gh F 1> cariklkçN³rbs;RbLaycMhman 4FM² 1 Stationary V = 0 Fr ( froud ) = 0 2 Subcritical 3 Studding ware flout 4 Super critical Critical Flow
  • 19. sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr Hydraulic dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura: TMB½r 19 - Vc Velocity critical ,m/s - H Hydraulic depth ,m - G 9.81 m/s2 - Fr Froude umber rMhUrminÉksNæan eKGacniyayfarMhUrclnavtßúravkñúgRbLaycMhminÉksNæanKW - CMral)at I i¹ CMralrbs;épÞTwk - H CakMlBs;TwkERbRbYlenAkñúgRbLay - CMerAekIneLIgtamTisedAénclnavtßúrav - CMerAfycuHtamTisedApÞúyénclnavtßúrav Vc Fr = = 1 gh begÁa h 0i > ExSekagrWm:U (l,akTwkekInrYcFøakcuH) ExSekagedRKuy ( l,ak;TwkFøak ) a 0i >  a) TwsedATwkRsktamCMral)at  b) i=0 TwsedATwkRsbtamCMral)at a 0i < c) TwsedATwkpÞúyBICMral
  • 20. sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr Hydraulic dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura: TMB½r 20 rUbmnþEdlRtUveRbIKW 0 0 0 0 0 0Q = ω c R i = k i sMKal; 0 0 0 0ω , c , i , R CatMélEdlRtUv h = h0 sMrab; 1) i0 = i TisedARsb 2) i0 = i TisedARsbtMélviC¢man 3) i0 < i TisedApÞúy( KitkñúgtMéldac;xat) eKeRbIkMNt;brimaNFaTwkQ’ tamclnaTisedATwki0 > 0 . bB¢ak; ³ Q’CabrimaNFaTwkRtg;cMNucNamYyEdleyIgRtUvsÁal;beNþayRbLayeQñaH ( edb‘IhVicTis ) . KMnUsbMRBYjrbs;épÞdIeRsacRsB * muxkat; ED = F1 ,ha * muxkat; DC = F1+F2 ,ha * muxkat; CB = F1+F2 + F3 ,ha * muxkat; BA = F1+F2 + F3+ F4 ,ha RbPBTwk 4F 3F 2F 1F D B C E 2h 2h 3h BMnuHkat;beNþaysMng;Farasa®sþ
  • 21. sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr Hydraulic dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura: TMB½r 21 rUbmnþEdlbB¢ak;GMBIclnaTwkKW 2 cin3 αQ B = P = 1 gω sMKal; cinP )ar:aEm:RtsIueNTic α emKuNkUrIyUlIs 1.0 eTA 1.01 Q brimaNFaTwkrt;kñúgRbLay m3 /s bB¢ak; Q’ CabrimaNFaTwkRtg;cMNucNamYyEdleyIgRtUvsÁal;tambeNþayRbLayeQμaH ( edb‘ÍhVicTis ) B rgVHxagelIrbs;RbLay ,m ω RkLaépÞRtg;muxkat;tamcMnucnimYy² snμt;cMeBaHrbbrMhUr cinP > 1 rMhUrtUr:g;Esül ( rMhUr Turbulence ) Twktic cinP = 1 Downtream rMhURRKITic cinP < 1 rMhUrPøúyvIy:al ( rMhUr Laminar )TwkCn b B rUbCamYyKña nigrUbelIsþaMEdrenHemIlkat;TTwg .
  • 22. sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr Hydraulic dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura: TMB½r 22 P CMerArbs;r)aMgxageRkay ,m haJ kMBs;Twks¶b;xageRkaysMNg;begðór ,m Z kMBs;eFobrvagnIvUTwkxageRkaysMNg;,m b rgVHTwkhUr ,m B muxkat;RbLayxagelI ,m CMBUkTI3 rMhUrqøgkat;sMNg;begðór sMKal; P1 kMBs;r)aMgrbs;sMNg;begðór ,m l’ 3 eTA 5 dgén H 0J el,ÓnTwkhUrxagmuxsMNg;begðór , m/s S kMBs;rbs;r)aMg,m 1 cMNat;fñak;rbs;sMNgbegðór sMNg;begðórmanEckCaeRcIny:agKW a. sMNg;begðórmanCBa¢aMgesþIg P Z h a J 1P 0J  H Q V H S l D ow ntream BMnuHkat;beNþaysMNg;begðór
  • 23. sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr Hydraulic dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura: TMB½r 23 H0H e 1P 0V S xül; P avh 2 0 2 v g a l = 3 5m for H lkçx½NÐ -S < 0.5H - 2 0 0 αr H = H + , 2g m b. sMNg;begðórr)aMgRkas; C. sMNg;begðórsßitkñúglkçN³Fmμta 0H H 0J J P h haJ her l S 2H < S < 10H haJ P 1P H0H l S 2 0 2g aJ 2 0 2g aJ P 0H H haJ 1P Sl 0.5H < S < 2H
  • 24. sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr Hydraulic dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura: TMB½r 24 ctuekaNEkg ctuekaNBñay RtIekaN rgVg; H P 0J 0J d. rgVHrMHUrrbs;sMNg;begðór e. sMNg;begðórragekag f. rgVHsMNg;begðórRtg; g. rgVHsMng;begðórbBaäit H P P H H P 0J 0H 1P P r 0 2g aJ cthl S rlkTwkxμÜlsμaj; r kaMrgVg;
  • 25. sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr Hydraulic dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura: TMB½r 25 h. rgVHsMNg;begðórLaetral; i. rgVHsMNg;begðórxusFmμta sMNg;begðórBhuekaN sMNg;begðórragekag sMNg;begðórmat;ragmUl 0J 0J 0J 0J 0J
  • 26. sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr Hydraulic dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura: TMB½r 26 mankarkkittic B=b mankarkkitxøaMg B > b 2 cMNat;fñak; énsMNg;begðór EdlrMhUrmanlkçN³ceg¥ót niglkçN³TUlay 3 RbePTrMhUrrbs;Twk rUbmnþ 3/2 0Q = mb 2gH sMrab;rMhUredNUey m emKuNbrimaNFaTwk b rgVHsMng;begðór ,m 2 0 0 α H = H + ,m 2g J TwkxagmuxsMNg;begðór ,m 33/2 n mQ = σ mb 2gH , s ( sMrab;NUey ) nσ < 1 0J B b 0J B b P1P H0H haJ rMhUredNUey 2 0 2g aJ P1P H0H haJ rMhUrNUey 2 0 2g aJ
  • 27. sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr Hydraulic dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura: TMB½r 27 4.sMNg;begðórragctuekaNEkgRtg;lkçN³edNUeyEdlmanCBa¢aMesIþg 5. sMNg;begðórEdlmanCBa¢aMgesþIgedayragctuekaNEkg a b xül; c 0.27H 3H 0.67H 0.112H 0.22H0.15H0.003H H a a H P h A θ 1θ b P H a B sMrab;RtIekaN 2 3 5 mQ = 1.14H s sMrab;ctuekaNBañy 3 3 5 mQ = 1.86bH s eday b> 3H
  • 28. sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr Hydraulic dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura: TMB½r 28 0H H 1P P erh h Sl b b Bil TVaTwk 6. sMNg;begðórEdlmanCBa¢aMgRkas; 3 0 mQ = ω × = φ × b × h 2g(H -h) , s J 0 2 h= H 3 or 3 3 2 mQ = mb 2gH , s ( edNUey ) m = 0.35 eTA0.36 cMeBaHsMNg;begðórkñúglkçN³NUey 3 2 3 n 0 n mQ = σ mb 2gH , s b <1 7. sMNg;begðórEdlmanragCaekagCaExSekag 3 2 0Q = mb 2gH m = 0.48 0.49 8. sMNg;BIlEdlfitenAsMNg;begðór
  • 29. sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr Hydraulic dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura: TMB½r 29 P 2h 2h 1Q 2Q 2h rUbmnþ 3 2 3 0 0 0 mQ = ε m b 2gH , s H ε =1 - a b+H a emKuNrbs;rUbragBil 9 sMNg;begðórLaetral; QLaetral; = mLaetral; x b x 3 2 02gH 3 m, s mLaetral; = 0.25 + 0.167( 2 1 2 H - H cinP ) 2 2 2 cin 2 P gh J = 10>sMNg;begðóreFμjrNa A=0.20 r=0.5t A=0.11 A=0.11 A=0.06 t t t 1b 2b b B n n n B h
  • 30. sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr Hydraulic dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura: TMB½r 30 3 3 2 0 3 2 0 max mQ = mb 2gH , s Q b = m 2gH h n = (0.25 1.50)h h kMBs;TwkFmμta ,m maxh kMBs;TwkGtibrima ,m n cMnYnrgVH
  • 31. sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr Hydraulic dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura: TMB½r 31 CMBUkTI 4 rlkTwkeRkaysMNg;begðór I rUbPaBénsMNg;Farasa®sþ rMhUrmanBIry:ag - cr cinh < h and P > 1 rUr:gEsül ( Twktic ) - cr cinh > h and P < 1 PøúyrIy:al; ( TwkCn ) 0J 0H H cth haJ 1P P Upstream Down stream 0J0H H cth haJ 1P P Q
  • 32. sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr Hydraulic dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura: TMB½r 32 a h cth 2 3 1 2 3 ah J resL a eL J II TRmg;rMhUrrbs;TwkeRkaysMng;Fara®sþ Q rlkTwkbkeRkay Q rlkTwkrt;eTAmux resL RbEvgrlkkeRBa¢akxøaMg ,m a eL J RbEvgrlkmanlkçN³s¶b;bnþicmþg² ,m RbePTénrMhUrrbs;rlkeRkaysMNg;begðór manEckCaeRcIny:agKW 1 rMhUrrlkl¥tex©aHkrNI ' cta = (h" - h ) or a>h' 2 rMhUrrlkTwkCn;krNI a<h a cth' h" h' h' a crh critich ahJ eday crh kMBs;rlkragdUcbUkstVeKa critich kMBs;Twkrlksmrmü ,m haJ kMBs;rlks¶b;enAeRkaysMNg; ,m
  • 33. sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr Hydraulic dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura: TMB½r 33 cth haJ clnavtßúrav 3 rMhUrrbs;rlkcal;mkeRkay ( rWm:U ) 4 rMhUrCnlicenAxageRkayTVaTwk ( NUey ) 5. rMhUrrbs;rlkCnlicxøaMehIyman]bsKÁ P2 kMllaMgbukb®Ba©asTisrbs;vtßúrav P1 kMlaMgbukRsbTisedArbs;clnavtßúrav G TMnajrbs;vtßúravEdlmanlkçN³Ekgbøg;)atEtmantMéltUc G=0 P2 = P1 = 0 eday i = o cth h'' haJ Kμan]bsKÁ H a=h''-h' 1P h'' G 2P ah J 1 1 Pr
  • 34. sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr Hydraulic dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura: TMB½r 34 6. rMhUrrlkCnlicxøaMgEtKμan]sKÁkñúglkçN³)atmanragCal,ak; rUbmnþRKwHrMhUrrbs;rlkeRkaysMNg;begðóreKRtUvsÁal;smμtikmμ egQ , h' , h'' , h eday Q brimaNFarTwk ,m3 /s h kMBs;Twks<WtCitTVaTwk h’’ kMBs;TwkenAbnÞab;BI hct ,m hcg kMBs;TwkRtg;TIRbCMuTm¶n; ,m tamkaGnuvtþn_KWRtUvsÁal; 2 cin 3 αQ *** P = × B = 1 gω eday ωmanmuxkat;TwkRtg;kMBs;s,Wt , m2 B rgVHTVaTwk ,m *** kMBs;TwkrlkxageRkaysMNg; ' cin '' cin h' h" = ( 1+8P - 1 ) 2 h'' h' = ( 1+8P - 1 ) 2 ' cinP nig '' cinP Ca)ar:asIuenTicxagmuxkat;rlkxageRkaysMNg;begðór krNI ' cin '' cin h" 2h' P > 3 P > 0.375 ³  *karfykMlaMgrbs;TwkenAeRkaysMNg;begðór b¤ehAfakMhatbg;énkMlaMg rUbmnþ pc (h'' - h') h = ,m 4h'h'' kar)at;bg;famBlrbs;clnavtßúrav enAeRkaysMNg;begðórKW GaRs½yeTA nwgbMErbMrYlénkMBs;TwkxageRkay fitenAkñúglkçN³tUrg;Esül ( J ekInxøaMg ) kMBs;Twktic b¤PøúyrIy:al;EdleGaymankarekIn b¤fyfamBlrbs;Twk .
  • 35. sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr Hydraulic dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura: TMB½r 35 eday pch kMhatbg;rbs;famBlTwk ,m h' , h'' kMBs;rlkTwkeRkaysMNg; ,m ¼ CaemKuNénkarkat;bnßyrbs;famBlkMhatbg; *vIFIrkRbEvgrkecalenAeRkaysMNg;begðór b¤TVaTwk 1 rlkrMhUrtex©aH resa) l = 2.5 ( 1.9h"-h' ) ,Pavloski GñkR)aCJrkeXIj ' 0.81 res cinb) l = 10.3h'( P - 1 ) Teheraussov GñkR)aCJrkeXIj ' res cinc) l = 4h' 1+2P , Pikalow GñkR)aCJrkeXIj res ' ' cin cin 19 30 d) l = ( 3 + - ) h"-h"Aivasian P P GñkR)aCJrkeXIj tamrUbmnþ a nig e eKeRbIcMeBaH cinP >10 sMrab; d eRbIcMeBaH cin3 < P < 400rIÉRbEvgrlks¶b;vij KWGnuvtþtamrUbmnþ lavr = ( 2.5 eTA 3 ) lres 2 rlkrMhUrCnlic cin cinP <3 or P > 0.375 h" haJ ' cth resl la cJ a h" crh =1.116h" haJ a< ' cth Ptr kMlaMgkkitrbs;TwkCamYy)at P1-P2 kMlaMgsm<aFGIuRdUsþaric KWTwkmanclna dUcenHCaTUeTA ' 3cin ' ct P " ( ) h h h = ' cinh' = h" P krNIEdl ' cinP 1.5< ' resl =10.6h' ( P - 1 )cin
  • 36. sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr Hydraulic dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura: TMB½r 36 eRkaysMNg;Farasa®sþ EtgEtmanbBaðaekIteLIg nUvTæiBlrbs;rlk EdlkeRBa¢aly:agxøaMgbNþal eGaytYsMNg;manlkçN³swkricrilehIy manlkçN³rMj½r nigenAEpñkcugxageRkaybMput éntYsMNg;manlkçN³sIueRcaH dac; enAxag cug éntYsMNg;enaHedayclnaénvtßúravmineKarBtamlkç½NÐ ' '' '' ct ct ct ah < h but h >> h J eTAvij . dUcenHeyIgRtUvERbRbYlsMNg;xuslkç½NÐeTACasMNg;edayRtUvlkç½NÐeTAvijKW '' ct ah < h J Canic© b¤ a normalh hJ £ rbs;RbLayxageRkay . ' ct ah >> h J sMNg;manlkçN³KμanlMnwg nwgeRcaHdac;EpñkRKwHeRkABIeRBaHkMlaMgrbs;rlkenAmanlkçN³xøaMgdUcenHRtUveFVIeGaysMNg;enHeGayman kMralEvg rWeFIVkUnGag 4 kUnGagCYykat;bnßykMlaMgbukrbsrlkedayGnuvtþn_tameKalkarN_ '' ct a normalh < h hJ = rbs;RbLay ah J cth 1P 0H H 2 0 2g aJ 1 1 2 2 3 3 P '' cth '' cth cth P 0H H sMNg;begðóreFVIGMBIfμlay eCIgkarBarCMrabTwkxagmux sMNg;eFVIGMBIebtugGaem kMral Gagkat;bnßykMlag bukrlkeRkaysMNg; kMralebtugGag bøúkfμ 4 x 6 karBareRcaHdac; xagmuxsMNg;begðór xageRkaysMNg;begðór kMBs;Twk Normal kñúg RbLayeRkaysMNg;begðór normalh
  • 37. sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr Hydraulic dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura: TMB½r 37 2/3 01 q H = 2nm gs æ ö÷ç ÷ç ÷ç ÷÷çè ø sMKal; arP dMubøúkebtugGaem parL RbEvgEdlRtUvdak;dMubøúk ,m 01H kMBs;Twksrub ,m 2 01 01 1 α h =H + ,m 2g J 01J el,ÓnTwkeRkaysMNg; ,m/s rUbmnþ " par ct 1P = σh - H 2 01 1 0 α H = H - ,m 2g J 2/3 01 g H = m 2g æ ö÷ç ÷ç ÷ç ÷÷çè ø ns emKuNénTwkCnliceRkaydMubøúkebtug M emKuNbrimaNFaTwk q brimaNFaTwkrt;tamTVarTwkmYy² 3 m , sm 0H H 1P P 0E 8D haJ basPhaJ basH 0J basL bøúkTI1 bøúkTI2
  • 38. sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr Hydraulic dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura: TMB½r 38 lMhat;KMrU GMBIsMNg;Farasa®sþ KMnUsbMRBYjGMBIsMNg;bBa¢ÚlTwk ¬ BMnUHkat; A – A ¦ H=2.24m 10.0265 h =2.04 0.2m 9.8265 10.5865 xagmux xageRkay TVaTwk eCIgeTxageRkaysMNg; 1.5m 1.5m tYsMNg; tYsMNg; dgEdk pøÚvLanebIkbr bnÞÞÞÞÞHebtugGaem
  • 39. sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr Hydraulic dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura: TMB½r 39 maxQ = ε × φ × B 2gZ edIm,IsikSaGMBiMsMNg;Farsa®sþcaM)ac;RtUvsÁas;smμtikmμ ³ -sikSaGMBIemkanicdIedIm,IrkTMhMRKwHrkCMrabTwkkñúgdIrkRbePTdIRTRKwHEdlCaersIusþg;rbs;dI ¬ ÉksaremkanicdI¦ - sikSaGMBIdæanelxa ¬tUb:Ul¦edIm,IrkkUteGay)anc,as;las;mun nigeFIVkarsagsg; . ¬ ÉksartUb:Ul ¦ - BinitüemIlÉksar nigr)aykarN¾rbs;GIuRdUlItEdlTak;Tg nigbBaðaCMrabrbs;Twk eCIgeTrRbEvg)atRbEvg kMrslx½NÐxagelImuxkat;FarTwknigeRKÓgbgÁMúepSg²rbs;sMNg; . ¬ ÉksarGIuRdUlik ¦ dMeNaHRsayGMBIlMhat;sMNg;Farasa®sþsikSakUdTwkxagmuxsMNg;eGay)anc,as;las; . -sikSaGMBIrUbmnþEdlRtUvykeTAGnuvtþn_ - sikSaGMBITTwgrgVHpøÚvTwkEdlhUrecj -sikSaGMBIkMhat;bg;énclnaTwkEdlkkitCamYynigCBa¢aMgCamYy nigTVaTwknigGMBIepSg²xøHdUcCaRckcUl nigRckecjrbs;clnaTwk -sikSaGMBIRbEvgclnaTwkEdlmanlkçN³keRBa¢alxøaMgenAEpñkxageRkaysMNg; edIm,IecosvagkMueGayman PaBeRcaHdac;eTAelIsac;ebtugnigEpñkxageRkamrbs;sMNg; -TaMgenHKWsikSanUvemeronGIuRdUlIt . tamrUbmnþRtUvykeTAeRbI sMKal; Q brimaNFaTwkEdlRtUvhUrecjGMBIrgVHTVaTwk ε emKuNEdlclnaTwkrt;cUleTArkrgVHTVaTwk emKuNel,ÓnTwkEdlRtUvrt;cUlsMNg;FarTwk ε = 1  0.95 
  • 40. sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr Hydraulic dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura: TMB½r 40 3 2 0.714 B = = 7.69m 0.4×1× 2×9.81(0.14) 7.19 7.05 5.75 5.045 5.05 5.55 P B KWCaTTwgénrgVHpøÚvTwkhUr g =9.81m/s Z =Max mux– Max xageRkay rkTTwgFarTwk B B=8m edayeFVIkareRbobeFobrvagbrimaNFarTwkbegðórecj Qbegðór =0.4 x 8 x √9.81x 2 = 0.72 m3 /s Q brimaNFarTwkbegðórcaM)ac;=- 0.714m3 /s dUcenH Q = 0.72m3/s > Q = 0.714m3 /s karkMNt;sMNg;begðórrbs;eRKagsMNg; r)aMeXOnTI2
  • 41. sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr Hydraulic dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura: TMB½r 41 kMNt;rkCMerAs,WtenAeBlTwkhUrecj q brimaNFarTwk 1Éktþam2 /s j emKuNelÓncrnþTwkrYm φ = 0.98 kMNt;rkCMerAs,WtenAeBlTwkhUrecj q brimaNFarTwk 1 Éktþa m2 /s φ emKuNel,ÓncrnþTwkrYm tamkarkMnt;kñúgtarag ' cq & h edayGnuvtþn_tamrUbmnþ ¬A¦xagelIeK)an ' ch ,(m) 0.016 0.018 0.020 0.025  2 q m /s 0.082 0.092 0.102 0.127 tamrUbmnþ ¬A¦eyIgGacrkhc'',(m) 2 ' cq = 0.089 m /s h = 0.071 dUcenHkMBs;énPaBke®Ba¢alman ' 2 c ' 3 c h 8q hc'' = ( 1 + - 1 ) 2 g(h ) 2 '' c 3 0.017 8×(0.089) h = ( 1 + - 1 ) = 0.299m 2 9.81(0.017) edayeyIgkMNt;r)aMgeXOnmankMBs; h= 0.3m EdlCar)(aMgeXOnTI2 eK)an 2 g = 9.81 m/s 2 o α H = H + 2g  2 7.19 7.05 (0.63) 0.16 2 9.81 m x     7.05 5.045 P= - = 2.005m  ' ' c o c o 2 q = φ × h × 2g(P+H -h ) φ = 0.89 , P = 0.3 m , H = 0.05m Q 0.714 q = = = 0.1785 m /s B 4 ' ' c o cq = φ × h × 2g(P+H +h ) (A)
  • 42. sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr Hydraulic dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura: TMB½r 42  '' c min k×h = 1.2×0.113=0.136 h = 0.5m B rgVHr)aMg = 4m TMnak;TMng ' cq & h kMNt;xageRkam ' ch ,m 0.03 0.04 0.05 0.1 0.2 2 q ( m /s ) 0.073 0.168 0.203 0.217 0.336 tamlTæplkñúgtarageyIg)an kMBs;ke®Ba¢al ' 2 '' c c ' 3 c 2 3 h 8×q h = ( 1+ - 1 ) = 0.113m 2 g×(h ) 0.045 8×(0.178) = ( 1+ - 1 ) = 0.113m 2 g×(0.045) tamkarepÞógpÞat; '' min ch > k × h BitCaRtwmRtUvkarkMNt;kMralx½NÐxageRkaysMNg;begðórRbEvgPaBke®Ba¢al ¬Lers ¦ '' ' c clres = 2.5 ( 1.9 h - h ) = 2.5 ( 1.9 × 0.113 - 0.045 ) = 0.424m lres= 0.424m lres=0.5 RbEvgkUnGag ¬Lb ¦ EteyIgrk RbEvgkMralbnþGMBIkUnGag karkMNt;CMerAEdlsuIrUgxageRkaysMNg; 2 ' cq = 0.178 m /s h = 0.04m bL =1.25 ×lres =1.25×0.5 =0.625m bL =1m ' res resL =2.5 ×L =2.5 ×0.5 =1.25m 1.2R o q H =K× V
  • 43. sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr Hydraulic dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura: TMB½r 43 edaykarKNnaCMralTwkxageRkamsMNg;Farsa®sþ sMKal; 1....8 kMNt;elxerogEdlmanenAeRkamsMNg;  sBaØaRBYjéncrnþTwk So b RbEvgCMerARKwHEdlRtUvmanGMBICMrabTwk ,m Tak kMras;dIEdlCaMTwk ,m taragsþIGMBIRbEvgskmμxagesMNg; rkRkadüg;énCMrabtamrUbmnþ  Rkadüg; LAB RbEvgsrubénCMrabTwkcab;BicMnuc 1 dl;cMnuc TI 8 H kMBs;EpñkmuxsMNg;¬ m ¦ Rkadüg;EdlTwkpulecjrUbmnþ Lo / So >5.0 5.03.4 3.41.0 1.00 T skmμ 0.5Lo 2.5 So 0.8S0 0.5So 0.5 So 0.3So 8.8m 7.4m 1.2m 0.2m 1.2oS m 2.24H m 7.7865 6.9745 7.5745 10.5865 Ta ែខ ពីេយសូវែម៉្រត 10.0265
  • 44. sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr Hydraulic dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura: TMB½r 44  pul ' o b = S