SlideShare a Scribd company logo
Bioinformatics Practical Course
80 Practical Hours
Course Description:
This course presents major ideas and techniques for auxiliary bioinformatics and
the advanced applications. Points included incorporate arrangement, structure and
capacity databases of DNA and protein particles, propelled succession and structure
arrangement strategies, techniques for protein collapsing and protein structure
expectation (homologous demonstrating, threading and ab initio folding) basics of
molecular dynamics and Monte Carlo simulation, principle and application of
machine learning, and techniques of protein structure determination (X-ray
crystallography, NMR and cryo-EM). Accentuation is on the comprehension of the
ideas instructed and the pragmatic usage, with the target to help understudies to
utilize the front line bioinformatics devices/strategies to tackle issues in their own
exploration.
Prerequisite: Good ability of computer coding (with at least one language, such as
MATLAB) are highly recommended.
Instructor:
Dr. Qais Yousef.
Ph.D. in Computer Engineering. Specialized in Bioinformatics and Enabling
Systems.
Have worked on numerus researches in this field.
Schedule and location:
Three months. The practical course will be held in ATIT Academy.
Projects and Assignments:
Each session will contain practical project. Moreover, there will be homework
assignments, including code writing and literature reading.
Textbook:
No one reference will be considered for this course, however, related materials will
be shared with students.
Table of content
1. Bioinformatics databases
1.1. Introduction
1.1.1. Motivation
1.1.2. Central dogma of life
1.1.3. Type of bioinformatics databases
1.2. Nucleotide sequence databases
1.2.1. EMBL
1.2.2. GeneBank
1.2.3. DDBJ
1.3. Protein amino acid sequence databases
1.3.1. How protein sequences are determined
1.3.1.1. DNA/mRNA coding
1.3.1.2. Edman degradation reaction
1.3.1.3. Mass spectrometry
1.3.2. SwissProt/TrEMBL
1.3.3. PIR
1.3.4. UniProt
1.3.4.1. UniProtKB/Swiss-Prot and UniProtKB/TrEMBL
1.3.4.2. UniParc
1.3.4.3. UniRef
1.4. Protein structure databases
1.4.1. History of structural biology
1.4.2. Protein Data Bank
1.4.3. SCOP
1.4.4. CATH
1.5. Protein function databases
1.5.1. Pfam-protein family database
1.5.2. GO-gene ontology
1.5.3. PROSITE-protein function pattern and profile
1.5.4. ENZYME-Enzyme commission
1.5.5. BioLiP-ligand protein binding interaction
2. Pair-wise sequence alignments and database search
2.1. Biological motivation-why sequence alignment?
2.2. What is a sequence alignment?
2.2.1. Scoring matrix
2.2.1.1. PAM
2.2.1.2. BLOSUM
2.2.2. Gap penalty
2.3. Dynamics programming
2.3.1. Needleman-Wunsch: global alignment algorithm
2.3.2. Smith-Waterman: local alignment algorithm
2.3.3. Gotoh algorithm
2.4. Heuristic methods
2.4.1. FASTA
2.4.2. BLAST
2.5. Statistics of sequence alignment score
2.5.1. E-Value
2.5.2. P-Value
3. Phylogenic tree & multiple sequence alignments
3.1. Neighbor-joining method and phylogenetic tree
3.2. How to construct multiple sequence alignments?
3.2.1. ClustalW
3.2.2. PSI-BLAST
3.2.2.1. PSI-Blast pipeline
3.2.2.2. Profile pseudocount
3.2.2.3. PSSM-position specific scoring matrix
3.2.2.4. Installing and running PSI-Blast programs
3.2.2.5. Interpret PSI-Blast out
3.2.3. Hidden Markov Models
3.2.3.1. Viterbi algorithm
3.2.3.2. HMM based multiple-sequence alignment
3.2.3.2.1. Creating HMM by iteration
3.2.3.2.2. HMMER
3.2.3.2.3. SAM
3.3. Sequence profile & profile based alignments
3.3.1. What is sequence profile?
3.3.2. Henikoff weighting scheme
3.3.3. Profile-to-sequence alignment
3.3.4. Profile-to-profile alignment
4. Protein structure alignments
4.1. Structure superposition versus structural alignment
4.2. Structure superposition methods
4.2.1. RMSD
4.2.2. TM-score
4.3. Structure alignment methods
4.3.1. DALI
4.3.2. CE
4.3.3. TM-align
4.4. How to define the fold of proteins?
4.5. Number of protein folds in the PDB
5. Protein secondary structure predictions
5.1. What is protein secondary structure?
5.2. Hydrogen bond
5.3. How to define a secondary structure element?
5.4. Basics of machine learning and neural network methods
5.5. Methods for predicting secondary structure
5.5.1. Chou and Fasman method
5.5.2. PHD
5.5.3. PSIPRED
5.5.4. PSSpred
6. Introduction to Monte Carlo Simulation 6.1.
Introduction: why Monte Carlo simulation?
6.2. Monte Carlo Sampling of Probabilities
6.2.1. Random number generator
6.2.1. 1. How to test a random number generator?
6.2.2. Sampling of rectangular distributions
6.2.3. Sampling of probability distribution
6.2.3.1. Reverse transform method
6.2.3.2. Rejection sampling method
6.3. Boltzmann distribution
6.4. Metropolis method
6.5. Advanced Metropolis methods
6.5.1. Replica exchange simulation
6.5.2. Simulated annealing
7. Protein folding and protein structure modeling
7.1. Basic concepts
7.2. Ab initio modeling
7.2.1. Anfinsen thermodynamic hypothesis
7.2.2. Molecular dynamics simulation
7.2.2.1. CHARMM
7.2.2.2. AMBER
7.2.3. Knowledge-based free modeling
7.2.3.1. Bowie-Eisenberg approach
7.2.3.2.ROSETTA 7.2.3.3.QUARK
7.2.3.4. Why is beta-protein so difficult to fold?
7.3. Comparative modeling (homology modeling)
7.3.1. Principle of homology modeling
7.3.2. PSI-BLAST
7.3.3. Modeler
7.4. Threading and fold-recognition
7.4.1. What is threading?
7.4.2. Threading programs
7.4.2.1. Bowie-Luthy-Eisenberg
7.4.2.2. HHpred
7.4.2.3. MUSTER
7.4.3. Meta-server threading
7.4.3.1.3D-jury
7.4.3.2. LOMETS
7.5. Combined modeling approaches
7.5.1. TASSER/I-TASSER
7.5.1.1. Force field design
7.5.1.2. Search engine: replica-exchange Monte Carlo simulation
7.5.1.3. Major issues and recent development
7.6. CASP: A blind test on protein structure predictions
8. Protein function and structure-based function annotation
8.1. Gene ontology
8.2. Enzyme classification
8.3. Ligand-protein interaction
8.4. Structure-based function prediction
8.4.1. Concavity
8.4.2. FindSite
8.4.3. COFACTOR
8.4.4. COACH
9. Principle of X-ray Crystallography & Molecular Replacement
9.1. What is X-ray Crystallography?
9.2. Why can a wave be represented by exp (iα)?
9.3. How to calculate scattering on two electrons?
9.4. What is Laue condition?
9.5. What is Bragg’s law?
9.6. How to calculate electron density of crystal?
9.7. What is Patterson function?
9.8. How to calculate electron density of crystal?
9.9. What is the idea of Molecular Replacement?
9.10. How to judge quality of MR?
9.11. What are often-used software for MR?
10. Introduction to nuclear magnetic resonance (NMR)
10.1. Basic magnetic property of nuclei
10.1.1. Magnetic moment
10.1.2. Nuclei in external magnetic field
10.1.3. Nuclear shielding of magnetic field
10.2. Chemical shift
10.3. NMR spectrum
10.3.1. Correlation spectroscopy (COSY)
10.3.2. Heteronuclear single-quantum correlation spectroscopy (HSQC)
10.3.3. Nuclear Overhauser effect spectroscopy (NOESY)
10.4. From NOE to 3D structure model

More Related Content

PPT
BEL110 presentation
PDF
Protein Structure Prediction using Coarse Grain Force Fields
PDF
Protein structure prediction
PPTX
Protein Predictinon
PPT
methods for protein structure prediction
PPTX
Homology modeling of proteins (ppt)
PPTX
Protien Structure Prediction
PDF
Swaati modeling
BEL110 presentation
Protein Structure Prediction using Coarse Grain Force Fields
Protein structure prediction
Protein Predictinon
methods for protein structure prediction
Homology modeling of proteins (ppt)
Protien Structure Prediction
Swaati modeling

Similar to Atit academy bioinformatics practical course (20)

PDF
Protein structure prediction by means
PPTX
Homology modelling and generation of 3D-structure of protein (G).pptx
PDF
De novo str_prediction
PPT
An interactive approach to multiobjective clustering of gene expression patterns
PPTX
Protein structure 2
PDF
Providing SSPCO Algorithm to Construct Static Protein-Protein Interaction (PP...
PPTX
Computational Prediction Of Protein-1.pptx
PPTX
Presentation1
PDF
A NEW TECHNIQUE INVOLVING DATA MINING IN PROTEIN SEQUENCE CLASSIFICATION
PDF
Delineation of techniques to implement on the enhanced proposed model using d...
PPT
HOMOLOGY MODELING IN EASIER WAY
PPTX
AlphaFold-Revolutionizing Protein Structure Prediction.pptx
PDF
Computational biology- Secondary structure prediction -GOR
PPTX
Computer Aided Molecular Modeling
PPTX
Bioinformatics
PDF
Homology modeling
DOC
CV_Sourav_Roy
PPTX
protein structure prediction.pptx
PDF
Microarrays for an Integrative Genomics 3rd edition Computational Molecular B...
PDF
Introduction to Bioinformatics for Molecular Studies
Protein structure prediction by means
Homology modelling and generation of 3D-structure of protein (G).pptx
De novo str_prediction
An interactive approach to multiobjective clustering of gene expression patterns
Protein structure 2
Providing SSPCO Algorithm to Construct Static Protein-Protein Interaction (PP...
Computational Prediction Of Protein-1.pptx
Presentation1
A NEW TECHNIQUE INVOLVING DATA MINING IN PROTEIN SEQUENCE CLASSIFICATION
Delineation of techniques to implement on the enhanced proposed model using d...
HOMOLOGY MODELING IN EASIER WAY
AlphaFold-Revolutionizing Protein Structure Prediction.pptx
Computational biology- Secondary structure prediction -GOR
Computer Aided Molecular Modeling
Bioinformatics
Homology modeling
CV_Sourav_Roy
protein structure prediction.pptx
Microarrays for an Integrative Genomics 3rd edition Computational Molecular B...
Introduction to Bioinformatics for Molecular Studies
Ad

Recently uploaded (20)

PDF
The Lost Whites of Pakistan by Jahanzaib Mughal.pdf
PPTX
Microbial diseases, their pathogenesis and prophylaxis
PDF
Module 4: Burden of Disease Tutorial Slides S2 2025
PDF
3rd Neelam Sanjeevareddy Memorial Lecture.pdf
PDF
ANTIBIOTICS.pptx.pdf………………… xxxxxxxxxxxxx
PDF
TR - Agricultural Crops Production NC III.pdf
PDF
Abdominal Access Techniques with Prof. Dr. R K Mishra
PDF
Insiders guide to clinical Medicine.pdf
PPTX
PPT- ENG7_QUARTER1_LESSON1_WEEK1. IMAGERY -DESCRIPTIONS pptx.pptx
PDF
grade 11-chemistry_fetena_net_5883.pdf teacher guide for all student
PPTX
Introduction_to_Human_Anatomy_and_Physiology_for_B.Pharm.pptx
PPTX
master seminar digital applications in india
PPTX
Pharma ospi slides which help in ospi learning
PDF
VCE English Exam - Section C Student Revision Booklet
PDF
BÀI TẬP BỔ TRỢ 4 KỸ NĂNG TIẾNG ANH 9 GLOBAL SUCCESS - CẢ NĂM - BÁM SÁT FORM Đ...
PDF
Pre independence Education in Inndia.pdf
PDF
O5-L3 Freight Transport Ops (International) V1.pdf
PPTX
1st Inaugural Professorial Lecture held on 19th February 2020 (Governance and...
PDF
STATICS OF THE RIGID BODIES Hibbelers.pdf
PPTX
Cell Types and Its function , kingdom of life
The Lost Whites of Pakistan by Jahanzaib Mughal.pdf
Microbial diseases, their pathogenesis and prophylaxis
Module 4: Burden of Disease Tutorial Slides S2 2025
3rd Neelam Sanjeevareddy Memorial Lecture.pdf
ANTIBIOTICS.pptx.pdf………………… xxxxxxxxxxxxx
TR - Agricultural Crops Production NC III.pdf
Abdominal Access Techniques with Prof. Dr. R K Mishra
Insiders guide to clinical Medicine.pdf
PPT- ENG7_QUARTER1_LESSON1_WEEK1. IMAGERY -DESCRIPTIONS pptx.pptx
grade 11-chemistry_fetena_net_5883.pdf teacher guide for all student
Introduction_to_Human_Anatomy_and_Physiology_for_B.Pharm.pptx
master seminar digital applications in india
Pharma ospi slides which help in ospi learning
VCE English Exam - Section C Student Revision Booklet
BÀI TẬP BỔ TRỢ 4 KỸ NĂNG TIẾNG ANH 9 GLOBAL SUCCESS - CẢ NĂM - BÁM SÁT FORM Đ...
Pre independence Education in Inndia.pdf
O5-L3 Freight Transport Ops (International) V1.pdf
1st Inaugural Professorial Lecture held on 19th February 2020 (Governance and...
STATICS OF THE RIGID BODIES Hibbelers.pdf
Cell Types and Its function , kingdom of life
Ad

Atit academy bioinformatics practical course

  • 1. Bioinformatics Practical Course 80 Practical Hours Course Description: This course presents major ideas and techniques for auxiliary bioinformatics and the advanced applications. Points included incorporate arrangement, structure and capacity databases of DNA and protein particles, propelled succession and structure arrangement strategies, techniques for protein collapsing and protein structure expectation (homologous demonstrating, threading and ab initio folding) basics of molecular dynamics and Monte Carlo simulation, principle and application of machine learning, and techniques of protein structure determination (X-ray crystallography, NMR and cryo-EM). Accentuation is on the comprehension of the ideas instructed and the pragmatic usage, with the target to help understudies to utilize the front line bioinformatics devices/strategies to tackle issues in their own exploration. Prerequisite: Good ability of computer coding (with at least one language, such as MATLAB) are highly recommended. Instructor: Dr. Qais Yousef. Ph.D. in Computer Engineering. Specialized in Bioinformatics and Enabling Systems. Have worked on numerus researches in this field. Schedule and location: Three months. The practical course will be held in ATIT Academy. Projects and Assignments: Each session will contain practical project. Moreover, there will be homework assignments, including code writing and literature reading. Textbook: No one reference will be considered for this course, however, related materials will be shared with students.
  • 2. Table of content 1. Bioinformatics databases 1.1. Introduction 1.1.1. Motivation 1.1.2. Central dogma of life 1.1.3. Type of bioinformatics databases 1.2. Nucleotide sequence databases 1.2.1. EMBL 1.2.2. GeneBank 1.2.3. DDBJ 1.3. Protein amino acid sequence databases 1.3.1. How protein sequences are determined 1.3.1.1. DNA/mRNA coding 1.3.1.2. Edman degradation reaction 1.3.1.3. Mass spectrometry 1.3.2. SwissProt/TrEMBL 1.3.3. PIR 1.3.4. UniProt 1.3.4.1. UniProtKB/Swiss-Prot and UniProtKB/TrEMBL 1.3.4.2. UniParc 1.3.4.3. UniRef 1.4. Protein structure databases 1.4.1. History of structural biology 1.4.2. Protein Data Bank 1.4.3. SCOP 1.4.4. CATH 1.5. Protein function databases 1.5.1. Pfam-protein family database 1.5.2. GO-gene ontology 1.5.3. PROSITE-protein function pattern and profile 1.5.4. ENZYME-Enzyme commission 1.5.5. BioLiP-ligand protein binding interaction 2. Pair-wise sequence alignments and database search 2.1. Biological motivation-why sequence alignment? 2.2. What is a sequence alignment?
  • 3. 2.2.1. Scoring matrix 2.2.1.1. PAM 2.2.1.2. BLOSUM 2.2.2. Gap penalty 2.3. Dynamics programming 2.3.1. Needleman-Wunsch: global alignment algorithm 2.3.2. Smith-Waterman: local alignment algorithm 2.3.3. Gotoh algorithm 2.4. Heuristic methods 2.4.1. FASTA 2.4.2. BLAST 2.5. Statistics of sequence alignment score 2.5.1. E-Value 2.5.2. P-Value 3. Phylogenic tree & multiple sequence alignments 3.1. Neighbor-joining method and phylogenetic tree 3.2. How to construct multiple sequence alignments? 3.2.1. ClustalW 3.2.2. PSI-BLAST 3.2.2.1. PSI-Blast pipeline 3.2.2.2. Profile pseudocount 3.2.2.3. PSSM-position specific scoring matrix 3.2.2.4. Installing and running PSI-Blast programs 3.2.2.5. Interpret PSI-Blast out 3.2.3. Hidden Markov Models 3.2.3.1. Viterbi algorithm 3.2.3.2. HMM based multiple-sequence alignment 3.2.3.2.1. Creating HMM by iteration 3.2.3.2.2. HMMER 3.2.3.2.3. SAM 3.3. Sequence profile & profile based alignments 3.3.1. What is sequence profile? 3.3.2. Henikoff weighting scheme 3.3.3. Profile-to-sequence alignment 3.3.4. Profile-to-profile alignment 4. Protein structure alignments 4.1. Structure superposition versus structural alignment 4.2. Structure superposition methods 4.2.1. RMSD 4.2.2. TM-score
  • 4. 4.3. Structure alignment methods 4.3.1. DALI 4.3.2. CE 4.3.3. TM-align 4.4. How to define the fold of proteins? 4.5. Number of protein folds in the PDB 5. Protein secondary structure predictions 5.1. What is protein secondary structure? 5.2. Hydrogen bond 5.3. How to define a secondary structure element? 5.4. Basics of machine learning and neural network methods 5.5. Methods for predicting secondary structure 5.5.1. Chou and Fasman method 5.5.2. PHD 5.5.3. PSIPRED 5.5.4. PSSpred 6. Introduction to Monte Carlo Simulation 6.1. Introduction: why Monte Carlo simulation? 6.2. Monte Carlo Sampling of Probabilities 6.2.1. Random number generator 6.2.1. 1. How to test a random number generator? 6.2.2. Sampling of rectangular distributions 6.2.3. Sampling of probability distribution 6.2.3.1. Reverse transform method 6.2.3.2. Rejection sampling method 6.3. Boltzmann distribution 6.4. Metropolis method 6.5. Advanced Metropolis methods 6.5.1. Replica exchange simulation 6.5.2. Simulated annealing 7. Protein folding and protein structure modeling 7.1. Basic concepts 7.2. Ab initio modeling 7.2.1. Anfinsen thermodynamic hypothesis 7.2.2. Molecular dynamics simulation 7.2.2.1. CHARMM 7.2.2.2. AMBER 7.2.3. Knowledge-based free modeling 7.2.3.1. Bowie-Eisenberg approach 7.2.3.2.ROSETTA 7.2.3.3.QUARK
  • 5. 7.2.3.4. Why is beta-protein so difficult to fold? 7.3. Comparative modeling (homology modeling) 7.3.1. Principle of homology modeling 7.3.2. PSI-BLAST 7.3.3. Modeler 7.4. Threading and fold-recognition 7.4.1. What is threading? 7.4.2. Threading programs 7.4.2.1. Bowie-Luthy-Eisenberg 7.4.2.2. HHpred 7.4.2.3. MUSTER 7.4.3. Meta-server threading 7.4.3.1.3D-jury 7.4.3.2. LOMETS 7.5. Combined modeling approaches 7.5.1. TASSER/I-TASSER 7.5.1.1. Force field design 7.5.1.2. Search engine: replica-exchange Monte Carlo simulation 7.5.1.3. Major issues and recent development 7.6. CASP: A blind test on protein structure predictions 8. Protein function and structure-based function annotation 8.1. Gene ontology 8.2. Enzyme classification 8.3. Ligand-protein interaction 8.4. Structure-based function prediction 8.4.1. Concavity 8.4.2. FindSite 8.4.3. COFACTOR 8.4.4. COACH 9. Principle of X-ray Crystallography & Molecular Replacement 9.1. What is X-ray Crystallography? 9.2. Why can a wave be represented by exp (iα)? 9.3. How to calculate scattering on two electrons? 9.4. What is Laue condition? 9.5. What is Bragg’s law? 9.6. How to calculate electron density of crystal? 9.7. What is Patterson function? 9.8. How to calculate electron density of crystal? 9.9. What is the idea of Molecular Replacement? 9.10. How to judge quality of MR?
  • 6. 9.11. What are often-used software for MR? 10. Introduction to nuclear magnetic resonance (NMR) 10.1. Basic magnetic property of nuclei 10.1.1. Magnetic moment 10.1.2. Nuclei in external magnetic field 10.1.3. Nuclear shielding of magnetic field 10.2. Chemical shift 10.3. NMR spectrum 10.3.1. Correlation spectroscopy (COSY) 10.3.2. Heteronuclear single-quantum correlation spectroscopy (HSQC) 10.3.3. Nuclear Overhauser effect spectroscopy (NOESY) 10.4. From NOE to 3D structure model