SlideShare a Scribd company logo
DoubleClick: Journal of Computer and Information Technology E-ISSN: 2579-5317
P-ISSN: 2685-2152
Vol. 5, No. 2, February 2022, Pages 81-90 http://e-journal.unipma.ac.id/index.php/doubleclick
Automated Extraction of Shoreline in Tuban Regency.... (Prayogo & Sarono)| 81
Automated Extraction of Shoreline in Tuban Regency, East Java from
Google Earth Imagery by Integrating Canny Edge Detector
Luhur Moekti Prayogo1
, Sarono2
1
Marine Science Study Program, Faculty of Fisheries and Marine, Universitas PGRI
Ronggolawe, Tuban, 62381, Indonesia
2
PT. Techno GIS Indonesia, Sleman, Yogyakarta, 55283, Indonesia
*
E-mail: luhur.moekti.prayogo@unirow.ac.id
Abstract. The shoreline is an area that becomes the boundary between land and sea and
experiences morphological changes over time. This region has a dynamic condition where
various components (air, rocks, water) are interconnected. Multitemporal shoreline analysis
is one of the critical parameters for monitoring coastal areas. This information can be used
for morphodynamic modeling, coastal area management, and erosion and accretion studies.
This study aims to analyze shoreline changes in the North Coast of Tuban Regency, East
Java using the Canny Algorithm and Google Earth Imagery from 2000 to 2020. The Canny
algorithm was chosen because it has been tested to produce sharp and good edges compared
to other edge detection algorithms. From this research, it can be concluded that in the north
coast of Tuban Regency, based on the sample years taken, the area's shoreline experienced
the erosion of 0.297 - 1.566 meters/ five years. The edges generated using the Canny
algorithm are practical in interpreting shorelines and making analysis faster. In the future,
there is a need for more elaboration regarding the use of Google Earth imagery in shoreline
analysis, especially in geometric corrections (Georeference). This elaboration is essential
because it will affect the analysis results, especially the shoreline position.
Keywords: Shoreline, Edge Detection Technique, Canny Algorithm, Google Earth, Tuban
Abstrak. Garis pantai merupakan wilayah yang menjadi pembatas antara daratan dengan
lautan serta mengalami perubahan morfologi dari waktu ke waktu. Wilayah ini memiliki
kondisi yang sangat dinamis dimana berbagai komponen (udara, bebatuan, air) saling
berhubungan. Analisis garis pantai multitemporal menjadi salah satu parameter penting
untuk monitoring kawasan pantai. Informasi tersebut dapat digunakan untuk pemodelan
morfodinamik, pengelolaan kawasan pesisir dan studi erosi dan akresi. Penelitian ini
bertujuan untuk menganalisis perubahan garis pantai di Pesisir Utara Kabupaten Tuban,
Jawa Timur menggunakan Algoritma Canny dan Citra Google Earth tahun 2000 hingga 2020.
Algoritma Canny dipilih karena sudah teruji menghasilkan tepi yang tajam dan baik
dibandingkan dengan algoritma deteksi tepi yang lain. Dari penelitian ini dapat disimpulkan
bahwa di Pesisir Utara Kabupaten Tuban, berdasarkan sampel tahun yang diambil, garis
pantai wilayah tersebut mengalami erosi sebesar 0,297 - 1,566 meter/ lima tahun. Tepi yang
dihasilkan dengan algoritma Canny sangat membantu dalam proses interpretasi garis pantai
dan membuat analisis menjadi lebih cepat. Kedepannya, perlu adanya elaborasi lebih
mendalam mengenai penggunaan citra Google Earth dalam analisis garis pantai, khususnya
pada koreksi geometriknya (Georeference). Hal ini penting untuk dilakukan karena akan
mempengaruhi hasil analisis terutama posisi garis pantainya.
Kata kunci: Garis Pantai, Teknik Deteksi Tepi, Algoritma Canny, Google Earth, Tuban
Introduction
Tuban Regency is one of East Java
districts from all 38 districts and cities
in the province (Tuban Regency
Government, 2018). Tuban Regency is
located on the northern coast of Java
Island with a shoreline of about 65 km
with an area of 1,904.70 km² (Tuban
Regency Government, 2018). In some
of its areas, Tuban Regency is located
in a coastal environment that makes
these communities rely on the sea's
produce by becoming fishermen. The
coast becomes one of the areas of
human activity that can be used for
various fishing activities and
DoubleClick: Journal of Computer and Information Technology E-ISSN: 2579-5317
P-ISSN: 2685-2152
Vol. 5, No. 2, February 2022, Pages 81-90 http://e-journal.unipma.ac.id/index.php/doubleclick
82 |Automated Extraction of Shoreline in Tuban Regency.... (Prayogo & Sarono)
settlements (Driptufany, 2020). The
utilization will reduce land in the
coastal area, and the land is carrying
capacity, which causes erosion and
sedimentation (Driptufany, 2020).
The shoreline becomes the barrier
between the land and the ocean, which
changes in morphology from time to
time, which can be influenced by the
sea level rise (Utami et al., 2017). This
region has a very dynamic condition
where air, rocks, and water are
interconnected (Kasim, 2012). The
coastal dynamics process is closely
related to the coastal areas'
management (Kasim, 2012). Alesheikh
et al. (2007); Kasim (2012) argues that
multitemporal shoreline analysis is
one of the critical parameters for
monitoring coastal areas. This
information can be used for
morphodynamic modeling, coastal
area management, and erosion and
accretion studies (Chand & Acharya,
2010; Kasim, 2012).
Fuad et al. (2019); Suniada (2015)
states that remote sensing techniques
can analyze shoreline change. Along
with the development of technology,
one of the methods for shoreline
extraction is to use edge detection
techniques. Edge detection is the
image processing stage to produce
each object's edges in the image
(Munir, 2019). The image's edge can be
seen from the neighboring points' grey
points (x and y). The benefits of edge
detection can also reduce the amount
of data processed and can be used for
change detection on the shoreline
(Munir, 2019). In remote sensing,
distinguishing the two objects is
necessary because the image
classification process will not be
optimal if only using color
characteristics.
Previous researchers have
researched shorelines. Mulyadi et al.
(2022) conducted a study of shoreline
changes in the city of Dumai for three
decades (30 years) using Landsat
imagery and the Digital Shoreline
Analysis System (DSAS). This research
shows that there is an average
accretion and abrasion of 1.17 and
2.04 meters at the research location.
Setyawan (2021) conducted research
in Kuala Pesisir District, Nagan Raya
Regency, Aceh using the Digital
Shoreline Analysis System (DSAS) and
Thresholding method in 2016-2020.
This research shows changes in the
shoreline by accretion and abrasion of
30.16 and 34.49 m/year.
Primasti et al. (2021) conducted a
study to identify coastal vulnerability
in Demak Regency using the Coastal
Vulnerability Index (CVI) and the
United States Geological Surveys
(USGS) methods with five categories of
coastal vulnerability. This research
shows that the shoreline of the Demak
Regency has a tendency to Erosion
compared to Abrasion. Fuad (2021)
conducted a study of shoreline
changes on the coast of Situbondo
Regency, East Java, using the one-line
model method. The study results
indicate that accretion and Abrasion
occur in several research locations.
Maulana et al. (2021) Conducted
research on predicting shoreline
changes in Bengkulu using the
GENESIS (Generalized Model for
Simulating Shoreline Change) method.
The results showed that during the
five years, the shoreline changes at the
research site occurred 2.823 m of
Abrasion and 1.677 m of
sedimentation.
Adriat et al. (2021) Conducted
shoreline research in Kijing Coastal
Waters, Bengkayang Regency, West
Kalimantan using the Single Transect
(ST) and End Point Rate (EPR) methods
on the DSAS tool. These studies
indicate that at the study site, the
dominant accretion occurred ranging
from 0.5 to 21.34 m. Atmojo et al.
(2021) Conducting shoreline research
using remote sensing techniques and
data such as Landsat imagery with
Unsupervised Classification,
digitization, and overlapping methods.
DoubleClick: Journal of Computer and Information Technology E-ISSN: 2579-5317
P-ISSN: 2685-2152
Vol. 5, No. 2, February 2022, Pages 81-90 http://e-journal.unipma.ac.id/index.php/doubleclick
Automated Extraction of Shoreline in Tuban Regency.... (Prayogo & Sarono)| 83
The research location shows that there
is abrasion and accretion at the
research location. Research on
shorelines was carried out by
Ramadhani et al. (2021) in the Coastal
District of Saying, Demak Regency
using remote sensing methods and the
Digital Shoreline Analysis System
(DSAS). The results showed a change
in shoreline abrasion and accretion by
82% and 18%, with a tendency to
abrasion.
From the explanation above, a
problem of how edge detection
performs detecting shorelines in
Google Earth imagery arises.
Identifying the object's edge is vital
because it is a preliminary study to
observe changes in the shoreline more
quickly. Therefore, this study aims to
analyze changes in the shoreline in the
North Coast of Tuban Regency, East
Java using the Canny Algorithm. We
have conducted a canny edge detector
in Gili Raja Island, Sumenep (Prayogo
& Hidayah, 2021). This algorithm was
chosen because it has been tested to
produce sharp and good edges
compared to other edge detection
algorithms (Maini & Aggarwal, 2009).
Material And Method
Research Location
This research is located at 6°
53'27.51 "S and 112° 3'38.10" E in the
North of Tuban Regency, East Java.
After all, this location is suspected of
experiencing abrasion yearly because
it is located directly opposite the open
sea. The shoreline observed in this
study is approximately 650 meters
long. Figure 1 shows the research
location displayed on the Basemap
World imagery.
Figure 1. Research Location in Tuban Regency, East Java
DoubleClick: Journal of Computer and Information Technology E-ISSN: 2579-5317
P-ISSN: 2685-2152
Vol. 5, No. 2, February 2022, Pages 81-90 http://e-journal.unipma.ac.id/index.php/doubleclick
84 |Automated Extraction of Shoreline in Tuban Regency…(Prayogo & Sarono)
Canny Algorithm
Canny edge detection is a
technique for extracting structural
information that aims to reduce
processed data. Based on Canny
(1986); Deriche (1987) states that this
process consists of at least five stages,
namely: Applying a Gaussian filter so
that the image becomes smoother and
minimizes noise with the following
equation (Gaussian filter (2k + 1) × (2k
+ 1))) (equation 1):
Then determine the image intensity
gradient with the following equation
(equation 2)
The edge direction angles represent
vertical, horizontal, and two diagonals
(0°, 45°, 90°, and 135°). Then it can
apply steps such as (1) applying non-
maximum compressions to eliminate
spurious responses to edge detection,
(2) specifying a double threshold for
determining potential image edges,
and (3) Track edges with hysteresis:
suppressing all other weak edges and
not connected to the firm edge
(Canny, 1986; Deriche, 1987).
Result and Discussion
Image Preprocessing
Before the image is filtered, the
first thing to do is create a Ground
Control Point (GCP) in Google Earth.
GCP aims to adjust the coordinates on
the map with coordinates in the field
(Danoedoro, 2012). There are four
GCPs used for georeferencing on five
Google Earth maps. Tables 1 and 2 are
information on the recording date of
images and GCP used in this study.
Table 1. Google Earth imagery 2000-2020
No Recording Date Cloud Cover Condition
1 July 11, 2000 Minimum
2 July 28, 2003 Minimum
3 August 16, 2010 Minimum
4 July 8, 2016 Minimum
5
September 6,
2020
Minimum
Table 2. GCP Information
No Latitude Longitude
1 6°52'54.43"S 112° 3'22.49"E
2 6°52'54.71"S 112° 4'53.18"E
3 6°53'55.11"S 112° 3'27.80"E
4 6°53'55.19"S 112° 4'48.98"E
Image Processing
DoubleClick: Journal of Computer and Information Technology E-ISSN: 2579-5317
P-ISSN: 2685-2152
Vol. 5, No. 2, February 2022, Pages 81-90 http://e-journal.unipma.ac.id/index.php/doubleclick
Automated Extraction of Shoreline in Tuban Regency.... (Prayogo & Sarono)| 85
Image edge processing using the
Canny algorithm is carried out at least
in several steps (Chapter 2). This step
is carried out to obtain structural
information for each observed object,
namely the shoreline in Google Earth
imagery, from 2000 to 2020. This
detection has a strict definition
compared to other edge detections, so
that the results of Canny detection are
better than other edge detection.
Figure 2 shows the Google Earth
multitemporal imagery data from
2000 to 2020 used in this study.
July 11, 2000 July 28, 2003
August 16, 2010 July 8, 2016
September 6, 2020
Figure 2. Google Earth Multitemporal Imagery from 2000 to 2020
The Canny algorithm has general
criteria for detecting object edges. The
operator's detected edge must be
accurately localized in the center with
marked once in each object. The
detection must capture as many edges
as possible to produce a suitable edge
with minimal errors. According to
DoubleClick: Journal of Computer and Information Technology E-ISSN: 2579-5317
P-ISSN: 2685-2152
Vol. 5, No. 2, February 2022, Pages 81-90 http://e-journal.unipma.ac.id/index.php/doubleclick
86 |Automated Extraction of Shoreline in Tuban Regency.... (Prayogo & Sarono)
requirements, the technique used
in Canny detection to obtain edge
information uses the calculus of
variations function. The first
derivative of Gaussian can explain this
function. Figure 3 shows the results
of Canny edge detection for shoreline
analysis in the Tuban Regency, East
Java.
2000 2003
2010 2016
DoubleClick: Journal of Computer and Information Technology E-ISSN: 2579-5317
P-ISSN: 2685-2152
Vol. 5, No. 2, February 2022, Pages 81-90 http://e-journal.unipma.ac.id/index.php/doubleclick
Automated Extraction of Shoreline in Tuban Regency.... (Prayogo & Sarono)| 87
2020
Figure 3. Canny Algorithm Results from 2000 to 2020 in the Tuban Regency, East Java
The Gaussian filter on the image
minimizes noise so that the object's
edges are easily detected. The image's
noise significantly affects the
shoreline's extraction, so smoothing is
needed at this stage. Besides, this
filter uses a kernel window that is not
static and can be changed according to
each object's needs being filtered.
The next step is to thin the edges
of the image. This process is carried
out to determine the change's location
in the highest / sharpest intensity
value to produce a more authentic and
accurate image edge. The final process
of shoreline detection with Canny is
edge tracking with hysteresis. This
stage aims to trace the edges of the
weak pixels caused by the
unconnected image's noise response.
From the detection process, the
following is the appearance of the
shoreline in 2000, 2003, 2010, 2016,
and 2020 in the North Coast of Tuban
Regency, East Java (Figures 4).
DoubleClick: Journal of Computer and Information Technology E-ISSN: 2579-5317
P-ISSN: 2685-2152
Vol. 5, No. 2, February 2022, Pages 81-90 http://e-journal.unipma.ac.id/index.php/doubleclick
88 |Automated Extraction of Shoreline in Tuban Regency.... (Prayogo & Sarono)
Figure 4. Shoreline 2000, 2003, 2010, 2016 and 2020
From the picture, we can see
that the shoreline has shifted every
year in the image sample due to
erosion. In the first location, in 2000-
2003, there was a shift of 1,148 m, in
2003-2010 it shifted of 1,439 m, in
2010-2016 it shifted of 1,022 m, and
2016-2020 experienced a shift of
0.796 m. Then in the second location,
in 2000-2003, there was a shift of
0.861 m, in 2003-2010 it shifted of
1.051 m, in 2010-2016 it shifted of
0.667 m, and 2016-2020 experienced a
shift of 0.313 m. Finally, in the third
location, in 2000-2003, there was a
shift of 0.974 m, in 2003-2010 it
shifted by 1.566 m, in 2010-2016 it
shifted 0.297 m, and 2016-2020
experienced a shift of 1.157 m. Table 3
shows the shoreline shift information
for each sample of the study locations.
Table 3. Shoreline change for each location
Time
Shift Locations 1
(meters)
Shift Locations 2
(meters)
Shift Locations 3
(meters)
2000-2003 1,148 0,861 0,974
2003-2010 1,439 1,051 1,566
2010-2016 1,022 0,667 0,297
2016-2020 0,796 0,313 1,157
Conclusion
From this research, it can be
concluded that in Pesisir Utara, Tuban
Regency, based on the sample years
taken, the area's shoreline experienced
the erosion of 0.297 - 1.566 meters /
five years. The edges generated using
the Canny algorithm are very helpful
in interpreting shorelines and making
analysis faster. In the future, there is a
need for more elaboration regarding
the use of Google Earth imagery in
DoubleClick: Journal of Computer and Information Technology E-ISSN: 2579-5317
P-ISSN: 2685-2152
Vol. 5, No. 2, February 2022, Pages 81-90 http://e-journal.unipma.ac.id/index.php/doubleclick
Automated Extraction of Shoreline in Tuban Regency.... (Prayogo & Sarono)| 89
shoreline analysis, especially in
geometric corrections. This
elaboration is essential because it will
affect the analysis results, especially
the shoreline position.
Reference
Adriat, R., Risko, R., Apriansyah, A.,
Muhardi, M., Susiati, H., Zibar, Z.,
& Fitriani, F. (2021). Analisis
Perubahan Garis Pantai di Wilayah
Perairan Pantai Kijing Kabupaten
Bengkayang Kalimantan Barat.
Jurnal Perikanan Dan Kelautan,
11(1), 101–113.
Alesheikh, A. A., Ghorbanali, A., &
Nouri, N. (2007). Coastline change
detection using remote sensing.
International Journal of
Environmental Science &
Technology, 4(1), 61–66.
Atmojo, A. T., Welly, T. K., Simbolon,
K., & Zulfikar, A. N. (2021). Studi
Perubahan Garis Pantai Pesisir
Kota Bandar Lampung
Menggunakan Data Penginderaan
Jauh. Journal of Science,
Technology, and Visual Culture,
1(3), 149–154.
Canny, J. (1986). A Computational
Approach to Edge Detection. IEEE
Transactions on Pattern Analysis
and Machine Intelligence, 8(6),
679–698.
https://doi.org/10.1109/TPAMI.1
986.4767851
Chand, P., & Acharya, P. (2010).
Shoreline change and sea level
rise along coast of Bhitarkanika
wildlife sanctuary, Orissa: An
analytical approach of remote
sensing and statistical techniques.
International Journal of Geomatics
and Geosciences, 1(3), 436.
Danoedoro, P. (2012). Pengantar
Pengindraan Jauh Digital. In
Benedicta Rini W (Ed.), Penerbit
ANDI (1st ed.). Penerbit ANDI. 397
hlm.
Deriche, R. (1987). Using Canny’s
criteria to derive a recursively
implemented optimal edge
detector. International Journal of
Computer Vision, 1, 167–187.
https://doi.org/10.1007/BF00123
164
Driptufany, D. M. (2020). Deteksi
Perubahan Garis Pantai
Kabupaten Padang Pariaman dan
Kota Pariaman Menggunakan
Aplikasi Penginderaan Jauh.
JURNAL TEKNIK SIPIL ITP, 7(2),
43–50.
Fuad, M. A. Z. (2021). Pemodelan dan
Analisis Perubahan Garis Pantai di
Kabupaten Situbondo, Jawa
Timur. JFMR (Journal of Fisheries
and Marine Research), 5(2), 335–
349.
Fuad, M. A. Z., Yunita, N., Kasitowati,
R. D., Hidayati, N., & Sartimbul, A.
(2019). Pemantauan Perubahan
Garis Pantai Jangka Panjang
Dengan Teknologi Geospasial Di
Pesisir Bagian Barat Kabupaten
Tuban, Jawa Timur. Jurnal
Geografi, 11(1), 48–61.
https://doi.org/2549–7057
Kasim, F. (2012). Pendekatan beberapa
metode dalam monitoring
perubahan garis pantai
menggunakan dataset
penginderaan jauh Landsat dan
SIG. Jurnal Ilmiah Agropolitan,
5(1), 620–635.
Maini, R., & Aggarwal, H. (2009). Study
and comparison of various image
edge detection techniques.
International Journal of Image
Processing, 3(1), 1–12.
https://doi.org/http://www.doaj.
org/doaj?func=openurl&genre=art
icle&issn=19852304&date=2009&
volume=3&issue=1&spage=1
Maulana, F. A., Amri, K., & Besperi, B.
(2021). Prediksi Perubahan Garis
Pantai Bengkulu (Studi Kasus
Pantai Zakat Kota Bengkulu).
RADIAL: Jurnal Peradaban Sains,
Rekayasa Dan Teknologi, 9(1), 15–
22.
Mulyadi, A., Hamidy, R., Musrifin, E.,
Efriyeldi, E., & Jhonnerie, R.
(2022). Tiga dekade laju
DoubleClick: Journal of Computer and Information Technology E-ISSN: 2579-5317
P-ISSN: 2685-2152
Vol. 5, No. 2, February 2022, Pages 81-90 http://e-journal.unipma.ac.id/index.php/doubleclick
90 |Automated Extraction of Shoreline in Tuban Regency.... (Prayogo & Sarono)
perubahan garis pantai di Kota
Dumai. Dinamika Lingkungan
Indonesia, 9(1), 25–31.
Munir, R. (2019). Segmentasi Citra.
Program Studi Teknik Informatika
Sekolah Teknik Elektronika.
Institut Teknologi Bandung.
Prayogo, L. M., & Hidayah, Z. (2021).
Utilization of Multitemporal
Landsat Data for Coastline
Change Analysis Using Canny
Edge Detector. Jurnal Kelautan:
Indonesian Journal of Marine
Science and Technology, 14(2), 91–
99.
Primasti, T. P. G., Hariyadi, H.,
Rochaddi, B., & Widada, S. (2021).
Pemantauan Kerentanan Fisik di
Pesisir Kabupaten Demak (Studi
Kasus Perubahan Garis Pantai).
Indonesian Journal of
Oceanography, 3(1), 44–54.
Ramadhani, Y. P., Praktikto, I., &
Suryono, C. A. (2021). Perubahan
Garis Pantai Menggunakan Citra
Satelit Landsat di Pesisir
Kecamatan Sayung, Kabupaten
Demak. Journal of Marine
Research, 10(2), 299–305.
Setyawan, F. O. (2021). Analisis
Perubahan Garis Pantai
Menggunakan Digital Shoreline
Analysis System Di Kecamatan
Kuala Pesisir, Kabupaten Nagan
Raya, Aceh. JFMR (Journal of
Fisheries and Marine Research),
5(2), 368–377.
Suniada, K. I. (2015). Deteksi
perubahan garis pantai di
Kabupaten Jembrana bali dengan
menggunakan teknologi
penginderaan jauh. Jurnal
Kelautan Nasional, 10(1), 13–19.
Tuban Regency Government. (2018).
Tuban Profile.
https://tubankab.go.id/page/profi
l-tuban
Utami, W. S., Subardjo, P., & Helmi, M.
(2017). Studi Perubahan Garis
Pantai Akibat Kenaikan Muka Air
Laut Di Kecamatan Sayung,
Kabupaten Demak. Journal of
Oceanography, 6(1), 281–287.

More Related Content

PDF
AN INTRODUCTION TO MINERALS, ORE AND EXPLORATION
PDF
Application of Remote Sensing Techniques for Change Detection in Land Use/ La...
PPT
What is-geophysics
PDF
D41037045
PPT
Part 2 - Case study: the Yasuni Biosphere Reserve
PDF
Subsurface Sedimentary Thickness and Structural types of Formations in Imo St...
PDF
Interpretation of Structural Terrace of Sheets: 303, 304 and 305 using Geophy...
PDF
NIR and Petrology
AN INTRODUCTION TO MINERALS, ORE AND EXPLORATION
Application of Remote Sensing Techniques for Change Detection in Land Use/ La...
What is-geophysics
D41037045
Part 2 - Case study: the Yasuni Biosphere Reserve
Subsurface Sedimentary Thickness and Structural types of Formations in Imo St...
Interpretation of Structural Terrace of Sheets: 303, 304 and 305 using Geophy...
NIR and Petrology

What's hot (7)

PDF
stages of exploration
PPTX
Geochemical methods in mineral exploration
PDF
Stages of mining Development and Exploitation
PDF
Application of Geophysical and Remote Sensing Techniques to Delineate Laterit...
DOCX
Mary chely revised final
PDF
Mercator Ocean newsletter 34
PDF
Fredi satya acrs
stages of exploration
Geochemical methods in mineral exploration
Stages of mining Development and Exploitation
Application of Geophysical and Remote Sensing Techniques to Delineate Laterit...
Mary chely revised final
Mercator Ocean newsletter 34
Fredi satya acrs
Ad

Similar to Automated Extraction of Shoreline in Tuban Regency, East Java from Google Earth Imagery by Integrating Canny Edge Detector (20)

PDF
L012438186
PPTX
Coastal erosion
PDF
GEO-SPATIAL TECHNOLOGIES IN SHORELINE ANALYSIS, VARIABILITY AND EROSION
DOCX
Work_Sample_Paper
PDF
Supervised classification and improved filtering method for shoreline detection.
PDF
02-Final Updated NEOM_MH_06_07_2024_v1_English.pdf
PDF
An Automated Approach of Shoreline Detection Applied to Digital Videos using ...
PPTX
2011IGARSS_coastline_20110726.pptx
PDF
Acrs2012 safe coastal_sl_final
PPT
Remote sensing and gis application
PDF
IRJET- Geological Boundary Detection for Satellite Images using AI Technique
PDF
SHORELINE CHANGES USING DIGITIZING OF LANDSAT IMAGES AT MIAMI TO MONTAZA BEAC...
PPTX
internship ppt mtech ASSAM MAJULI BANKLINE.pptx
PPTX
Taramelli_al_IGARSS_2011.pptx
PPTX
Beach slopes from satellite-derived shorelines [Coast2Coast presentation]
PPTX
Monitoring the changes of the Coastal Areas using Remote Sensing Data and Geo...
PPTX
Geomorphological evolution of teknaf peninsula
PPTX
Stony Creek Shoreline Erosion Analysis
PDF
Shoreline Dynamics Research Presentation.pdf
PDF
DSD-INT 2017 Global sandy shoreline dynamics derived from satellite imagery -...
L012438186
Coastal erosion
GEO-SPATIAL TECHNOLOGIES IN SHORELINE ANALYSIS, VARIABILITY AND EROSION
Work_Sample_Paper
Supervised classification and improved filtering method for shoreline detection.
02-Final Updated NEOM_MH_06_07_2024_v1_English.pdf
An Automated Approach of Shoreline Detection Applied to Digital Videos using ...
2011IGARSS_coastline_20110726.pptx
Acrs2012 safe coastal_sl_final
Remote sensing and gis application
IRJET- Geological Boundary Detection for Satellite Images using AI Technique
SHORELINE CHANGES USING DIGITIZING OF LANDSAT IMAGES AT MIAMI TO MONTAZA BEAC...
internship ppt mtech ASSAM MAJULI BANKLINE.pptx
Taramelli_al_IGARSS_2011.pptx
Beach slopes from satellite-derived shorelines [Coast2Coast presentation]
Monitoring the changes of the Coastal Areas using Remote Sensing Data and Geo...
Geomorphological evolution of teknaf peninsula
Stony Creek Shoreline Erosion Analysis
Shoreline Dynamics Research Presentation.pdf
DSD-INT 2017 Global sandy shoreline dynamics derived from satellite imagery -...
Ad

More from Luhur Moekti Prayogo (20)

PDF
Residual Analysis and Tidal Harmonic Components in Bangkalan Regency, East Java
PDF
Pelatihan Pemanfaatan Teknologi AI dalam Pembuatan PTK bagi Guru SDN Karangas...
DOCX
Penginderaan Jauh - Prinsip Dasar Penginderaan Jauh (By. Pratiwi)
DOCX
Penginderaan Jauh - Prinsip Dasar Penginderaan Jauh (By. Udis Sunardi)
DOCX
Penginderaan Jauh - Prinsip Dasar Penginderaan Jauh (By. Saiful Mukminin)
DOCX
Penginderaan Jauh - Prinsip Dasar Penginderaan Jauh (By. Maryoko)
DOCX
Penginderaan Jauh - Prinsip Dasar Penginderaan Jauh (By. Fajar Kurniawan)
DOCX
Penginderaan Jauh - Prinsip Dasar Penginderaan Jauh (By. Agus Vandiharjo)
DOCX
Penetapan dan Penegasan Batas Laut - Sengketa Wilayah Kepulauan Spartly di La...
DOCX
Penetapan dan Penegasan Batas Laut - Sengketa Wilayah Kepulauan Spartly di La...
PDF
Penetapan dan Penegasan Batas Laut - Sengketa Wilayah Kepulauan Spartly di La...
DOCX
Penetapan dan Penegasan Batas Laut - Sengketa Wilayah Kepulauan Spartly di La...
PDF
Analisis Komponen Harmonik dan Elevasi Pasang Surut pada Alur Pelayaran Perai...
PDF
Land Cover Classification Assessment Using Decision Trees and Maximum Likelih...
PDF
Mitigasi Bencana Pesisir - Penghijaun Hutan (By. Imam Asghoni Mahali)
PPTX
Mitigasi Bencana Pesisir - Pembuatan Bangunan Tahan Gempa (By. Nur Uswatun Ch...
PPTX
Mitigasi Bencana Pesisir - Memberikan Penyuluhan dan Meningkatkan Kesadaran M...
PPTX
Mitigasi Bencana Pesisir - Bangunan Pelindung Pantai Sebagai Penanggulangan A...
PPTX
Mitigasi Bencana Pesisir - Penanggulangan Abrasi Pantai Melalu Reboisasi Huta...
PPTX
Mitigasi Bencana Pesisir - Penghijauan Hutan Mangrove (By. Putri Widyawati Nu...
Residual Analysis and Tidal Harmonic Components in Bangkalan Regency, East Java
Pelatihan Pemanfaatan Teknologi AI dalam Pembuatan PTK bagi Guru SDN Karangas...
Penginderaan Jauh - Prinsip Dasar Penginderaan Jauh (By. Pratiwi)
Penginderaan Jauh - Prinsip Dasar Penginderaan Jauh (By. Udis Sunardi)
Penginderaan Jauh - Prinsip Dasar Penginderaan Jauh (By. Saiful Mukminin)
Penginderaan Jauh - Prinsip Dasar Penginderaan Jauh (By. Maryoko)
Penginderaan Jauh - Prinsip Dasar Penginderaan Jauh (By. Fajar Kurniawan)
Penginderaan Jauh - Prinsip Dasar Penginderaan Jauh (By. Agus Vandiharjo)
Penetapan dan Penegasan Batas Laut - Sengketa Wilayah Kepulauan Spartly di La...
Penetapan dan Penegasan Batas Laut - Sengketa Wilayah Kepulauan Spartly di La...
Penetapan dan Penegasan Batas Laut - Sengketa Wilayah Kepulauan Spartly di La...
Penetapan dan Penegasan Batas Laut - Sengketa Wilayah Kepulauan Spartly di La...
Analisis Komponen Harmonik dan Elevasi Pasang Surut pada Alur Pelayaran Perai...
Land Cover Classification Assessment Using Decision Trees and Maximum Likelih...
Mitigasi Bencana Pesisir - Penghijaun Hutan (By. Imam Asghoni Mahali)
Mitigasi Bencana Pesisir - Pembuatan Bangunan Tahan Gempa (By. Nur Uswatun Ch...
Mitigasi Bencana Pesisir - Memberikan Penyuluhan dan Meningkatkan Kesadaran M...
Mitigasi Bencana Pesisir - Bangunan Pelindung Pantai Sebagai Penanggulangan A...
Mitigasi Bencana Pesisir - Penanggulangan Abrasi Pantai Melalu Reboisasi Huta...
Mitigasi Bencana Pesisir - Penghijauan Hutan Mangrove (By. Putri Widyawati Nu...

Recently uploaded (20)

PDF
VCE English Exam - Section C Student Revision Booklet
PDF
Black Hat USA 2025 - Micro ICS Summit - ICS/OT Threat Landscape
PPTX
Final Presentation General Medicine 03-08-2024.pptx
PDF
O5-L3 Freight Transport Ops (International) V1.pdf
PPTX
Final Presentation General Medicine 03-08-2024.pptx
PDF
Trump Administration's workforce development strategy
PPTX
202450812 BayCHI UCSC-SV 20250812 v17.pptx
PDF
RTP_AR_KS1_Tutor's Guide_English [FOR REPRODUCTION].pdf
PDF
Module 4: Burden of Disease Tutorial Slides S2 2025
PPTX
school management -TNTEU- B.Ed., Semester II Unit 1.pptx
PDF
The Lost Whites of Pakistan by Jahanzaib Mughal.pdf
PPTX
IMMUNITY IMMUNITY refers to protection against infection, and the immune syst...
PPTX
Cell Types and Its function , kingdom of life
PPTX
Microbial diseases, their pathogenesis and prophylaxis
PDF
GENETICS IN BIOLOGY IN SECONDARY LEVEL FORM 3
PDF
STATICS OF THE RIGID BODIES Hibbelers.pdf
PPTX
1st Inaugural Professorial Lecture held on 19th February 2020 (Governance and...
PDF
RMMM.pdf make it easy to upload and study
PPTX
Orientation - ARALprogram of Deped to the Parents.pptx
PDF
2.FourierTransform-ShortQuestionswithAnswers.pdf
VCE English Exam - Section C Student Revision Booklet
Black Hat USA 2025 - Micro ICS Summit - ICS/OT Threat Landscape
Final Presentation General Medicine 03-08-2024.pptx
O5-L3 Freight Transport Ops (International) V1.pdf
Final Presentation General Medicine 03-08-2024.pptx
Trump Administration's workforce development strategy
202450812 BayCHI UCSC-SV 20250812 v17.pptx
RTP_AR_KS1_Tutor's Guide_English [FOR REPRODUCTION].pdf
Module 4: Burden of Disease Tutorial Slides S2 2025
school management -TNTEU- B.Ed., Semester II Unit 1.pptx
The Lost Whites of Pakistan by Jahanzaib Mughal.pdf
IMMUNITY IMMUNITY refers to protection against infection, and the immune syst...
Cell Types and Its function , kingdom of life
Microbial diseases, their pathogenesis and prophylaxis
GENETICS IN BIOLOGY IN SECONDARY LEVEL FORM 3
STATICS OF THE RIGID BODIES Hibbelers.pdf
1st Inaugural Professorial Lecture held on 19th February 2020 (Governance and...
RMMM.pdf make it easy to upload and study
Orientation - ARALprogram of Deped to the Parents.pptx
2.FourierTransform-ShortQuestionswithAnswers.pdf

Automated Extraction of Shoreline in Tuban Regency, East Java from Google Earth Imagery by Integrating Canny Edge Detector

  • 1. DoubleClick: Journal of Computer and Information Technology E-ISSN: 2579-5317 P-ISSN: 2685-2152 Vol. 5, No. 2, February 2022, Pages 81-90 http://e-journal.unipma.ac.id/index.php/doubleclick Automated Extraction of Shoreline in Tuban Regency.... (Prayogo & Sarono)| 81 Automated Extraction of Shoreline in Tuban Regency, East Java from Google Earth Imagery by Integrating Canny Edge Detector Luhur Moekti Prayogo1 , Sarono2 1 Marine Science Study Program, Faculty of Fisheries and Marine, Universitas PGRI Ronggolawe, Tuban, 62381, Indonesia 2 PT. Techno GIS Indonesia, Sleman, Yogyakarta, 55283, Indonesia * E-mail: luhur.moekti.prayogo@unirow.ac.id Abstract. The shoreline is an area that becomes the boundary between land and sea and experiences morphological changes over time. This region has a dynamic condition where various components (air, rocks, water) are interconnected. Multitemporal shoreline analysis is one of the critical parameters for monitoring coastal areas. This information can be used for morphodynamic modeling, coastal area management, and erosion and accretion studies. This study aims to analyze shoreline changes in the North Coast of Tuban Regency, East Java using the Canny Algorithm and Google Earth Imagery from 2000 to 2020. The Canny algorithm was chosen because it has been tested to produce sharp and good edges compared to other edge detection algorithms. From this research, it can be concluded that in the north coast of Tuban Regency, based on the sample years taken, the area's shoreline experienced the erosion of 0.297 - 1.566 meters/ five years. The edges generated using the Canny algorithm are practical in interpreting shorelines and making analysis faster. In the future, there is a need for more elaboration regarding the use of Google Earth imagery in shoreline analysis, especially in geometric corrections (Georeference). This elaboration is essential because it will affect the analysis results, especially the shoreline position. Keywords: Shoreline, Edge Detection Technique, Canny Algorithm, Google Earth, Tuban Abstrak. Garis pantai merupakan wilayah yang menjadi pembatas antara daratan dengan lautan serta mengalami perubahan morfologi dari waktu ke waktu. Wilayah ini memiliki kondisi yang sangat dinamis dimana berbagai komponen (udara, bebatuan, air) saling berhubungan. Analisis garis pantai multitemporal menjadi salah satu parameter penting untuk monitoring kawasan pantai. Informasi tersebut dapat digunakan untuk pemodelan morfodinamik, pengelolaan kawasan pesisir dan studi erosi dan akresi. Penelitian ini bertujuan untuk menganalisis perubahan garis pantai di Pesisir Utara Kabupaten Tuban, Jawa Timur menggunakan Algoritma Canny dan Citra Google Earth tahun 2000 hingga 2020. Algoritma Canny dipilih karena sudah teruji menghasilkan tepi yang tajam dan baik dibandingkan dengan algoritma deteksi tepi yang lain. Dari penelitian ini dapat disimpulkan bahwa di Pesisir Utara Kabupaten Tuban, berdasarkan sampel tahun yang diambil, garis pantai wilayah tersebut mengalami erosi sebesar 0,297 - 1,566 meter/ lima tahun. Tepi yang dihasilkan dengan algoritma Canny sangat membantu dalam proses interpretasi garis pantai dan membuat analisis menjadi lebih cepat. Kedepannya, perlu adanya elaborasi lebih mendalam mengenai penggunaan citra Google Earth dalam analisis garis pantai, khususnya pada koreksi geometriknya (Georeference). Hal ini penting untuk dilakukan karena akan mempengaruhi hasil analisis terutama posisi garis pantainya. Kata kunci: Garis Pantai, Teknik Deteksi Tepi, Algoritma Canny, Google Earth, Tuban Introduction Tuban Regency is one of East Java districts from all 38 districts and cities in the province (Tuban Regency Government, 2018). Tuban Regency is located on the northern coast of Java Island with a shoreline of about 65 km with an area of 1,904.70 km² (Tuban Regency Government, 2018). In some of its areas, Tuban Regency is located in a coastal environment that makes these communities rely on the sea's produce by becoming fishermen. The coast becomes one of the areas of human activity that can be used for various fishing activities and
  • 2. DoubleClick: Journal of Computer and Information Technology E-ISSN: 2579-5317 P-ISSN: 2685-2152 Vol. 5, No. 2, February 2022, Pages 81-90 http://e-journal.unipma.ac.id/index.php/doubleclick 82 |Automated Extraction of Shoreline in Tuban Regency.... (Prayogo & Sarono) settlements (Driptufany, 2020). The utilization will reduce land in the coastal area, and the land is carrying capacity, which causes erosion and sedimentation (Driptufany, 2020). The shoreline becomes the barrier between the land and the ocean, which changes in morphology from time to time, which can be influenced by the sea level rise (Utami et al., 2017). This region has a very dynamic condition where air, rocks, and water are interconnected (Kasim, 2012). The coastal dynamics process is closely related to the coastal areas' management (Kasim, 2012). Alesheikh et al. (2007); Kasim (2012) argues that multitemporal shoreline analysis is one of the critical parameters for monitoring coastal areas. This information can be used for morphodynamic modeling, coastal area management, and erosion and accretion studies (Chand & Acharya, 2010; Kasim, 2012). Fuad et al. (2019); Suniada (2015) states that remote sensing techniques can analyze shoreline change. Along with the development of technology, one of the methods for shoreline extraction is to use edge detection techniques. Edge detection is the image processing stage to produce each object's edges in the image (Munir, 2019). The image's edge can be seen from the neighboring points' grey points (x and y). The benefits of edge detection can also reduce the amount of data processed and can be used for change detection on the shoreline (Munir, 2019). In remote sensing, distinguishing the two objects is necessary because the image classification process will not be optimal if only using color characteristics. Previous researchers have researched shorelines. Mulyadi et al. (2022) conducted a study of shoreline changes in the city of Dumai for three decades (30 years) using Landsat imagery and the Digital Shoreline Analysis System (DSAS). This research shows that there is an average accretion and abrasion of 1.17 and 2.04 meters at the research location. Setyawan (2021) conducted research in Kuala Pesisir District, Nagan Raya Regency, Aceh using the Digital Shoreline Analysis System (DSAS) and Thresholding method in 2016-2020. This research shows changes in the shoreline by accretion and abrasion of 30.16 and 34.49 m/year. Primasti et al. (2021) conducted a study to identify coastal vulnerability in Demak Regency using the Coastal Vulnerability Index (CVI) and the United States Geological Surveys (USGS) methods with five categories of coastal vulnerability. This research shows that the shoreline of the Demak Regency has a tendency to Erosion compared to Abrasion. Fuad (2021) conducted a study of shoreline changes on the coast of Situbondo Regency, East Java, using the one-line model method. The study results indicate that accretion and Abrasion occur in several research locations. Maulana et al. (2021) Conducted research on predicting shoreline changes in Bengkulu using the GENESIS (Generalized Model for Simulating Shoreline Change) method. The results showed that during the five years, the shoreline changes at the research site occurred 2.823 m of Abrasion and 1.677 m of sedimentation. Adriat et al. (2021) Conducted shoreline research in Kijing Coastal Waters, Bengkayang Regency, West Kalimantan using the Single Transect (ST) and End Point Rate (EPR) methods on the DSAS tool. These studies indicate that at the study site, the dominant accretion occurred ranging from 0.5 to 21.34 m. Atmojo et al. (2021) Conducting shoreline research using remote sensing techniques and data such as Landsat imagery with Unsupervised Classification, digitization, and overlapping methods.
  • 3. DoubleClick: Journal of Computer and Information Technology E-ISSN: 2579-5317 P-ISSN: 2685-2152 Vol. 5, No. 2, February 2022, Pages 81-90 http://e-journal.unipma.ac.id/index.php/doubleclick Automated Extraction of Shoreline in Tuban Regency.... (Prayogo & Sarono)| 83 The research location shows that there is abrasion and accretion at the research location. Research on shorelines was carried out by Ramadhani et al. (2021) in the Coastal District of Saying, Demak Regency using remote sensing methods and the Digital Shoreline Analysis System (DSAS). The results showed a change in shoreline abrasion and accretion by 82% and 18%, with a tendency to abrasion. From the explanation above, a problem of how edge detection performs detecting shorelines in Google Earth imagery arises. Identifying the object's edge is vital because it is a preliminary study to observe changes in the shoreline more quickly. Therefore, this study aims to analyze changes in the shoreline in the North Coast of Tuban Regency, East Java using the Canny Algorithm. We have conducted a canny edge detector in Gili Raja Island, Sumenep (Prayogo & Hidayah, 2021). This algorithm was chosen because it has been tested to produce sharp and good edges compared to other edge detection algorithms (Maini & Aggarwal, 2009). Material And Method Research Location This research is located at 6° 53'27.51 "S and 112° 3'38.10" E in the North of Tuban Regency, East Java. After all, this location is suspected of experiencing abrasion yearly because it is located directly opposite the open sea. The shoreline observed in this study is approximately 650 meters long. Figure 1 shows the research location displayed on the Basemap World imagery. Figure 1. Research Location in Tuban Regency, East Java
  • 4. DoubleClick: Journal of Computer and Information Technology E-ISSN: 2579-5317 P-ISSN: 2685-2152 Vol. 5, No. 2, February 2022, Pages 81-90 http://e-journal.unipma.ac.id/index.php/doubleclick 84 |Automated Extraction of Shoreline in Tuban Regency…(Prayogo & Sarono) Canny Algorithm Canny edge detection is a technique for extracting structural information that aims to reduce processed data. Based on Canny (1986); Deriche (1987) states that this process consists of at least five stages, namely: Applying a Gaussian filter so that the image becomes smoother and minimizes noise with the following equation (Gaussian filter (2k + 1) × (2k + 1))) (equation 1): Then determine the image intensity gradient with the following equation (equation 2) The edge direction angles represent vertical, horizontal, and two diagonals (0°, 45°, 90°, and 135°). Then it can apply steps such as (1) applying non- maximum compressions to eliminate spurious responses to edge detection, (2) specifying a double threshold for determining potential image edges, and (3) Track edges with hysteresis: suppressing all other weak edges and not connected to the firm edge (Canny, 1986; Deriche, 1987). Result and Discussion Image Preprocessing Before the image is filtered, the first thing to do is create a Ground Control Point (GCP) in Google Earth. GCP aims to adjust the coordinates on the map with coordinates in the field (Danoedoro, 2012). There are four GCPs used for georeferencing on five Google Earth maps. Tables 1 and 2 are information on the recording date of images and GCP used in this study. Table 1. Google Earth imagery 2000-2020 No Recording Date Cloud Cover Condition 1 July 11, 2000 Minimum 2 July 28, 2003 Minimum 3 August 16, 2010 Minimum 4 July 8, 2016 Minimum 5 September 6, 2020 Minimum Table 2. GCP Information No Latitude Longitude 1 6°52'54.43"S 112° 3'22.49"E 2 6°52'54.71"S 112° 4'53.18"E 3 6°53'55.11"S 112° 3'27.80"E 4 6°53'55.19"S 112° 4'48.98"E Image Processing
  • 5. DoubleClick: Journal of Computer and Information Technology E-ISSN: 2579-5317 P-ISSN: 2685-2152 Vol. 5, No. 2, February 2022, Pages 81-90 http://e-journal.unipma.ac.id/index.php/doubleclick Automated Extraction of Shoreline in Tuban Regency.... (Prayogo & Sarono)| 85 Image edge processing using the Canny algorithm is carried out at least in several steps (Chapter 2). This step is carried out to obtain structural information for each observed object, namely the shoreline in Google Earth imagery, from 2000 to 2020. This detection has a strict definition compared to other edge detections, so that the results of Canny detection are better than other edge detection. Figure 2 shows the Google Earth multitemporal imagery data from 2000 to 2020 used in this study. July 11, 2000 July 28, 2003 August 16, 2010 July 8, 2016 September 6, 2020 Figure 2. Google Earth Multitemporal Imagery from 2000 to 2020 The Canny algorithm has general criteria for detecting object edges. The operator's detected edge must be accurately localized in the center with marked once in each object. The detection must capture as many edges as possible to produce a suitable edge with minimal errors. According to
  • 6. DoubleClick: Journal of Computer and Information Technology E-ISSN: 2579-5317 P-ISSN: 2685-2152 Vol. 5, No. 2, February 2022, Pages 81-90 http://e-journal.unipma.ac.id/index.php/doubleclick 86 |Automated Extraction of Shoreline in Tuban Regency.... (Prayogo & Sarono) requirements, the technique used in Canny detection to obtain edge information uses the calculus of variations function. The first derivative of Gaussian can explain this function. Figure 3 shows the results of Canny edge detection for shoreline analysis in the Tuban Regency, East Java. 2000 2003 2010 2016
  • 7. DoubleClick: Journal of Computer and Information Technology E-ISSN: 2579-5317 P-ISSN: 2685-2152 Vol. 5, No. 2, February 2022, Pages 81-90 http://e-journal.unipma.ac.id/index.php/doubleclick Automated Extraction of Shoreline in Tuban Regency.... (Prayogo & Sarono)| 87 2020 Figure 3. Canny Algorithm Results from 2000 to 2020 in the Tuban Regency, East Java The Gaussian filter on the image minimizes noise so that the object's edges are easily detected. The image's noise significantly affects the shoreline's extraction, so smoothing is needed at this stage. Besides, this filter uses a kernel window that is not static and can be changed according to each object's needs being filtered. The next step is to thin the edges of the image. This process is carried out to determine the change's location in the highest / sharpest intensity value to produce a more authentic and accurate image edge. The final process of shoreline detection with Canny is edge tracking with hysteresis. This stage aims to trace the edges of the weak pixels caused by the unconnected image's noise response. From the detection process, the following is the appearance of the shoreline in 2000, 2003, 2010, 2016, and 2020 in the North Coast of Tuban Regency, East Java (Figures 4).
  • 8. DoubleClick: Journal of Computer and Information Technology E-ISSN: 2579-5317 P-ISSN: 2685-2152 Vol. 5, No. 2, February 2022, Pages 81-90 http://e-journal.unipma.ac.id/index.php/doubleclick 88 |Automated Extraction of Shoreline in Tuban Regency.... (Prayogo & Sarono) Figure 4. Shoreline 2000, 2003, 2010, 2016 and 2020 From the picture, we can see that the shoreline has shifted every year in the image sample due to erosion. In the first location, in 2000- 2003, there was a shift of 1,148 m, in 2003-2010 it shifted of 1,439 m, in 2010-2016 it shifted of 1,022 m, and 2016-2020 experienced a shift of 0.796 m. Then in the second location, in 2000-2003, there was a shift of 0.861 m, in 2003-2010 it shifted of 1.051 m, in 2010-2016 it shifted of 0.667 m, and 2016-2020 experienced a shift of 0.313 m. Finally, in the third location, in 2000-2003, there was a shift of 0.974 m, in 2003-2010 it shifted by 1.566 m, in 2010-2016 it shifted 0.297 m, and 2016-2020 experienced a shift of 1.157 m. Table 3 shows the shoreline shift information for each sample of the study locations. Table 3. Shoreline change for each location Time Shift Locations 1 (meters) Shift Locations 2 (meters) Shift Locations 3 (meters) 2000-2003 1,148 0,861 0,974 2003-2010 1,439 1,051 1,566 2010-2016 1,022 0,667 0,297 2016-2020 0,796 0,313 1,157 Conclusion From this research, it can be concluded that in Pesisir Utara, Tuban Regency, based on the sample years taken, the area's shoreline experienced the erosion of 0.297 - 1.566 meters / five years. The edges generated using the Canny algorithm are very helpful in interpreting shorelines and making analysis faster. In the future, there is a need for more elaboration regarding the use of Google Earth imagery in
  • 9. DoubleClick: Journal of Computer and Information Technology E-ISSN: 2579-5317 P-ISSN: 2685-2152 Vol. 5, No. 2, February 2022, Pages 81-90 http://e-journal.unipma.ac.id/index.php/doubleclick Automated Extraction of Shoreline in Tuban Regency.... (Prayogo & Sarono)| 89 shoreline analysis, especially in geometric corrections. This elaboration is essential because it will affect the analysis results, especially the shoreline position. Reference Adriat, R., Risko, R., Apriansyah, A., Muhardi, M., Susiati, H., Zibar, Z., & Fitriani, F. (2021). Analisis Perubahan Garis Pantai di Wilayah Perairan Pantai Kijing Kabupaten Bengkayang Kalimantan Barat. Jurnal Perikanan Dan Kelautan, 11(1), 101–113. Alesheikh, A. A., Ghorbanali, A., & Nouri, N. (2007). Coastline change detection using remote sensing. International Journal of Environmental Science & Technology, 4(1), 61–66. Atmojo, A. T., Welly, T. K., Simbolon, K., & Zulfikar, A. N. (2021). Studi Perubahan Garis Pantai Pesisir Kota Bandar Lampung Menggunakan Data Penginderaan Jauh. Journal of Science, Technology, and Visual Culture, 1(3), 149–154. Canny, J. (1986). A Computational Approach to Edge Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 8(6), 679–698. https://doi.org/10.1109/TPAMI.1 986.4767851 Chand, P., & Acharya, P. (2010). Shoreline change and sea level rise along coast of Bhitarkanika wildlife sanctuary, Orissa: An analytical approach of remote sensing and statistical techniques. International Journal of Geomatics and Geosciences, 1(3), 436. Danoedoro, P. (2012). Pengantar Pengindraan Jauh Digital. In Benedicta Rini W (Ed.), Penerbit ANDI (1st ed.). Penerbit ANDI. 397 hlm. Deriche, R. (1987). Using Canny’s criteria to derive a recursively implemented optimal edge detector. International Journal of Computer Vision, 1, 167–187. https://doi.org/10.1007/BF00123 164 Driptufany, D. M. (2020). Deteksi Perubahan Garis Pantai Kabupaten Padang Pariaman dan Kota Pariaman Menggunakan Aplikasi Penginderaan Jauh. JURNAL TEKNIK SIPIL ITP, 7(2), 43–50. Fuad, M. A. Z. (2021). Pemodelan dan Analisis Perubahan Garis Pantai di Kabupaten Situbondo, Jawa Timur. JFMR (Journal of Fisheries and Marine Research), 5(2), 335– 349. Fuad, M. A. Z., Yunita, N., Kasitowati, R. D., Hidayati, N., & Sartimbul, A. (2019). Pemantauan Perubahan Garis Pantai Jangka Panjang Dengan Teknologi Geospasial Di Pesisir Bagian Barat Kabupaten Tuban, Jawa Timur. Jurnal Geografi, 11(1), 48–61. https://doi.org/2549–7057 Kasim, F. (2012). Pendekatan beberapa metode dalam monitoring perubahan garis pantai menggunakan dataset penginderaan jauh Landsat dan SIG. Jurnal Ilmiah Agropolitan, 5(1), 620–635. Maini, R., & Aggarwal, H. (2009). Study and comparison of various image edge detection techniques. International Journal of Image Processing, 3(1), 1–12. https://doi.org/http://www.doaj. org/doaj?func=openurl&genre=art icle&issn=19852304&date=2009& volume=3&issue=1&spage=1 Maulana, F. A., Amri, K., & Besperi, B. (2021). Prediksi Perubahan Garis Pantai Bengkulu (Studi Kasus Pantai Zakat Kota Bengkulu). RADIAL: Jurnal Peradaban Sains, Rekayasa Dan Teknologi, 9(1), 15– 22. Mulyadi, A., Hamidy, R., Musrifin, E., Efriyeldi, E., & Jhonnerie, R. (2022). Tiga dekade laju
  • 10. DoubleClick: Journal of Computer and Information Technology E-ISSN: 2579-5317 P-ISSN: 2685-2152 Vol. 5, No. 2, February 2022, Pages 81-90 http://e-journal.unipma.ac.id/index.php/doubleclick 90 |Automated Extraction of Shoreline in Tuban Regency.... (Prayogo & Sarono) perubahan garis pantai di Kota Dumai. Dinamika Lingkungan Indonesia, 9(1), 25–31. Munir, R. (2019). Segmentasi Citra. Program Studi Teknik Informatika Sekolah Teknik Elektronika. Institut Teknologi Bandung. Prayogo, L. M., & Hidayah, Z. (2021). Utilization of Multitemporal Landsat Data for Coastline Change Analysis Using Canny Edge Detector. Jurnal Kelautan: Indonesian Journal of Marine Science and Technology, 14(2), 91– 99. Primasti, T. P. G., Hariyadi, H., Rochaddi, B., & Widada, S. (2021). Pemantauan Kerentanan Fisik di Pesisir Kabupaten Demak (Studi Kasus Perubahan Garis Pantai). Indonesian Journal of Oceanography, 3(1), 44–54. Ramadhani, Y. P., Praktikto, I., & Suryono, C. A. (2021). Perubahan Garis Pantai Menggunakan Citra Satelit Landsat di Pesisir Kecamatan Sayung, Kabupaten Demak. Journal of Marine Research, 10(2), 299–305. Setyawan, F. O. (2021). Analisis Perubahan Garis Pantai Menggunakan Digital Shoreline Analysis System Di Kecamatan Kuala Pesisir, Kabupaten Nagan Raya, Aceh. JFMR (Journal of Fisheries and Marine Research), 5(2), 368–377. Suniada, K. I. (2015). Deteksi perubahan garis pantai di Kabupaten Jembrana bali dengan menggunakan teknologi penginderaan jauh. Jurnal Kelautan Nasional, 10(1), 13–19. Tuban Regency Government. (2018). Tuban Profile. https://tubankab.go.id/page/profi l-tuban Utami, W. S., Subardjo, P., & Helmi, M. (2017). Studi Perubahan Garis Pantai Akibat Kenaikan Muka Air Laut Di Kecamatan Sayung, Kabupaten Demak. Journal of Oceanography, 6(1), 281–287.