SlideShare a Scribd company logo
CMBUkTI1 Chapter 1
I-lkVN³TUeTAGeneral
I-1-1-niymn½yrbs;vtßúravDefinition of fluid
vtßúravmancrwkeRcInya:gKÅ :
k¦ CarUbFatuEdlfitenAeRkamTMrg;Caliquid nig Solid
x¦ vtßúrav KWCarUbFatuEdlmankarERbRbYlTMrg;kñúgkrNImanGMeBIBIxageRkA .
eKehAfa karcl½trbs;PaKl¥iténvtßúrav (Particulars of fluid) .
K¦kMLaMgxageRkAGacbNþalbegþIteGaymanCaclnarbs; fluid tamTisedAénkMLaMg .
X¦eKkMNt;tamlkVN³mCÄd§anénkarxUcRTg;RTay nig mCÄd§anénkareFVIbnþ.
g¦vtßúrav KWmanrUbragdUcmCÄd§anénkareFVIbnþ EdlbgðajGMBITMrg;m:UelKulrbs;rUbFatuedayKit
bBa¢ÚlTaMgemKuN nig smIkar constitutive .
c¦ eKEckCavtßúrav nig hÁas .
]TarhN_ ³ TwkCa fluid incompressible.
hÁasCa]s½μncompressible.
CaTUeTAeKkMNt;famanBIrsarxarbs;mecanic of fluid KW
a) DINamiuc én vtßúrav b¤ Hydrodynamic.
b) DINamiuc én haÁs b¤ Aerodynamic.
q¦ TMrgrbs;vtßúravKWmaneTAtamTMrrbs;eRKOgRTehIyépÞb:HCamYybriyakasvaCaépÞesrI (Face Free).
I-1-2-niymn½yrbs;GuIRdUDINamic Hydrodynamic
- sikSaeTAelIclnarbs; vtßúrav KWCamCÄd§anénkareFVIbnþ EdlTak;TgeTAnigrMhUrrbs; vtßúrav
nigRbsiTi§PaB epSg²eTotrbs;va .
- hÁasKWsikSaGMBIrMhUr]s½μnepSg ²
- emkanic énvtßúrav nig emkanic én vtßúrWg solidmansarsMxan;epSgKña² .
emkanic én vtßúravMechanic of Fliud
emkanic én vtßúrav (EdlmanCatiTwk, ]sμ½n) emkanic énvtßú rwg
GIuRdUDINamiuc GaeGrU:DINamiuc
Hydrodynamic Aerodynamic
I-1-3-RbePTénrMhUr Type flow
k¦ rMhUrrbs; vtßúrav Caclna Continue .
x¦ cMeBaH vtßú rWg bnøas;bþÚrCabøúk .
K¦ rMhUrrbs; vtßúrav manlkVN³Cael,Ón edaykMlaMgsm<aFniglkVN³epSgeTot dUcCadg;sIuet nig
Viscosity .
X¦ Viscosity KWCargVas;er:sIusþg; én vtßúrav rbs;rMhUrehIyKWCalkVN³kkitrvag clnaPaKl¥it .
c¦ Hydrodynamic KWCa Hydrostatic KWsikSavtßúravenAhñwgmYykEnøg.
q¦ rMhUr vtßúrav Bit KWCa Laminar ( rMhUrrbs;vamanlkVN³CaRsTab;²)
C¦ cMeBaHrMhUr Turbulent CarMhUrxñÚlxñaj;.
Q¦ rMhUurÉksNñan Uniform KW g = 0 ehIyviucT½r el,Ón Velocity RsbKñaRKb;cMNuc .
j¦ rMhUurCaTUeTAmanEbkCa x , y , z EdlmaneQñaHehAfa Tridimensionnel. RbsinebIrMhUrmanEt
BIrmuxRBYj KWCarMhUr Bidimensionnel b¤ Plan. EtebImanEtmYypøÚvrMhUrenHehAfa Unidimensionnel .
I-2- c,ab;rkSaTukénkMlaMg Laws of conservation
1-kMmøaMgmanEckCaBIrKW ³
– kMmøaMgekItedayTMnajEpndI Gravitational constant (g = 9.81m/s² )
–. kMmøaMgekItedaykarkkit nig sm<aF
2- kMmøaMgenHmanTMnak;TMngCamYy cMnYnerNul Reynolds (Re) KWmankMmøaMgniclPaB nigkMmøaMg sm<aF.
3-kñúgkarGnuvtþ eKman c,ab;rkSaTukénkMlaMgsMrab;sersrGMBIclna én vtßúrav.
i) c,ab;rkSaTukénm:as;tameKalkarRKwH én Continuity
ii ) c,ab;rkSaTukénbrimaNclnatameKalkarRKwH énm:Umg;( dynamic)
iii ) c,ab;rkSaTukénfamBl( eKalkarRKwH thermodynamic )
I-3- TMhM nig xñat Dimensions&Unit
1-bNþay ( L)
2-ry³eBl ( t )
3-ma:s; ( m )
4- sIutuNðPaB ( t , ˚K )
i) kmøaMgForce in pounds = ma:s; mass in slugs ( m ) x acceleration TMnajEpndI ( g )
SI = kmøaMg ( jÚtun )
ii)  ma:smaD = = 3
m
Kg
V
M

iii) kmμnþ ( T ) =F x cMgay ( L ) =( Nm ) b¤ ( j ) hSÚl
I-4-1 Fluid Properties
1) Density
V
m
 ; 





3
m
Kg
2) Tm¶n;maD Specific Weight  g ( N/m³ ) , 





 3
m
N
V
M

3) maDykSfaRbePT Specific Volume ( SV ) ,

1
SV ; 





Kg
m3
4) dg;sIuetyfaRbePT Relative density( RD)
eau
RD


 ( Pa = 1 atm , T = 3.98 ˚C )
5) BIsáÚEm:Rt Pycnometer
eRbIsMras;KNnarkrTMng;maD V
ww 12 

1W , 2W Tm¶n;rbs;vtþúrav
1V , maDrbs;vtþúrav
6) GIuRdUEm:Rt Hydrometer
2
1
12
l
l
  (rUb a )
1 = ma:smaDEdlsÁal;
2 = ma:smaDminsÁal;
N
T
ML
2
7) GIuRCUEm:Rt Hydrometer
eRbIsMras;eKalkar d’Archimètre
មេកានិកនៃសន្ទនីយ៍
I-4-1- Viscosity of Fluid
1-KWCargVas;ersIusþg;énrMhUrrbs;Fluid
DIya:Rkaménel<ÓnrMhUr
A
dz
du
& ( 
A
F
) ;  Shear Stress
μ - Dynamic Viscosity Pas
dz
du
  ;
dYdV

  =
rStrainRateofShea
sShearStres
kñúgkrNIEdlμ = 0 or u = 0 Ca(ideal fluid );μ ≠ 0 Ca(Normal fluid).
2- Kinematic Viscosity 


 
s
m2

Dencity 1poise = 1 g / cm .s
s
m2
 Stokes (St) = 1 cm² / s
i) Viscosimetre visáÚsIuEm:Rt én bMBg;
ii) Viscosimetre rotatif visáÚsIuEm:Rt vil
3- sm<aFcMhay Vapor Pressure
krNI énqñMagEdlbitCit rYcdak;TwkTukeGayBuH eKsegáteXIjmancMhay TwkehIreLIg maneQμaH
ehAfa sm<aFcMhayTwk .
4-tg;süúgyfaRbePT Surface tension
m:UelKkulrbs;vaEdlekItmanenAkñúgTwkeRkamGMBIénkMLaMgkRnþak;skmμRKb;TisTI .
 
L
F
sigma


 ; J/m2







m
N
m2

ΔF kMLMagénPaByItEdlEtg RKb;sarFatu  
ΔL CaRkLaépÞénTwk.
5- kaBILarIet Capillilarity
KWbNþalmkBI surface tension   nigGaRs½yedayPaBsi¥tCab; ( adhésion ),kMLaMsi¥tCab;
( Cohésion ) . bMBg;EdlykmkeRbI Ø=10mm
rgr
h



 cos..2cos..2

qñaMgdutkMedA
cMhayTwk
Twk
²=2
h - kMBs;TwkeLIg ( depression )
  - Surface tension
 -mMulMgakWetting angle
dihtofliquiSpecificWe
r-kaMén bMBg;Radius of tube ( mm )
6-m:UDuleGLasIÞk ( E ) Bulk Modulus of Elasticity
v
dv
dp
E

 ( Pa ) b¤ (bar = 5
10 pa= 5
10 N/m2
)
1atm = 1.013bar = 760mmHg
dp- bMErbMrYlénsm<aF
-
v
dv
-bMErbMrYlénmaD
7-lkçN½ én Isothermal Conditions
RbsinebIsItuNðPaBefrenaHvamankarbMElgBIcMNuc 1  2 tamc,ab;hÁas
2211 vPvP  nig
2
2
2
1

 P
 efr
tamlT§plE = P
8-Isentropic Condition
kk
vPvP 2211  ,
2
1
2
1




 const ,
E= K . p
k – plepobénma:srbs;kMedA ( Cp ) efrCamYymasmaDénkMedA
9- vibtþ½n½ysm<aF Pressure disturbances KWvaTak;TgeTAnigbmøas;TIénvtþúravnigkarekIneLIgénel,Ón

EC 
 
k
k
P
P
T
T
1
1
2
1
2








sMrab;hÁas Acoustic Velocity RTgK
K
C p
..

10- sItuNðPaB Temperature
T(K) = T(o
C) +273.16 (Kelvin) ; o
R = o
F + 459.69 (Rankine)
tamTMnak;TMngrvag Temperature, Pressure, Volume, density én Constant mass of gas
( Considred Perfect or ideal ) Gnuvtþn¾tamrUbmnþ:
2
22
1
11
T
Vp
T
Vp
 ; pV = mRT ; p =  RT and
M
R
8314

Edl p = Pressure( Pa)
V = Volume (m3
)
T = Temperaturein K
m = mass of the gas in Kg
 = density of gas in Kg/m3
R = gaz constant ( J/Kg.K)
M = Relative molecular mass of the gas (no unit)
T = 200
C ;  = 13.580 Kg/m3
(Mercury)
 = 0.0838 Kg/m3
(Hydrogen)
 = 1000 Kg/m3
;(H2O)
11- mrimaNFarTwkVolume flow rate(Q;
.
V )
.
V = A.V (m3
/s = m/s x m2
);
12- Mass flow rate (
.
m )
.
m =
.
V  = v.A.  ( Kg/s = m/s x m2
x Kg/m3
)
13- Continuity equation
tConsmm outin
tan
..
 
V1 .A1. 1 = V2 .A2. 2
tConsVV outin
tan
..
 
v1 A1 = v2 A2
Fluid flow through a system
taragxñat
eQμaH nimitþsBØa xññatSI xñatRKiHSI
TMnajEpndI ( g) m/s2
ma;:s;maD ( ρ) Kg/m3
kMlaMg;TMgn;maD;PaBF¶n; ( F) N Kgm/s2
TMng;yfaRbePT ( γ) N/m3
Kg/m2
s2
sm<aF;kugRtaMg;
;PaByIt
(P;τ;E) Pa N/m2
Kg/m s2
famBl;kmnþ ( E;Work) J Nm Kgm2
/s2
GnuPaB (Hp) W J/s Kgm2
/s3
vIsáÚsIuetDINamiuc (μ) Pa.s Ns/m2
Kg/ms
vIsáÚsIuenTic (ν) m2
/S Ns/m2
Kg/ms
RkLaépÞ (S) m2
vUlUm (V) m3
elÇIn (v) m/s
cMNaM
1Kgf = 9.81 N ≈ 10N;
1tf = 9810N ≈ 10N;
1gf = 9,81.10-3
N ≈ 10mN;
1Kgf/cm2
= 98100 Pa ≈ 100 K Pa ≈ 10-1
MPa;
1Kgfm = 9,81 J ≈ 10J;
1tfm = 9810 J ≈ 10KJ;
1cv(1esH) = 735,5Wt;
1t = 1000Kg;
1l/s = 10-3
m3
/s ;
1P (poise) = 10-1
Pas;
1St (Stokes) = 10-4
m2
/s;
ρH2O t = 00
C : ρ = 999,841 Kg/m3
;
ρH2O t = 40
C : ρ = 999,973 Kg/m3
;
ρH2O t = 100
C : ρ = 999,900 Kg/m3
;
ρH2O t = 200
C : ρ = 998,203 Kg/m3
;
មេកានិកនៃសន្ទនីយ៍
Chapter 2
Statique des fluides
Fluid of Statics
1-Unit pressure or pressure
k¦ RbsinebIeKmanRBIsragCaRtIekaNénTwkEdlmanmYyxñatTTwgén Twks¶b;tam TMnak;TMnggéometrique
¬FrNImaRt ¦ . dx = ds.cosθ ; dz = ds.cosθ
x¦ Tm¶n;rbs; fluid EdlbnþénRBwsKW  1.
2
dx
dz
g
K¦ sm<aF ( P ) KWCabrimaNsáaélénkmaøMgsm<aF 
F .
GaMgtg;sIuetkmøaMgsm<aF ³ P1( dz.1 ) , P 2( dx .1 ) nig P3 ( ds.1 )
X¦ lkçN½ÐlMnwgén force hydrostatique
i¦ kñúgTisedAedk P1.dz – P3.ds .conθ = 0
tamTMnak;TMngFrNImaRt P1 = P3
ii¦kñúgTisedAbBaÆr
0cos.
2
32  dsPdxPdx
dz
g Edl
gdzPP 
2
1
32 RbsinebI dz0 P2 = P3
g¦ P1 = P2 = P3 ¬sMrab; fluide au repos ¦
c¦ pdsF s b£ ds
dF
p  CaGaMgtg;sIueténsm<aFEdlman F nig RkLaépÞ S .
2- smIkarHydrostatique
k¦ CadMbUgkñúgTisedA Z , x , y
x¦ ebIsinmanbMBg;Twkminbmøas;TI kmøaMgEdlmanGMeBIeTAelImaD
i ¦ kmøaMgmaD  dsdzz 
ii¦ kmøaMgRkLaépÞ Pds nig dsdz
z
p
P 








iii¦ kmøaMglMnig én Z
  0. 







 dsdzzdsdz
z
p
ppds 
Edl 0


 z
z
p

iiii¦ eKGacsresr)an smIkarlM nwg





















0
0
0
z
p
z
y
p
y
x
p
x



b¤ 0. 

pgradf
iiiii¦
kmøaMgmaDénmaDmYyxañt + kmøaMgsm<aFénmYymaDxañt
iiiiii¦ CaviucT½rénkMlaMgmaD ( x , y , z )
g = 9,81 m/s2
iiiiiii¦ smIkar
g
z
p
y
p
x
p









0
0
iiiiiiii¦ tamsmtikmμ
k¦tamTisedA x 0


x
p
; P = Cte
x¦tamTisedA y 0


y
p
; P = Cte
K¦ g
z
p



   g
dz
dp








pgrad


f

f
























gz
y
x
f 0
0
3- bMErbMrYlbBaÄrénsm<aF
I) fluide incompressible fluide minbMENn)an
1)-    2121 zzgpp  
2)- kñúgkrNIEdlma:smaDén fluide efr
eK)an³   Ctezgp   tamlk§N³eRhVkg;
  Ctezgpp 


p efr eTAtamcm¶aybBaÄr Z ehIysm<aF P fy cuH

p famBlb:Utg;Esül ( m )
g TMnajEpndI m/ s2
g
p


bnÞúkBIeysUemRTIk vamantémøefrcMeBaH fluide repos .
4- sm<aFdac;xat , sm<aFrWLaTIv Pression absolue
-kñúgkrNIsm<asbriyakas eKehAva fa Pa rIÉCMerATwkvijKWCa Za
   1
'
1 ZZgPP aa   Et Za – Z1 = h
ghPaP '
1 CargVas;eFobCamYybøg;erehVr:g( 0.0)
suBaØakasdac;xat ( Pa = 105
Pa ) .
'
1P = Casm<aFdac;xat
-kñúgkarGnuvtþn_ ghP 1 Casm<aF rWLaTIv ( Pression refative) . ehIysm<aFdac;xat 1
'
1 PPaP 
5- Fluide Compressible ¬vtÚßravGacbMENn)an¦
Const KWvaTak;TageTA P , t0
rbs; fluide parfait .
RT
P


'
P’
= sm<aFdac;xat
R = PaBefrénsItuNðPaBrbs;hÁas Parfait
T = sItuNðPaBdac;xat
TR
p
g
dz
dp
.
'

cMeBaHvavtßúravIsotherme KWCakarERbRbYl 
xdp
d



x - emKuN compressible isotherme x = 5 . 10-10
Pa ‘
bMErbMrYlénsm<aFsMrab; liquide compressible
 rxpg
dz
d
 10

Pr = sm<aFrWLaTIvedayeFobsm<aFerehVr:gPo . 0 
6- vgVas;sm<aF Mesure de Pression
1-xñatsm<aF






 2
m
N
S
F
P b£ F = kmøaMg
S = RkLaépÞrag
cMNaM ³ 1bar = 105
Pa = 106
bayers
Pa
m
kgf
81,9
1
2

mm
m
kgf
1
1
2
 C.e
2-sm<aFbriyakas
eFobnIvUrbs;smuRT eKeXIjkMBs;)aet 760mm sm<aF P = 1.013 Pa  xül; = 1.225 kg / m³ RtUvsItuNðPaB
T = 15 0
C b£ 288 0
k
3-]bkrN_vas;sm<aFbriyakas
3
42.133
m
kn
hg  , sm<aFcMhay Pv = 0
Pression Z2 – Z1 = 760 mm C.e
attmosphérique
- Baromètre anéroide )ar:UEm:RtGaeNr:UGIut
- ]bkrN_vas;;sm<aFrWLaTIv( Pression relative )
111 hP  sm<aFrWLaTIv
11
'
1 hPP a  sm<aFdac;xat
- ma:NUEm:Rt( Manonètre)
eRbIkñúgbMBg;rag U Edlman 2 m ¬rbs;rlay ¦
2222 lhP m   sm<aFrelative
 222
'
2 lhPP ma  
P2 nig P’
2 maneRbIedayvas;
h1 nigl2 emIltamRkit
m nig 2 CacMnYnmFüménHydromèter
Pa sm<aFbriyakas
34443 . lhlPP mm  
h
1h
0P
ghP 0
l4 , l 3 , Δh ( m )
43 ,,  m Tm¶n;maDénvtßúrav
-ma:NUEm:Rtbr½dug
vide vism<aF
KWCaPaBxusKaμ énsm<aFvas;eXIj nig sm<aFbrikal ]-sm<aFvas;kñúgma:sIunbUmTwkman 0,690 bar
ehIysm<aFbriyakas xageRkAman 1,013bar dUecñH vide KW 1,013bar – 0,690 = 0.323 bar
cMNaM ³ P1 – P2 PaBxusKañésm<aF
A
F
P  ,
g
hP



 .
,
 
3
m
N
Pap
h


7- sm<aFénépÞesrI (Pression vide)
const
s
p
gz  smIkarRKwH Hydrostatique
-sm<aFdac;xatPression absolue nigsm<aFdac;xatPression Manamètreque suBaØakasPression vide .
k¦smIkarRKwH 
0
0
p
gz
s
p
gz 
10 ghP 
 zzgPP  00 
P0 – sm<FesrI Pression liber
Z0 – Z =h CeRmABnøicéncMNucNamYyla Pression d’immersion
‫٭‬ P = P0 +ρgh sm<aFGIRCUsþaTicPression Hydrostatique
1atm = 1kgf / cm2
= Patm , 100kPa b¤ 0,1 MPa
P0 = Patm = 98100 Pa
x¦ sm<aFma:NUemRTIk Pression manonétrique
Pm = P – Patm
Pm = P0 +ρgh – Patm
krN_Edl P0 = Patm eKKNnasm<aFm:aNUEm:RtRTIk
‫٭‬ Pm = ρ gh ( Pression manonétrique )
K¦edaysm<aFGIuRdUsþaTic dac;xat ( Pression hydrostatique absolue ) ticCagtémø sm<aFbriyakas
dUecñHeKehAfa vide
‫٭‬ Pv = Patm – P
P = 0 témøsm<aFsBaØakasPv = 100 kPa
tamkarGnuvtþn_sm<aFsuBaØakas EdlmandMeNalxøaMgeTAtamlkçNнcMhayvtßúrav PaBEq¥t nig sItuNðPaBEdlpþl;eGay.
8- karviPaKFrNImaRt elIsmIkarRKwH én Hydrostatic
¬rUbk¦
P0=Patm ¬sm<aFbriyakas ¦; hreprentatique = kMBs;bgðaj
A – cMNucenAkñúgTwk
h=CeRmATwkKitBIépÞTwkxagelIeTAdl;cMNuc A
ghPm
g
P
h m


 ¬h –kMBs; Piézométrique ¦
vide absolue krN_Edldkykxül; begáIt)anCasuBaØakas (P0=0 ; Pv = Patm )
h = 10m ¬ KWKitBInIvU Piézométre cMhrnigbitCit ¦
cMeBaHkrN_ ³
PatmP 0 bgðajfa h
g
Pm


¬rUbx ¦
PatmP 0 bgðajfa h
g
Pv


g
P
g
PatmP
hPatmghP r

 

 0
0
hH = Charge hydrostatique = g
P
Z


9- RkahVik én sm<aF Représentation graphique de la pression
ghPP  0 Pression hydrostatique
kñúgkrN_CaeRmATwk Rtg;BIrcMNucxusKμa eKsresr ³
2
1
2
1
2
1
2
1
h
h
P
P
ghP
ghP
m
m
m
m









10- c,ab;cr én TwkkñúgepIg Loi des vases communicants
220110 hPPghP  
1
2
2
1



h
h
11-eKalkarN_c,ab; Pascal ¬ sm<aFGuIRCÚlik ¦
Principe de Pascal , Presse hydraulique
oP -sm<aFenAxageRkA EdlCaGnuKmn_én h
b
a
PP o 1

 b
a
P
P O
 1
 -muxkat; énBIsþúg EdlmanGgát;p©wt d ;  =muxkat;BIsþúg Ggát;p©wt FM


 ..
b
a
PpP o


-cMnYnbBa¢Úa b¤
2








d
D

edayKitGMBIfamBl EdlmanTMnak;TMngeTAgÉ 
2
: 






d
D
b
a
PP o
80,0 eTA 0,80 kM/lMelIkTMenIb 700.00KN .
Chapter 3
kmøaMgsm<aFénvtßúravEdlmanGMeBIelIépÞ
Force de la pression hydrostatique sur une surface plane horizontale
Hydrostatic Forces on Plane Surfaces
I- Hydrostatic Absolute Pressure (Pabs)
eKdwgfasm<aFdac;xatGIuRdUsþaTic ( Pression hydrostatique absolue ) KW
ghPatmPabs  b¤ ghPPabs  0 (Pa)
Etsm<aFenHmanGMeBIelIRkLaépÞ én)atGag (ω) dUecñHeKGacsresr)an ³
.'
absabs PP  (Pa)
eday Pabs ³ sm<aFGIuRCUsþaTicdac;xat
ω ³ RKLaépÞ)at (m2
)
 ghPP abs  0
'
edIm,IgayRsYl KWeKsresr P= ρghω
II-kmøaMgsm<aFelIRkLaépÞénbøg; Mgnitude of Resultant Hydrostatic Force
(Force de pression sur les surfaces planes à orientation arbitaire)
RKb;cMNucTMagGs;Edlsm<aFxus²Kañ KWvaCaGnuKmn_énCeRmATwklkVN³enHekItman cMeBaHbøg;bBa¢it .
ehIykar Gnuvtßn_xusKμaBIrYmbnþ xagelI . edayKitBImMulMgak α dUecñHeKGacsresr)an    dghPdPdP  0
edaybUkbBa¢ÚalkMLMagmYyEpñkeTotEdlRsbCamYyenaHKW
 ..0 cgghPPa  ; (Pa)
hcg –kMBs;TwkRtg;cMNucTIRbCMuTmøn; .
eday Po = Patm ;
dUcenH P = ρghc.g.ω Pressure gauge ¬ sm<aFm:aNUemRtIk¦
III- TIRbCMuTm¢n;énsm<aF Centre de Pression (Center of buoyancy)
Center Pressure KWCacMNuccab;énkMLMagenAEpñkkNþalénkMeNInrbs;kMLMagsm<aF elIépÞ.
lcp- RbEvgénTIRbCMusm<aFxageRkam (m)
lcg – RbEvgénTIRbCMuTm¶n; (m)
hcg – CeRmATwkRtg;TIRbCMuTm¶n; (m)
hcp –CeRmATwkRtg;TIRbCMusm<aF (m)
eKsresr P.lcp =∫ωdp.L


cg
x
cp
l
J
l
ω-RkLaépÞénbnÞH(m²)
jx – m:Um:g;niclPaBeFobnigépÞ TwkxagelI. j0 – m:Um:g;niclPaBeFobnigGkSRsb TIRbCMuTm¶n;.
 2
cgox ljj


cg
o
cgcp
l
j
ll
IV- KNnaRkahVikénkMLaMgsm<aF nig TIRbCMuTm¶n;énsm<aFelIbøg;ragctuekaNEkg Détermination graphoanalytique de
la force de pression et du centre de pression sur les surfaces rectangulaires planes
maDénDIya:Rkamsm<aF blghWéq ..
2
1

kMLaMgsm<aF bl
h
gghP cg .
2
..  
eK)anl = h kMBs;Twk (m)
b – TTwgbnÞHCBa¢Mag
V- sm<aFkMLaMg énvtßúrav elIRkLaépÞekag Hydrostatic Forces on Curved Surface.
Force de pression du liquide sur les surfaces courbes
manvtßúmYyxagABC .
BC CaRBMRbTl;.
Pz kMLMagbBaÄrEdlGMeBIelIcuHeRkamedayqøgkat;tamTIRbCMu
Tm¶n;ABC .
Pz CakMLaMgEdlbukBIeRkameLIgelItamTIRbCMuTm¶n;0
Pz 
c) Pz 
d) Pz 
`
 force de pression ragsIuLaMgKW
22
zx PPP 
CaTUeTAPx = 0 ; Py =ρghcgωy
rUbmnþTUeTAénkMLaMgsm<aF 222
zyx PPPP 
VI- viFIKNnaTwsedAénkMLaMgsm<aFEdlmanGMBIelIbnÞHva:n
b
h
gP
2
2
 ebIn CacMnYnsm<aFb¤bnÞHva:ndUecñH
b
n
gh
n
P
2
2

 b-TTwgTVarTwk
rYccMgayBIépÞTwkxagelIrhUtdl;TIRbCMuTm¶n; D KW
hlp
3
2
 b¤ 11
3
2
hlp  b¤  





 

i
ii
ihl ipi
11
3
2
  222
aah
n
i
hi 
មេកានិកនៃសន្ទនីយ៍
មេកានិកនៃសន្ទនីយ៍
មេកានិកនៃសន្ទនីយ៍
Chapter 4
vtßúGENþtkñúgTwk
Flottement des corps dans un liquide
Stability of floating bodies
I- eKalkarN_RKwHéndMeNaldasIuEm:Rt Poussée d’ARCHIMED
eKEckrUbFatuCaBIrKW ABC EpñkxagelInig ADC EpñkxageRkam . ehIyvtßúFatuTMagenHfitenA
eRkamkMLMagbBaÄr.
eKsresr)an ³ 11 gwPz  , 22 gwPz 
EdlmanmaD AEFCB , AEFCD
tampldkcinmaD eK)an maD ABCD
  gwWWgPPP zzz   1212
dUecñH eKGacsresr P=ρgw
Neutral Stable Floating
a). G>P G =le poids d’un corps Wightof the body Tm¶n;rUbFatu
P = la poussé verticale Bouyaancy Force dMeNalénkMlaMgbBaÄr
w- maDvtßúravEdlpøas;TItamvtßúFatumaneQμaHehAfa maDénkaEv:n ( Volume Carene )
D- TIRbCMUTm¶n;énmaD . edaykMlaMgbBaÄr kat;tam D maneQμaH ehAfasg;dWkaErn
( Centre de Caréne ) .
C-TIRbCMuTm¶n; Centre of gravity .
tamlkV½NGENþt G = P = ρgw
II )- lkVN³lMnigvtßúGENþt Stabilité des corps flottants
stable lMnig Instable KμanlMnig
Stability of floating bodies
Stability of floating bodies
XøIgeXøagtic stable δ < r Instable δ >r
Stability of Partially Submerged Bodies.
α- AnglemMulMgak <150
,
D’
- cMNucEd½lGkS½bBaÄr
D’
P - xN³QIøgeXøag
M-cMNucemtas½g;RTIk ( Meta centric Height ) .
D- sg;;énkaErn
G- TIRbCMuTm¶n; .
r- kaM emtasg; (Meta centric Height) ;
б – PaBenAq¶ayBImCÄmNÐl excentricité
m-cMgayMeta centric Height m = 0,3 eTA 1,2
1)krNI r <б KμanlMnig instable . 2) б<r lMnIgstable
r = J0 / w
J0 m:Um:gniclPaB ;
w maDénkaEv:n r / б>1
Chapter 5
RbePTrMhUrénvtßúrav nig smIkarEb‘rnuyI
Type découlement du liqude et equation de Bernoulli
GIuRdUDINamiucKWsikSaGMBIclnaemkanicénvtßúrav . ehIyrMhUrrbs;clnaTwkKWvaTak;TgeTAnig ÷
1-kM / lMsm<aF nig kM/ lMkkitxagkñúg
2-kM/lMTIRbCMuTm¶n; .
rMhUrénclnaTwkmanEckecjCaBIrya:gKW ÷
k ¦rMhUrGnaciéRnþ ³ KWcariklkVNHtamcMNucnimYy²EdlrMhUrénel,Ón nigsm<aFERbRbYlGaRs½ytam
eBlevlat .
x¦ rMhUrGniéRnþ ³ KWCarMhUrEdlel,ÓnminERbRbYltameBlevla. rMhUrenHEbgEcgCaBIreTotKW
- rMhUrÉksNæan ³ el,Ón nig épÞxñat;rbs;crnþminERbRbYleTAtamRbEvgbeNþayRClg .
I.CMralGIuRCUlIk
II.CMral)atRbLay
b.rMhUrminÉksNæan³ el,ÓnnigépÞxñat;rbs;crnþéRbRbYleTAtamxñatbeNþaénRClg.
cMNaM ³ rMhUrenHERbRbYlCanic© .
c.rMhUr ³
rMhUrrbs;vtßúragmanEckCarMhUresrInigrMhUredaybnÞúk
> rMhUresrI ³ RbLay , swÞg , ERBk , bMBg;lUredayKμanbnÞúk
>rMhUrmanbnÞúk ³ TwkhUrkñúg bMBg;Edlmansm<aFCYyrujbEnþm .
* ExSéncrnþ nig)ac;éncrnþ
* carwklkVNHGIuRCUlicénxñatcrnþrbs;FarTwk nig el,ÓnmFümenAkñúgGIuRCUlicmancarwklkVNHdUcteTA ÷
 hmhbS )1
2
12)2 mhbP 
30-R kaMGIuRCUlic P
S
R 
S-épÞxñat;rMbUar
P-brimaRtesIm
-cMeBaHbMBg;vij 4
d
R ¬ d Ggát;pwt ¦
-el,ÓnmFüm  s
m
v
Q
v  Q=ω. v ( m³  s )
- sMrab;rMhUresrICael,ÓnenARtg;cMNc; 0.6 h . cab;BIépÞTwkcuHeRkam .
- sMrab;rMhUredaybnÞúkCael,ÓnenARtg;cMNuc
- 0.223 r KitCasMbkbMBg;mkdl;G½kS .
viFIedaHRsaykñúgkarKNnaRbLayTwk
RbLayragctuekaNBañy
b-)atRbLay ( m)
m-epIgeTvRbLay 

 g
tg
m
m
tg cot
11

B-TTwgrgVHénépÞTwkxagelI( m )
ω-RkLaépÞénmuxkat; ( m² )
χ- brimaRténmuxkat;esImrbs;RbLay ( m )
R-kaMGIuRCUedWRk ( m0
)
C- emKuNénbrimaNFarTwk m 0,5  s
Δ-kMBs;FaraTwksuvtþiPaB ( m )
n-PaBeRKImrbs;dIb¤TMrrbs;Twk
- rUbmnþEdlRtUvedaHRsayman ÷
  2
).1 mhbhhbmhW  (m²)
    2
1
22
1212).2 mhbmhb  (m)

W
R ).3 (m)
2
2
12 mhb
mhbh
R



R
n
C *
1
).4  eday ny 5.1 ; mRm 11.0 
( Pavlosky ) ny 3.1 ; mRm 13.0 
- 6
1
*
1
R
n
C  ( Manning )
-  RKC lg72.17  b¤ n
K
72.17
1

- 72.17
1

n
C lgR
-

gC 8 ( Darcy )
λ emKuN énDarcy . rYcvaTak;TgeTAnig
Re ( cMnYnerNul ) .
dv.
Re 
Re manEckCa ÷
+ Re cr = 2320 muxkat;ragmUl
+ Re cr = 580 muxkat;minmUl
cMeBaHrbbTwk ÷
LamIENr Re < Re cr
TYrb‘uyLg; Re > Re cr
5). B = b + 2mh (m)
RbLayrg)ara:bUl
tamsmIkar x2
= 2py ( P CatEmøénxñatRbEvg ) b¤ ( P Ca)ara:Em:Rt)a:ra:bUl)
2
1
m
p
h CMerArWLaTIv
H = h + Δ ( m )
hphBhw .2
3
4
3
2

     212ln212  P
    212ln212 N
PN
PN
Bh
R
3
2



cMeBaH B ≥ h eKyk B
RbLyrag ctþúekaNEkg
bB
hR
B
hB





 .
viFIKNnael,ÓnTwkmFüm:


Q
vvQ  . m/s
iRcv . ( Chézy ) m/s
l
hegR
v 

8
KWekItecjBIrUbmnþ g
v
d
l
hl
2
2
 
gRIv 

8
;
l
he
I 
gRIu  el,ÓnDINamiuc
viFIKNnabrimaNFarTwk Q m³ / s
Q = v.w m³/s
iRcwQ .. b¤ iRcwQ .. ( m³ / s )
Et Rcwk . dUecñH iKQ . ( m³ / s )
ikRicwwQ  .. ( m³ / s )
edIm,IeGayrMhUrTwkkñúgRbLaymanlkçN³l¥KWeKRtUvBinitüeTAelIel,ÓnTwk
v env = ≤ v mfüm ≤ v aff
AQ0.2
≤
w
Q
≤ k.Q0.1
v env - el,ÓnkkPk;
v aff - el,ÓneRcaHdac;
cMeBaH K
xSac;mFüm k = 0.45 - 0.50
xSacFM 0.5 - 0.6
fμtUc 0.6 - 0.75
fμmFüm 0.75 – 0.90
fμ 1.30 – 1.60
dIl,ayxSac; 0.53
dIGIdæmFüm 0.62
dIGidæexSay 0.52
l,aydIGideRcIn 0.58
dIGidæ 0.75 - 0.85
cMeBaH A
A = 0.33 ā W < 1.5 m / s
A = 0.44 ā W = 1.5 eTA 3.5 m/s
A = 0.55 ā W > 3.5
cMNaM - )atRbLaysMrab;eRsaceRsaB mantémøcab;BI b = 0.4 m eLIgeTA .
vIFIbgðajGMBItémøΔ ( m )
Q m³ / s < 1.0 1-10 10-30 > 30
Δ m 0.25 0.40 0.50 0.60
មេកានិកនៃសន្ទនីយ៍
មេកានិកនៃសន្ទនីយ៍
Chapter 6
kareRbIR)as;taragBiesssMrab;KNna)a:ra:Em:Rt
énRbLay
tameKalkarN_énelak Agroskine GaceGaymanRKwHsMrab;KNna)a:ra:Em:RténRbLay edayeFIV
karRsavRCaveTAelI)a:ra:Em:téntém R h-a ( kaMGIVRCUGIkEdlmanRbeyaCn¾) Rayon hydraulic a vantage .
dUecñHCadMbUgRtUvCMnYy F CaGnuKmn¾ .
sMrab;RbLayctuekaNBañy
i
Q
m
F .
4
1
0

sMrab;RbLayrag)a:ra:bUlIk
i
Q
F 1524.0
enAkñúgtarag TI v énAnnexe KWmanbgðajGMBItémø hydraulique A vantage edaysÁal; F, n rbs;
RbLay. KNnaplviC©aénkaredaHTwkecj
tamrUbmnþEdl)ansikSarYc KW ÷
RicwQ ..
Ricv .
eKGaceFIVkarsikSaeTACeRmATwkEdlRtUvbMeBjKW Gnuvtþn¾
tamrUbmnþ
d
h
a  a-CeRmATwkEdlbMeBj
h-CeRmATwkkñúglU
d-Ggát;pi©tbMBg;
eKdwgfa a=1.0 edaysmÁal;snÞsSn¾ 0 ¬sUnüÚ ¦
]TahrN¾ ikQ 00  ; iRCv 000  ; 0000 . RCWK 
Canic©Cakal a < 1 . edaydwgfa edIm,IeFIVkarKNnaGMBIrUbmnþxagelIKWRtUv Kal;pleFob
0Q
Q
A  nig
0v
v
B EdlTTYlxusRtUvcMeBaH brimaNFarTwk nig el,óÓnTwk .
tamrUb 8-8 )anbgðajfa A , B CaGnuKmn¾ En Q .
kñúgkrN× MaxA naMeGay a = 0.95
MaxB naMeGay a = 0.81
CaTUeTAlkVN³rbs;K CaGnuKmn¾d , n , a .
kñúgkarKNnan yktEmø0.013 ebId ≤ 600 mm .
n yktEmø0.014 ebI d > 600 mm .
cMeBaH Galerie , n RtUeRCIserIs tamtaragTI I kñúg Annexe . tEmøénko KWvapÞúyGMBIK dUecñHeKGacsresr
iRBCv .00
iAKQ 0
RCWK 000 
témønig B RtUveRCIserIstamExSekag rUb 8-8 edIm,IKNna k 0 , W 0 , C 0 , R o GacKNna .
taragbgðajGMBI K 0
el,ÓnkMNt;
v env = 0.7m/s cMeBaH d ≤ 500 mm
venv = 0.5 m/s cMeBaH d > 500mm .
I.smIkar Continuité sMrab;clnaTwkGciéRnþ
eKmanExSTwkmYyExSEdlman ÷
eK)an 332211
333
122
111
udwudwudw
udwdQ
udwdQ
udwdQ









( équodion de continuité )
Q1 = Q2 = Q = Cont
V1W1 = V2W2 = ……….. = V .W = const
1
2
2
1
w
w
v
v 
II.smIkarEb‘rnuyy‘ÍsMrab;crnþTwk parfait ( Nonvisqueux )
00 - bnÞat;eKal
Z1 , Z2 - kMBs;eFomrvaggk½STwk nig 00
ΔS1 , ΔS2 - cMgaycr
1-1 , 1’-1’, 2-2 , 2’ – 2’ , muxkat;TwkRtg;cMNuc
ds1 = u1dt
ds2 = u2dt
Le travail des forces de pression :
P1dw1u1dt – P2dw2u2dt = dQdt ( P1- P2 )
dQ = u1dw1 = u2dw2
dQ = u1dw1 = u2dw2
Le travail des forces de gravitaire = le travail par la force de gravité de la masse de liquide du
tronçon 1-1’ EdlmankMritkMBs;xus ² Kña KW dG ( Z1 – Z2 ) = g ρdw ds1 ( Z1 - Z2 )
= gρdwu1dt (Z1 – Z2 ) = gρdQdt ( Z1 - Z2 )
tamkarpøas;TIBI 1-2 EdlmancrnþTwkGciE®nþ dUecñHkM/lMefrKW
2222
2
1
2
2
2
11
2
22 u
dQdt
u
dQdt
udmudm
 
   2121
1
2
2
22
ZZdQdtgdQdt
uu
dQdt 





 
TIbBa©b;eKGacsresr)ansmIkar edayEckρdQdt RKb;GgÁTaMgBIr ÷
22
2
22
2
2
11
1
uP
gZ
up
gZ 

( Bernoulli )
b£ g
u
g
p
Z
g
p
Z
22
2
22
2
1
1 

Z1 , Z2 famBlénkMBs; ( m )
g
p
g
p

21
, famBlénsm<aF ( m )
g
u
g
u
2
,
2
2
2
2
1
famBlsIueNTic ( m )
karviPaKeTAelIssmIkarBernoulli énrMhUrGciE®nþ
g
u
g
p
Z
g
u
g
p
Z
22
2
22
2
2
11
1 

( Bernoulli nonvisqueuse )
1-ExS piézométrique
2-G½kSéncrnþTwk
l
g
p
Z
g
p
Z
I p















2
2
1
1
Ip = CMralGIuRdUlIk
edIm,Icg;el,ÓnTwk eKRtUv]bkN¾ eQμaHtibBItU Pitot
ghKu 2
III-smIkar Bernoulli sMrab;TwkFmμta ( Visqueux )
cph
g
u
g
P
Z
g
u
g
p
Z .
2
222
2
2
111
1
22





( Bernoulli )
Z 1 , Z 2 - kMBs;eFüb ( m )
α1 , α 2 – emKuNkUr:UlIs α = 1.02 eTA1.03
g
p
g
p

21
, - sMrab;famBlsm<aF ( m )
g
u
g
u
2
,
2
21
- kMhat;bg;tambeNþay ; TTwg én bMBs; ( m )
មេកានិកនៃសន្ទនីយ៍
មេកានិកនៃសន្ទនីយ៍

More Related Content

PPT
Beams and columns
PPT
TYPES OF FOUNDATION(PPT)
PPT
METHODS OF RETROFITTING EARTHQUAKE DAMAGES
PDF
Foundations Design combined footings - تصميم القواعد المسلحه المشتركه والشدادات
PDF
4. Types-of Foundations.pdf
PPTX
parametric study of different geometries of steel truss and optimization
PPTX
Concept of demand and capacity for Civil Engineering
PPT
Retaining walls
Beams and columns
TYPES OF FOUNDATION(PPT)
METHODS OF RETROFITTING EARTHQUAKE DAMAGES
Foundations Design combined footings - تصميم القواعد المسلحه المشتركه والشدادات
4. Types-of Foundations.pdf
parametric study of different geometries of steel truss and optimization
Concept of demand and capacity for Civil Engineering
Retaining walls

What's hot (20)

PDF
Shear Force and Bending Moment
PPTX
Topic1_Method of Virtual Work.pptx
PPTX
Types of beam &amp; types of supports
PPTX
One Way Slabs
PDF
Dual Systems Design Shear wall-Frame InterAction تصميم الجملة القصية الثنائية...
PDF
Two way slab
PPTX
Types of beams
PPTX
Classification of retaining wall
PPTX
Building structure and their components
PPTX
Propped cantilever beams theorem and theory
PPTX
Foundations
PDF
Vi. indeterminate prestressed concrete structures
PDF
1.3 conjugate beam method problems1
PPTX
Roofing members
PPTX
PPTX
Base Isolation of Structure.
PPT
Bearing capasity ofsoil vandana miss
PPTX
Type of Loads Acting on a Structure/ Building
PDF
Structural engineering i
Shear Force and Bending Moment
Topic1_Method of Virtual Work.pptx
Types of beam &amp; types of supports
One Way Slabs
Dual Systems Design Shear wall-Frame InterAction تصميم الجملة القصية الثنائية...
Two way slab
Types of beams
Classification of retaining wall
Building structure and their components
Propped cantilever beams theorem and theory
Foundations
Vi. indeterminate prestressed concrete structures
1.3 conjugate beam method problems1
Roofing members
Base Isolation of Structure.
Bearing capasity ofsoil vandana miss
Type of Loads Acting on a Structure/ Building
Structural engineering i
Ad

Similar to មេកានិកនៃសន្ទនីយ៍ (20)

DOC
PDF
Vi deflection and control of cracking
PDF
Iv.flexural design of prestressed concrete elements
PDF
12. displacement method of analysis moment distribution
PDF
Ix one way slab
PDF
PDF
Xi. prestressed concrete circular storage tanks and shell roof
PDF
I. basic concepts
PDF
Appendix a plastic analysis and design
PDF
4.compression members
PDF
Xvi continuous beams and frames
PDF
Iii flexural analysis of reinforced concrete
PDF
6.stresses and strain23
PDF
3.tension members
PDF
Vii. camber, deflection, and crack control
PDF
Xii.lrfd and stan dard aastho design of concrete bridge
PDF
Xii slender column
PDF
14. truss analysis using the stiffness method
PDF
6.beam columns
PDF
Iv flexural design on reinforced concrete beams
Vi deflection and control of cracking
Iv.flexural design of prestressed concrete elements
12. displacement method of analysis moment distribution
Ix one way slab
Xi. prestressed concrete circular storage tanks and shell roof
I. basic concepts
Appendix a plastic analysis and design
4.compression members
Xvi continuous beams and frames
Iii flexural analysis of reinforced concrete
6.stresses and strain23
3.tension members
Vii. camber, deflection, and crack control
Xii.lrfd and stan dard aastho design of concrete bridge
Xii slender column
14. truss analysis using the stiffness method
6.beam columns
Iv flexural design on reinforced concrete beams
Ad

More from Thim Mengly(ម៉េងលី,孟李) (20)

PDF
PDF
Matlab by Prof.Keang Sè Pouv
DOC
DOC
PDF
ក្រប់គ្រងសំណង់
PDF
Math cad lesson etc by Sok Raksmey
PDF
ប្រវត្តិសម្តេចHun sen
PDF
ប្រវត្តិសម្តេចHun sen
PDF
ស្រីហិតោបទេស​១
PDF
Report of Visit Internship
PDF
Important Comment used in AutoCAD 2D Khmer Guide
PDF
Traveaux Pratique Topographie à l'ITC-I3-GRU32
PDF
Résistance des Matérieaux
PDF
Projet irrigation-samras
PDF
Project Of Irrigation at Stoeung Chhinit, Kg.Thom, KHmer
PDF
Earth dam design and protection new
PDF
Hydrological modelling i5
Matlab by Prof.Keang Sè Pouv
ក្រប់គ្រងសំណង់
Math cad lesson etc by Sok Raksmey
ប្រវត្តិសម្តេចHun sen
ប្រវត្តិសម្តេចHun sen
ស្រីហិតោបទេស​១
Report of Visit Internship
Important Comment used in AutoCAD 2D Khmer Guide
Traveaux Pratique Topographie à l'ITC-I3-GRU32
Résistance des Matérieaux
Projet irrigation-samras
Project Of Irrigation at Stoeung Chhinit, Kg.Thom, KHmer
Earth dam design and protection new
Hydrological modelling i5

Recently uploaded (20)

PPTX
introduction to high performance computing
PPT
Total quality management ppt for engineering students
PPTX
Information Storage and Retrieval Techniques Unit III
PDF
Improvement effect of pyrolyzed agro-food biochar on the properties of.pdf
PPTX
AUTOMOTIVE ENGINE MANAGEMENT (MECHATRONICS).pptx
PDF
BIO-INSPIRED HORMONAL MODULATION AND ADAPTIVE ORCHESTRATION IN S-AI-GPT
PPTX
ASME PCC-02 TRAINING -DESKTOP-NLE5HNP.pptx
PDF
737-MAX_SRG.pdf student reference guides
PDF
III.4.1.2_The_Space_Environment.p pdffdf
PPTX
Feature types and data preprocessing steps
PDF
Artificial Superintelligence (ASI) Alliance Vision Paper.pdf
PPT
INTRODUCTION -Data Warehousing and Mining-M.Tech- VTU.ppt
PDF
Level 2 – IBM Data and AI Fundamentals (1)_v1.1.PDF
PDF
ChapteR012372321DFGDSFGDFGDFSGDFGDFGDFGSDFGDFGFD
PDF
Visual Aids for Exploratory Data Analysis.pdf
PDF
Human-AI Collaboration: Balancing Agentic AI and Autonomy in Hybrid Systems
PPTX
Fundamentals of safety and accident prevention -final (1).pptx
PPTX
Sorting and Hashing in Data Structures with Algorithms, Techniques, Implement...
PDF
null (2) bgfbg bfgb bfgb fbfg bfbgf b.pdf
PPTX
"Array and Linked List in Data Structures with Types, Operations, Implementat...
introduction to high performance computing
Total quality management ppt for engineering students
Information Storage and Retrieval Techniques Unit III
Improvement effect of pyrolyzed agro-food biochar on the properties of.pdf
AUTOMOTIVE ENGINE MANAGEMENT (MECHATRONICS).pptx
BIO-INSPIRED HORMONAL MODULATION AND ADAPTIVE ORCHESTRATION IN S-AI-GPT
ASME PCC-02 TRAINING -DESKTOP-NLE5HNP.pptx
737-MAX_SRG.pdf student reference guides
III.4.1.2_The_Space_Environment.p pdffdf
Feature types and data preprocessing steps
Artificial Superintelligence (ASI) Alliance Vision Paper.pdf
INTRODUCTION -Data Warehousing and Mining-M.Tech- VTU.ppt
Level 2 – IBM Data and AI Fundamentals (1)_v1.1.PDF
ChapteR012372321DFGDSFGDFGDFSGDFGDFGDFGSDFGDFGFD
Visual Aids for Exploratory Data Analysis.pdf
Human-AI Collaboration: Balancing Agentic AI and Autonomy in Hybrid Systems
Fundamentals of safety and accident prevention -final (1).pptx
Sorting and Hashing in Data Structures with Algorithms, Techniques, Implement...
null (2) bgfbg bfgb bfgb fbfg bfbgf b.pdf
"Array and Linked List in Data Structures with Types, Operations, Implementat...

មេកានិកនៃសន្ទនីយ៍

  • 1. CMBUkTI1 Chapter 1 I-lkVN³TUeTAGeneral I-1-1-niymn½yrbs;vtßúravDefinition of fluid vtßúravmancrwkeRcInya:gKÅ : k¦ CarUbFatuEdlfitenAeRkamTMrg;Caliquid nig Solid x¦ vtßúrav KWCarUbFatuEdlmankarERbRbYlTMrg;kñúgkrNImanGMeBIBIxageRkA . eKehAfa karcl½trbs;PaKl¥iténvtßúrav (Particulars of fluid) . K¦kMLaMgxageRkAGacbNþalbegþIteGaymanCaclnarbs; fluid tamTisedAénkMLaMg . X¦eKkMNt;tamlkVN³mCÄd§anénkarxUcRTg;RTay nig mCÄd§anénkareFVIbnþ. g¦vtßúrav KWmanrUbragdUcmCÄd§anénkareFVIbnþ EdlbgðajGMBITMrg;m:UelKulrbs;rUbFatuedayKit bBa¢ÚlTaMgemKuN nig smIkar constitutive . c¦ eKEckCavtßúrav nig hÁas . ]TarhN_ ³ TwkCa fluid incompressible. hÁasCa]s½μncompressible. CaTUeTAeKkMNt;famanBIrsarxarbs;mecanic of fluid KW a) DINamiuc én vtßúrav b¤ Hydrodynamic. b) DINamiuc én haÁs b¤ Aerodynamic. q¦ TMrgrbs;vtßúravKWmaneTAtamTMrrbs;eRKOgRTehIyépÞb:HCamYybriyakasvaCaépÞesrI (Face Free). I-1-2-niymn½yrbs;GuIRdUDINamic Hydrodynamic - sikSaeTAelIclnarbs; vtßúrav KWCamCÄd§anénkareFVIbnþ EdlTak;TgeTAnigrMhUrrbs; vtßúrav nigRbsiTi§PaB epSg²eTotrbs;va . - hÁasKWsikSaGMBIrMhUr]s½μnepSg ² - emkanic énvtßúrav nig emkanic én vtßúrWg solidmansarsMxan;epSgKña² .
  • 2. emkanic én vtßúravMechanic of Fliud emkanic én vtßúrav (EdlmanCatiTwk, ]sμ½n) emkanic énvtßú rwg GIuRdUDINamiuc GaeGrU:DINamiuc Hydrodynamic Aerodynamic I-1-3-RbePTénrMhUr Type flow k¦ rMhUrrbs; vtßúrav Caclna Continue . x¦ cMeBaH vtßú rWg bnøas;bþÚrCabøúk . K¦ rMhUrrbs; vtßúrav manlkVN³Cael,Ón edaykMlaMgsm<aFniglkVN³epSgeTot dUcCadg;sIuet nig Viscosity . X¦ Viscosity KWCargVas;er:sIusþg; én vtßúrav rbs;rMhUrehIyKWCalkVN³kkitrvag clnaPaKl¥it . c¦ Hydrodynamic KWCa Hydrostatic KWsikSavtßúravenAhñwgmYykEnøg. q¦ rMhUr vtßúrav Bit KWCa Laminar ( rMhUrrbs;vamanlkVN³CaRsTab;²) C¦ cMeBaHrMhUr Turbulent CarMhUrxñÚlxñaj;. Q¦ rMhUurÉksNñan Uniform KW g = 0 ehIyviucT½r el,Ón Velocity RsbKñaRKb;cMNuc . j¦ rMhUurCaTUeTAmanEbkCa x , y , z EdlmaneQñaHehAfa Tridimensionnel. RbsinebIrMhUrmanEt BIrmuxRBYj KWCarMhUr Bidimensionnel b¤ Plan. EtebImanEtmYypøÚvrMhUrenHehAfa Unidimensionnel . I-2- c,ab;rkSaTukénkMlaMg Laws of conservation 1-kMmøaMgmanEckCaBIrKW ³ – kMmøaMgekItedayTMnajEpndI Gravitational constant (g = 9.81m/s² ) –. kMmøaMgekItedaykarkkit nig sm<aF 2- kMmøaMgenHmanTMnak;TMngCamYy cMnYnerNul Reynolds (Re) KWmankMmøaMgniclPaB nigkMmøaMg sm<aF. 3-kñúgkarGnuvtþ eKman c,ab;rkSaTukénkMlaMgsMrab;sersrGMBIclna én vtßúrav. i) c,ab;rkSaTukénm:as;tameKalkarRKwH én Continuity ii ) c,ab;rkSaTukénbrimaNclnatameKalkarRKwH énm:Umg;( dynamic)
  • 3. iii ) c,ab;rkSaTukénfamBl( eKalkarRKwH thermodynamic ) I-3- TMhM nig xñat Dimensions&Unit 1-bNþay ( L) 2-ry³eBl ( t ) 3-ma:s; ( m ) 4- sIutuNðPaB ( t , ˚K ) i) kmøaMgForce in pounds = ma:s; mass in slugs ( m ) x acceleration TMnajEpndI ( g ) SI = kmøaMg ( jÚtun ) ii)  ma:smaD = = 3 m Kg V M  iii) kmμnþ ( T ) =F x cMgay ( L ) =( Nm ) b¤ ( j ) hSÚl I-4-1 Fluid Properties 1) Density V m  ;       3 m Kg 2) Tm¶n;maD Specific Weight  g ( N/m³ ) ,        3 m N V M  3) maDykSfaRbePT Specific Volume ( SV ) ,  1 SV ;       Kg m3 4) dg;sIuetyfaRbePT Relative density( RD) eau RD    ( Pa = 1 atm , T = 3.98 ˚C ) 5) BIsáÚEm:Rt Pycnometer eRbIsMras;KNnarkrTMng;maD V ww 12   1W , 2W Tm¶n;rbs;vtþúrav 1V , maDrbs;vtþúrav 6) GIuRdUEm:Rt Hydrometer 2 1 12 l l   (rUb a ) 1 = ma:smaDEdlsÁal; 2 = ma:smaDminsÁal; N T ML 2
  • 6. I-4-1- Viscosity of Fluid 1-KWCargVas;ersIusþg;énrMhUrrbs;Fluid DIya:Rkaménel<ÓnrMhUr A dz du & (  A F ) ;  Shear Stress μ - Dynamic Viscosity Pas dz du   ; dYdV    = rStrainRateofShea sShearStres kñúgkrNIEdlμ = 0 or u = 0 Ca(ideal fluid );μ ≠ 0 Ca(Normal fluid). 2- Kinematic Viscosity      s m2  Dencity 1poise = 1 g / cm .s s m2  Stokes (St) = 1 cm² / s i) Viscosimetre visáÚsIuEm:Rt én bMBg; ii) Viscosimetre rotatif visáÚsIuEm:Rt vil
  • 7. 3- sm<aFcMhay Vapor Pressure krNI énqñMagEdlbitCit rYcdak;TwkTukeGayBuH eKsegáteXIjmancMhay TwkehIreLIg maneQμaH ehAfa sm<aFcMhayTwk . 4-tg;süúgyfaRbePT Surface tension m:UelKkulrbs;vaEdlekItmanenAkñúgTwkeRkamGMBIénkMLaMgkRnþak;skmμRKb;TisTI .   L F sigma    ; J/m2        m N m2  ΔF kMLMagénPaByItEdlEtg RKb;sarFatu   ΔL CaRkLaépÞénTwk. 5- kaBILarIet Capillilarity KWbNþalmkBI surface tension   nigGaRs½yedayPaBsi¥tCab; ( adhésion ),kMLaMsi¥tCab; ( Cohésion ) . bMBg;EdlykmkeRbI Ø=10mm rgr h     cos..2cos..2  qñaMgdutkMedA cMhayTwk Twk ²=2
  • 8. h - kMBs;TwkeLIg ( depression )   - Surface tension  -mMulMgakWetting angle dihtofliquiSpecificWe r-kaMén bMBg;Radius of tube ( mm ) 6-m:UDuleGLasIÞk ( E ) Bulk Modulus of Elasticity v dv dp E   ( Pa ) b¤ (bar = 5 10 pa= 5 10 N/m2 ) 1atm = 1.013bar = 760mmHg dp- bMErbMrYlénsm<aF - v dv -bMErbMrYlénmaD 7-lkçN½ én Isothermal Conditions RbsinebIsItuNðPaBefrenaHvamankarbMElgBIcMNuc 1  2 tamc,ab;hÁas 2211 vPvP  nig 2 2 2 1   P  efr tamlT§plE = P 8-Isentropic Condition kk vPvP 2211  , 2 1 2 1      const , E= K . p k – plepobénma:srbs;kMedA ( Cp ) efrCamYymasmaDénkMedA 9- vibtþ½n½ysm<aF Pressure disturbances KWvaTak;TgeTAnigbmøas;TIénvtþúravnigkarekIneLIgénel,Ón  EC    k k P P T T 1 1 2 1 2        
  • 9. sMrab;hÁas Acoustic Velocity RTgK K C p ..  10- sItuNðPaB Temperature T(K) = T(o C) +273.16 (Kelvin) ; o R = o F + 459.69 (Rankine) tamTMnak;TMngrvag Temperature, Pressure, Volume, density én Constant mass of gas ( Considred Perfect or ideal ) Gnuvtþn¾tamrUbmnþ: 2 22 1 11 T Vp T Vp  ; pV = mRT ; p =  RT and M R 8314  Edl p = Pressure( Pa) V = Volume (m3 ) T = Temperaturein K m = mass of the gas in Kg  = density of gas in Kg/m3 R = gaz constant ( J/Kg.K) M = Relative molecular mass of the gas (no unit) T = 200 C ;  = 13.580 Kg/m3 (Mercury)  = 0.0838 Kg/m3 (Hydrogen)  = 1000 Kg/m3 ;(H2O) 11- mrimaNFarTwkVolume flow rate(Q; . V ) . V = A.V (m3 /s = m/s x m2 ); 12- Mass flow rate ( . m ) . m = . V  = v.A.  ( Kg/s = m/s x m2 x Kg/m3 ) 13- Continuity equation tConsmm outin tan ..   V1 .A1. 1 = V2 .A2. 2 tConsVV outin tan ..   v1 A1 = v2 A2 Fluid flow through a system
  • 10. taragxñat eQμaH nimitþsBØa xññatSI xñatRKiHSI TMnajEpndI ( g) m/s2 ma;:s;maD ( ρ) Kg/m3 kMlaMg;TMgn;maD;PaBF¶n; ( F) N Kgm/s2 TMng;yfaRbePT ( γ) N/m3 Kg/m2 s2 sm<aF;kugRtaMg; ;PaByIt (P;τ;E) Pa N/m2 Kg/m s2 famBl;kmnþ ( E;Work) J Nm Kgm2 /s2 GnuPaB (Hp) W J/s Kgm2 /s3 vIsáÚsIuetDINamiuc (μ) Pa.s Ns/m2 Kg/ms vIsáÚsIuenTic (ν) m2 /S Ns/m2 Kg/ms RkLaépÞ (S) m2 vUlUm (V) m3 elÇIn (v) m/s cMNaM 1Kgf = 9.81 N ≈ 10N; 1tf = 9810N ≈ 10N; 1gf = 9,81.10-3 N ≈ 10mN; 1Kgf/cm2 = 98100 Pa ≈ 100 K Pa ≈ 10-1 MPa; 1Kgfm = 9,81 J ≈ 10J; 1tfm = 9810 J ≈ 10KJ; 1cv(1esH) = 735,5Wt; 1t = 1000Kg; 1l/s = 10-3 m3 /s ; 1P (poise) = 10-1 Pas; 1St (Stokes) = 10-4 m2 /s; ρH2O t = 00 C : ρ = 999,841 Kg/m3 ; ρH2O t = 40 C : ρ = 999,973 Kg/m3 ; ρH2O t = 100 C : ρ = 999,900 Kg/m3 ; ρH2O t = 200 C : ρ = 998,203 Kg/m3 ;
  • 12. Chapter 2 Statique des fluides Fluid of Statics 1-Unit pressure or pressure k¦ RbsinebIeKmanRBIsragCaRtIekaNénTwkEdlmanmYyxñatTTwgén Twks¶b;tam TMnak;TMnggéometrique ¬FrNImaRt ¦ . dx = ds.cosθ ; dz = ds.cosθ x¦ Tm¶n;rbs; fluid EdlbnþénRBwsKW  1. 2 dx dz g K¦ sm<aF ( P ) KWCabrimaNsáaélénkmaøMgsm<aF  F . GaMgtg;sIuetkmøaMgsm<aF ³ P1( dz.1 ) , P 2( dx .1 ) nig P3 ( ds.1 ) X¦ lkçN½ÐlMnwgén force hydrostatique i¦ kñúgTisedAedk P1.dz – P3.ds .conθ = 0 tamTMnak;TMngFrNImaRt P1 = P3 ii¦kñúgTisedAbBaÆr 0cos. 2 32  dsPdxPdx dz g Edl gdzPP  2 1 32 RbsinebI dz0 P2 = P3 g¦ P1 = P2 = P3 ¬sMrab; fluide au repos ¦ c¦ pdsF s b£ ds dF p  CaGaMgtg;sIueténsm<aFEdlman F nig RkLaépÞ S . 2- smIkarHydrostatique k¦ CadMbUgkñúgTisedA Z , x , y x¦ ebIsinmanbMBg;Twkminbmøas;TI kmøaMgEdlmanGMeBIeTAelImaD i ¦ kmøaMgmaD  dsdzz  ii¦ kmøaMgRkLaépÞ Pds nig dsdz z p P         
  • 13. iii¦ kmøaMglMnig én Z   0.          dsdzzdsdz z p ppds  Edl 0    z z p  iiii¦ eKGacsresr)an smIkarlM nwg                      0 0 0 z p z y p y x p x    b¤ 0.   pgradf iiiii¦ kmøaMgmaDénmaDmYyxañt + kmøaMgsm<aFénmYymaDxañt iiiiii¦ CaviucT½rénkMlaMgmaD ( x , y , z ) g = 9,81 m/s2 iiiiiii¦ smIkar g z p y p x p          0 0 iiiiiiii¦ tamsmtikmμ k¦tamTisedA x 0   x p ; P = Cte x¦tamTisedA y 0   y p ; P = Cte K¦ g z p       g dz dp         pgrad   f  f                         gz y x f 0 0
  • 14. 3- bMErbMrYlbBaÄrénsm<aF I) fluide incompressible fluide minbMENn)an 1)-    2121 zzgpp   2)- kñúgkrNIEdlma:smaDén fluide efr eK)an³   Ctezgp   tamlk§N³eRhVkg;   Ctezgpp    p efr eTAtamcm¶aybBaÄr Z ehIysm<aF P fy cuH  p famBlb:Utg;Esül ( m ) g TMnajEpndI m/ s2 g p   bnÞúkBIeysUemRTIk vamantémøefrcMeBaH fluide repos . 4- sm<aFdac;xat , sm<aFrWLaTIv Pression absolue -kñúgkrNIsm<asbriyakas eKehAva fa Pa rIÉCMerATwkvijKWCa Za    1 ' 1 ZZgPP aa   Et Za – Z1 = h ghPaP ' 1 CargVas;eFobCamYybøg;erehVr:g( 0.0) suBaØakasdac;xat ( Pa = 105 Pa ) . ' 1P = Casm<aFdac;xat -kñúgkarGnuvtþn_ ghP 1 Casm<aF rWLaTIv ( Pression refative) . ehIysm<aFdac;xat 1 ' 1 PPaP  5- Fluide Compressible ¬vtÚßravGacbMENn)an¦ Const KWvaTak;TageTA P , t0 rbs; fluide parfait . RT P   ' P’ = sm<aFdac;xat R = PaBefrénsItuNðPaBrbs;hÁas Parfait
  • 15. T = sItuNðPaBdac;xat TR p g dz dp . '  cMeBaHvavtßúravIsotherme KWCakarERbRbYl  xdp d    x - emKuN compressible isotherme x = 5 . 10-10 Pa ‘ bMErbMrYlénsm<aFsMrab; liquide compressible  rxpg dz d  10  Pr = sm<aFrWLaTIvedayeFobsm<aFerehVr:gPo . 0  6- vgVas;sm<aF Mesure de Pression 1-xñatsm<aF        2 m N S F P b£ F = kmøaMg S = RkLaépÞrag cMNaM ³ 1bar = 105 Pa = 106 bayers Pa m kgf 81,9 1 2  mm m kgf 1 1 2  C.e 2-sm<aFbriyakas eFobnIvUrbs;smuRT eKeXIjkMBs;)aet 760mm sm<aF P = 1.013 Pa  xül; = 1.225 kg / m³ RtUvsItuNðPaB T = 15 0 C b£ 288 0 k 3-]bkrN_vas;sm<aFbriyakas 3 42.133 m kn hg  , sm<aFcMhay Pv = 0 Pression Z2 – Z1 = 760 mm C.e attmosphérique
  • 16. - Baromètre anéroide )ar:UEm:RtGaeNr:UGIut - ]bkrN_vas;;sm<aFrWLaTIv( Pression relative ) 111 hP  sm<aFrWLaTIv 11 ' 1 hPP a  sm<aFdac;xat - ma:NUEm:Rt( Manonètre) eRbIkñúgbMBg;rag U Edlman 2 m ¬rbs;rlay ¦ 2222 lhP m   sm<aFrelative  222 ' 2 lhPP ma   P2 nig P’ 2 maneRbIedayvas; h1 nigl2 emIltamRkit m nig 2 CacMnYnmFüménHydromèter Pa sm<aFbriyakas 34443 . lhlPP mm  
  • 17. h 1h 0P ghP 0 l4 , l 3 , Δh ( m ) 43 ,,  m Tm¶n;maDénvtßúrav -ma:NUEm:Rtbr½dug vide vism<aF KWCaPaBxusKaμ énsm<aFvas;eXIj nig sm<aFbrikal ]-sm<aFvas;kñúgma:sIunbUmTwkman 0,690 bar ehIysm<aFbriyakas xageRkAman 1,013bar dUecñH vide KW 1,013bar – 0,690 = 0.323 bar cMNaM ³ P1 – P2 PaBxusKañésm<aF A F P  , g hP     . ,   3 m N Pap h   7- sm<aFénépÞesrI (Pression vide) const s p gz  smIkarRKwH Hydrostatique -sm<aFdac;xatPression absolue nigsm<aFdac;xatPression Manamètreque suBaØakasPression vide . k¦smIkarRKwH  0 0 p gz s p gz  10 ghP 
  • 18.  zzgPP  00  P0 – sm<FesrI Pression liber Z0 – Z =h CeRmABnøicéncMNucNamYyla Pression d’immersion ‫٭‬ P = P0 +ρgh sm<aFGIRCUsþaTicPression Hydrostatique 1atm = 1kgf / cm2 = Patm , 100kPa b¤ 0,1 MPa P0 = Patm = 98100 Pa x¦ sm<aFma:NUemRTIk Pression manonétrique Pm = P – Patm Pm = P0 +ρgh – Patm krN_Edl P0 = Patm eKKNnasm<aFm:aNUEm:RtRTIk ‫٭‬ Pm = ρ gh ( Pression manonétrique ) K¦edaysm<aFGIuRdUsþaTic dac;xat ( Pression hydrostatique absolue ) ticCagtémø sm<aFbriyakas dUecñHeKehAfa vide ‫٭‬ Pv = Patm – P P = 0 témøsm<aFsBaØakasPv = 100 kPa tamkarGnuvtþn_sm<aFsuBaØakas EdlmandMeNalxøaMgeTAtamlkçNнcMhayvtßúrav PaBEq¥t nig sItuNðPaBEdlpþl;eGay. 8- karviPaKFrNImaRt elIsmIkarRKwH én Hydrostatic ¬rUbk¦ P0=Patm ¬sm<aFbriyakas ¦; hreprentatique = kMBs;bgðaj A – cMNucenAkñúgTwk h=CeRmATwkKitBIépÞTwkxagelIeTAdl;cMNuc A ghPm g P h m    ¬h –kMBs; Piézométrique ¦ vide absolue krN_Edldkykxül; begáIt)anCasuBaØakas (P0=0 ; Pv = Patm )
  • 19. h = 10m ¬ KWKitBInIvU Piézométre cMhrnigbitCit ¦ cMeBaHkrN_ ³ PatmP 0 bgðajfa h g Pm   ¬rUbx ¦ PatmP 0 bgðajfa h g Pv   g P g PatmP hPatmghP r      0 0 hH = Charge hydrostatique = g P Z   9- RkahVik én sm<aF Représentation graphique de la pression ghPP  0 Pression hydrostatique kñúgkrN_CaeRmATwk Rtg;BIrcMNucxusKμa eKsresr ³ 2 1 2 1 2 1 2 1 h h P P ghP ghP m m m m         
  • 20. 10- c,ab;cr én TwkkñúgepIg Loi des vases communicants 220110 hPPghP   1 2 2 1    h h 11-eKalkarN_c,ab; Pascal ¬ sm<aFGuIRCÚlik ¦ Principe de Pascal , Presse hydraulique oP -sm<aFenAxageRkA EdlCaGnuKmn_én h b a PP o 1   b a P P O  1  -muxkat; énBIsþúg EdlmanGgát;p©wt d ;  =muxkat;BIsþúg Ggát;p©wt FM    .. b a PpP o   -cMnYnbBa¢Úa b¤ 2         d D  edayKitGMBIfamBl EdlmanTMnak;TMngeTAgÉ  2 :        d D b a PP o 80,0 eTA 0,80 kM/lMelIkTMenIb 700.00KN .
  • 21. Chapter 3 kmøaMgsm<aFénvtßúravEdlmanGMeBIelIépÞ Force de la pression hydrostatique sur une surface plane horizontale Hydrostatic Forces on Plane Surfaces I- Hydrostatic Absolute Pressure (Pabs) eKdwgfasm<aFdac;xatGIuRdUsþaTic ( Pression hydrostatique absolue ) KW ghPatmPabs  b¤ ghPPabs  0 (Pa) Etsm<aFenHmanGMeBIelIRkLaépÞ én)atGag (ω) dUecñHeKGacsresr)an ³ .' absabs PP  (Pa) eday Pabs ³ sm<aFGIuRCUsþaTicdac;xat ω ³ RKLaépÞ)at (m2 )  ghPP abs  0 ' edIm,IgayRsYl KWeKsresr P= ρghω II-kmøaMgsm<aFelIRkLaépÞénbøg; Mgnitude of Resultant Hydrostatic Force (Force de pression sur les surfaces planes à orientation arbitaire) RKb;cMNucTMagGs;Edlsm<aFxus²Kañ KWvaCaGnuKmn_énCeRmATwklkVN³enHekItman cMeBaHbøg;bBa¢it . ehIykar Gnuvtßn_xusKμaBIrYmbnþ xagelI . edayKitBImMulMgak α dUecñHeKGacsresr)an    dghPdPdP  0 edaybUkbBa¢ÚalkMLMagmYyEpñkeTotEdlRsbCamYyenaHKW  ..0 cgghPPa  ; (Pa) hcg –kMBs;TwkRtg;cMNucTIRbCMuTmøn; . eday Po = Patm ; dUcenH P = ρghc.g.ω Pressure gauge ¬ sm<aFm:aNUemRtIk¦
  • 22. III- TIRbCMuTm¢n;énsm<aF Centre de Pression (Center of buoyancy) Center Pressure KWCacMNuccab;énkMLMagenAEpñkkNþalénkMeNInrbs;kMLMagsm<aF elIépÞ. lcp- RbEvgénTIRbCMusm<aFxageRkam (m) lcg – RbEvgénTIRbCMuTm¶n; (m) hcg – CeRmATwkRtg;TIRbCMuTm¶n; (m) hcp –CeRmATwkRtg;TIRbCMusm<aF (m) eKsresr P.lcp =∫ωdp.L   cg x cp l J l ω-RkLaépÞénbnÞH(m²) jx – m:Um:g;niclPaBeFobnigépÞ TwkxagelI. j0 – m:Um:g;niclPaBeFobnigGkSRsb TIRbCMuTm¶n;.  2 cgox ljj
  • 23.   cg o cgcp l j ll IV- KNnaRkahVikénkMLaMgsm<aF nig TIRbCMuTm¶n;énsm<aFelIbøg;ragctuekaNEkg Détermination graphoanalytique de la force de pression et du centre de pression sur les surfaces rectangulaires planes maDénDIya:Rkamsm<aF blghWéq .. 2 1  kMLaMgsm<aF bl h gghP cg . 2 ..   eK)anl = h kMBs;Twk (m) b – TTwgbnÞHCBa¢Mag V- sm<aFkMLaMg énvtßúrav elIRkLaépÞekag Hydrostatic Forces on Curved Surface. Force de pression du liquide sur les surfaces courbes manvtßúmYyxagABC . BC CaRBMRbTl;. Pz kMLMagbBaÄrEdlGMeBIelIcuHeRkamedayqøgkat;tamTIRbCMu Tm¶n;ABC .
  • 24. Pz CakMLaMgEdlbukBIeRkameLIgelItamTIRbCMuTm¶n;0 Pz  c) Pz  d) Pz  `  force de pression ragsIuLaMgKW 22 zx PPP  CaTUeTAPx = 0 ; Py =ρghcgωy rUbmnþTUeTAénkMLaMgsm<aF 222 zyx PPPP  VI- viFIKNnaTwsedAénkMLaMgsm<aFEdlmanGMBIelIbnÞHva:n b h gP 2 2  ebIn CacMnYnsm<aFb¤bnÞHva:ndUecñH b n gh n P 2 2   b-TTwgTVarTwk rYccMgayBIépÞTwkxagelIrhUtdl;TIRbCMuTm¶n; D KW hlp 3 2  b¤ 11 3 2 hlp  b¤           i ii ihl ipi 11 3 2   222 aah n i hi 
  • 28. Chapter 4 vtßúGENþtkñúgTwk Flottement des corps dans un liquide Stability of floating bodies I- eKalkarN_RKwHéndMeNaldasIuEm:Rt Poussée d’ARCHIMED eKEckrUbFatuCaBIrKW ABC EpñkxagelInig ADC EpñkxageRkam . ehIyvtßúFatuTMagenHfitenA eRkamkMLMagbBaÄr. eKsresr)an ³ 11 gwPz  , 22 gwPz  EdlmanmaD AEFCB , AEFCD tampldkcinmaD eK)an maD ABCD   gwWWgPPP zzz   1212 dUecñH eKGacsresr P=ρgw Neutral Stable Floating a). G>P G =le poids d’un corps Wightof the body Tm¶n;rUbFatu P = la poussé verticale Bouyaancy Force dMeNalénkMlaMgbBaÄr
  • 29. w- maDvtßúravEdlpøas;TItamvtßúFatumaneQμaHehAfa maDénkaEv:n ( Volume Carene ) D- TIRbCMUTm¶n;énmaD . edaykMlaMgbBaÄr kat;tam D maneQμaH ehAfasg;dWkaErn ( Centre de Caréne ) . C-TIRbCMuTm¶n; Centre of gravity . tamlkV½NGENþt G = P = ρgw II )- lkVN³lMnigvtßúGENþt Stabilité des corps flottants stable lMnig Instable KμanlMnig Stability of floating bodies
  • 30. Stability of floating bodies XøIgeXøagtic stable δ < r Instable δ >r Stability of Partially Submerged Bodies. α- AnglemMulMgak <150 , D’ - cMNucEd½lGkS½bBaÄr D’ P - xN³QIøgeXøag M-cMNucemtas½g;RTIk ( Meta centric Height ) . D- sg;;énkaErn G- TIRbCMuTm¶n; . r- kaM emtasg; (Meta centric Height) ; б – PaBenAq¶ayBImCÄmNÐl excentricité m-cMgayMeta centric Height m = 0,3 eTA 1,2 1)krNI r <б KμanlMnig instable . 2) б<r lMnIgstable r = J0 / w J0 m:Um:gniclPaB ; w maDénkaEv:n r / б>1
  • 31. Chapter 5 RbePTrMhUrénvtßúrav nig smIkarEb‘rnuyI Type découlement du liqude et equation de Bernoulli GIuRdUDINamiucKWsikSaGMBIclnaemkanicénvtßúrav . ehIyrMhUrrbs;clnaTwkKWvaTak;TgeTAnig ÷ 1-kM / lMsm<aF nig kM/ lMkkitxagkñúg 2-kM/lMTIRbCMuTm¶n; . rMhUrénclnaTwkmanEckecjCaBIrya:gKW ÷ k ¦rMhUrGnaciéRnþ ³ KWcariklkVNHtamcMNucnimYy²EdlrMhUrénel,Ón nigsm<aFERbRbYlGaRs½ytam eBlevlat . x¦ rMhUrGniéRnþ ³ KWCarMhUrEdlel,ÓnminERbRbYltameBlevla. rMhUrenHEbgEcgCaBIreTotKW - rMhUrÉksNæan ³ el,Ón nig épÞxñat;rbs;crnþminERbRbYleTAtamRbEvgbeNþayRClg . I.CMralGIuRCUlIk II.CMral)atRbLay b.rMhUrminÉksNæan³ el,ÓnnigépÞxñat;rbs;crnþéRbRbYleTAtamxñatbeNþaénRClg. cMNaM ³ rMhUrenHERbRbYlCanic© . c.rMhUr ³ rMhUrrbs;vtßúragmanEckCarMhUresrInigrMhUredaybnÞúk > rMhUresrI ³ RbLay , swÞg , ERBk , bMBg;lUredayKμanbnÞúk >rMhUrmanbnÞúk ³ TwkhUrkñúg bMBg;Edlmansm<aFCYyrujbEnþm . * ExSéncrnþ nig)ac;éncrnþ
  • 32. * carwklkVNHGIuRCUlicénxñatcrnþrbs;FarTwk nig el,ÓnmFümenAkñúgGIuRCUlicmancarwklkVNHdUcteTA ÷  hmhbS )1 2 12)2 mhbP  30-R kaMGIuRCUlic P S R  S-épÞxñat;rMbUar P-brimaRtesIm -cMeBaHbMBg;vij 4 d R ¬ d Ggát;pwt ¦ -el,ÓnmFüm  s m v Q v  Q=ω. v ( m³ s ) - sMrab;rMhUresrICael,ÓnenARtg;cMNc; 0.6 h . cab;BIépÞTwkcuHeRkam . - sMrab;rMhUredaybnÞúkCael,ÓnenARtg;cMNuc - 0.223 r KitCasMbkbMBg;mkdl;G½kS .
  • 33. viFIedaHRsaykñúgkarKNnaRbLayTwk RbLayragctuekaNBañy b-)atRbLay ( m) m-epIgeTvRbLay    g tg m m tg cot 11  B-TTwgrgVHénépÞTwkxagelI( m ) ω-RkLaépÞénmuxkat; ( m² ) χ- brimaRténmuxkat;esImrbs;RbLay ( m ) R-kaMGIuRCUedWRk ( m0 ) C- emKuNénbrimaNFarTwk m 0,5 s Δ-kMBs;FaraTwksuvtþiPaB ( m ) n-PaBeRKImrbs;dIb¤TMrrbs;Twk - rUbmnþEdlRtUvedaHRsayman ÷   2 ).1 mhbhhbmhW  (m²)     2 1 22 1212).2 mhbmhb  (m)  W R ).3 (m) 2 2 12 mhb mhbh R    R n C * 1 ).4  eday ny 5.1 ; mRm 11.0  ( Pavlosky ) ny 3.1 ; mRm 13.0  - 6 1 * 1 R n C  ( Manning ) -  RKC lg72.17  b¤ n K 72.17 1 
  • 34. - 72.17 1  n C lgR -  gC 8 ( Darcy ) λ emKuN énDarcy . rYcvaTak;TgeTAnig Re ( cMnYnerNul ) . dv. Re  Re manEckCa ÷ + Re cr = 2320 muxkat;ragmUl + Re cr = 580 muxkat;minmUl cMeBaHrbbTwk ÷ LamIENr Re < Re cr TYrb‘uyLg; Re > Re cr 5). B = b + 2mh (m) RbLayrg)ara:bUl tamsmIkar x2 = 2py ( P CatEmøénxñatRbEvg ) b¤ ( P Ca)ara:Em:Rt)a:ra:bUl) 2 1 m p h CMerArWLaTIv H = h + Δ ( m )
  • 35. hphBhw .2 3 4 3 2       212ln212  P     212ln212 N PN PN Bh R 3 2    cMeBaH B ≥ h eKyk B RbLyrag ctþúekaNEkg bB hR B hB       . viFIKNnael,ÓnTwkmFüm:   Q vvQ  . m/s iRcv . ( Chézy ) m/s l hegR v   8 KWekItecjBIrUbmnþ g v d l hl 2 2   gRIv   8 ; l he I  gRIu  el,ÓnDINamiuc viFIKNnabrimaNFarTwk Q m³ / s Q = v.w m³/s iRcwQ .. b¤ iRcwQ .. ( m³ / s ) Et Rcwk . dUecñH iKQ . ( m³ / s ) ikRicwwQ  .. ( m³ / s ) edIm,IeGayrMhUrTwkkñúgRbLaymanlkçN³l¥KWeKRtUvBinitüeTAelIel,ÓnTwk v env = ≤ v mfüm ≤ v aff AQ0.2 ≤ w Q ≤ k.Q0.1 v env - el,ÓnkkPk; v aff - el,ÓneRcaHdac; cMeBaH K
  • 36. xSac;mFüm k = 0.45 - 0.50 xSacFM 0.5 - 0.6 fμtUc 0.6 - 0.75 fμmFüm 0.75 – 0.90 fμ 1.30 – 1.60 dIl,ayxSac; 0.53 dIGIdæmFüm 0.62 dIGidæexSay 0.52 l,aydIGideRcIn 0.58 dIGidæ 0.75 - 0.85 cMeBaH A A = 0.33 ā W < 1.5 m / s A = 0.44 ā W = 1.5 eTA 3.5 m/s A = 0.55 ā W > 3.5 cMNaM - )atRbLaysMrab;eRsaceRsaB mantémøcab;BI b = 0.4 m eLIgeTA . vIFIbgðajGMBItémøΔ ( m ) Q m³ / s < 1.0 1-10 10-30 > 30 Δ m 0.25 0.40 0.50 0.60
  • 39. Chapter 6 kareRbIR)as;taragBiesssMrab;KNna)a:ra:Em:Rt énRbLay tameKalkarN_énelak Agroskine GaceGaymanRKwHsMrab;KNna)a:ra:Em:RténRbLay edayeFIV karRsavRCaveTAelI)a:ra:Em:téntém R h-a ( kaMGIVRCUGIkEdlmanRbeyaCn¾) Rayon hydraulic a vantage . dUecñHCadMbUgRtUvCMnYy F CaGnuKmn¾ . sMrab;RbLayctuekaNBañy i Q m F . 4 1 0  sMrab;RbLayrag)a:ra:bUlIk i Q F 1524.0 enAkñúgtarag TI v énAnnexe KWmanbgðajGMBItémø hydraulique A vantage edaysÁal; F, n rbs; RbLay. KNnaplviC©aénkaredaHTwkecj tamrUbmnþEdl)ansikSarYc KW ÷ RicwQ .. Ricv . eKGaceFIVkarsikSaeTACeRmATwkEdlRtUvbMeBjKW Gnuvtþn¾ tamrUbmnþ d h a  a-CeRmATwkEdlbMeBj h-CeRmATwkkñúglU d-Ggát;pi©tbMBg; eKdwgfa a=1.0 edaysmÁal;snÞsSn¾ 0 ¬sUnüÚ ¦ ]TahrN¾ ikQ 00  ; iRCv 000  ; 0000 . RCWK  Canic©Cakal a < 1 . edaydwgfa edIm,IeFIVkarKNnaGMBIrUbmnþxagelIKWRtUv Kal;pleFob 0Q Q A  nig 0v v B EdlTTYlxusRtUvcMeBaH brimaNFarTwk nig el,óÓnTwk .
  • 40. tamrUb 8-8 )anbgðajfa A , B CaGnuKmn¾ En Q . kñúgkrN× MaxA naMeGay a = 0.95 MaxB naMeGay a = 0.81 CaTUeTAlkVN³rbs;K CaGnuKmn¾d , n , a . kñúgkarKNnan yktEmø0.013 ebId ≤ 600 mm . n yktEmø0.014 ebI d > 600 mm . cMeBaH Galerie , n RtUeRCIserIs tamtaragTI I kñúg Annexe . tEmøénko KWvapÞúyGMBIK dUecñHeKGacsresr iRBCv .00 iAKQ 0 RCWK 000  témønig B RtUveRCIserIstamExSekag rUb 8-8 edIm,IKNna k 0 , W 0 , C 0 , R o GacKNna . taragbgðajGMBI K 0 el,ÓnkMNt; v env = 0.7m/s cMeBaH d ≤ 500 mm venv = 0.5 m/s cMeBaH d > 500mm .
  • 41. I.smIkar Continuité sMrab;clnaTwkGciéRnþ eKmanExSTwkmYyExSEdlman ÷ eK)an 332211 333 122 111 udwudwudw udwdQ udwdQ udwdQ          ( équodion de continuité ) Q1 = Q2 = Q = Cont V1W1 = V2W2 = ……….. = V .W = const 1 2 2 1 w w v v  II.smIkarEb‘rnuyy‘ÍsMrab;crnþTwk parfait ( Nonvisqueux ) 00 - bnÞat;eKal Z1 , Z2 - kMBs;eFomrvaggk½STwk nig 00 ΔS1 , ΔS2 - cMgaycr 1-1 , 1’-1’, 2-2 , 2’ – 2’ , muxkat;TwkRtg;cMNuc
  • 42. ds1 = u1dt ds2 = u2dt Le travail des forces de pression : P1dw1u1dt – P2dw2u2dt = dQdt ( P1- P2 ) dQ = u1dw1 = u2dw2 dQ = u1dw1 = u2dw2 Le travail des forces de gravitaire = le travail par la force de gravité de la masse de liquide du tronçon 1-1’ EdlmankMritkMBs;xus ² Kña KW dG ( Z1 – Z2 ) = g ρdw ds1 ( Z1 - Z2 ) = gρdwu1dt (Z1 – Z2 ) = gρdQdt ( Z1 - Z2 ) tamkarpøas;TIBI 1-2 EdlmancrnþTwkGciE®nþ dUecñHkM/lMefrKW 2222 2 1 2 2 2 11 2 22 u dQdt u dQdt udmudm      2121 1 2 2 22 ZZdQdtgdQdt uu dQdt         TIbBa©b;eKGacsresr)ansmIkar edayEckρdQdt RKb;GgÁTaMgBIr ÷ 22 2 22 2 2 11 1 uP gZ up gZ   ( Bernoulli ) b£ g u g p Z g p Z 22 2 22 2 1 1   Z1 , Z2 famBlénkMBs; ( m ) g p g p  21 , famBlénsm<aF ( m ) g u g u 2 , 2 2 2 2 1 famBlsIueNTic ( m ) karviPaKeTAelIssmIkarBernoulli énrMhUrGciE®nþ g u g p Z g u g p Z 22 2 22 2 2 11 1   ( Bernoulli nonvisqueuse )
  • 43. 1-ExS piézométrique 2-G½kSéncrnþTwk l g p Z g p Z I p                2 2 1 1 Ip = CMralGIuRdUlIk edIm,Icg;el,ÓnTwk eKRtUv]bkN¾ eQμaHtibBItU Pitot ghKu 2 III-smIkar Bernoulli sMrab;TwkFmμta ( Visqueux ) cph g u g P Z g u g p Z . 2 222 2 2 111 1 22      ( Bernoulli ) Z 1 , Z 2 - kMBs;eFüb ( m ) α1 , α 2 – emKuNkUr:UlIs α = 1.02 eTA1.03 g p g p  21 , - sMrab;famBlsm<aF ( m ) g u g u 2 , 2 21 - kMhat;bg;tambeNþay ; TTwg én bMBs; ( m )