SlideShare a Scribd company logo
AutoML
NeurIPS 2018 Yomikai @ PFN (2019/01/26)
Shotaro Sano
Agenda
• AutoML @ NeurIPS 2018
• 1
“Massively Parallel Hyperparameter Tuning” [Li, et al.]
• 2
“Neural Architecture Optimization” [Luo, et al.]
2
What is AutoML?
• Hyperparameter Optimization (HPO):
• Neural Architecture Search (NAS): NN
• Meta Learning:
3
“The user simply provides data,
and the AutoML system
automatically determines
approach that performs best for
particular applications.”
Futter et al., 2018
AutoML: Methods, Systems, Challenges
AutoML @ NeurIPS 2018
• AutoML
• HPO, NAS, Meta Learning
• Meta Learning
• AutoML Meetup @ Google AI
•
– System for ML
– Meta Learning
– NeurIPS 2018 Competition Track
4
Hyperparameter Optimization @ NeurIPS 2018
• Bayesian Optimization Meta-learning
• 10 @
– “Regret bounds for meta Bayesian optimization with an unknown
Gaussian process prior”
– “Automating Bayesian Optimization with Bayesian Optimization”
– etc.
• Systems for ML
– “Massively Parallel Hyperparameter Tuning”
– “Population Based Training as a Service”
– etc.
5
Neural Architecture Search @ NeurIPS 2018
• , Semantic Segmentation
• 4+ @
– “Neural Architecture Optimization”
– “Neural Architecture Search with Bayesian Optimization and Optimal
Transport”
– etc.
• 2019 AutoDL
6
Meta Learning @ NeurIPS 2018
• Keywords: Model-agnostic Meta-Learning, Few-shot Learning,
Transfer Learning, etc.
• 20 @
– “Bayesian Model-Agnostic Meta Learning”
– “Meta-Reinforcement Learning of Structured Exploration Strategies”
– etc.
• Meta Learning
– HPO NAS
7
Competition Track: AutoML3 @ NeurIPS 2018
• AutoML3:
–
–
• Tree-parzen Estimator + LightGBM/XGBoost
8
Train&Test
Task A Task B Task C Task D Task E
Today’s Papers
• Hyperparameter Optimization
“Massively Parallel Hyperparameter Tuning” [Li, et al.]
• Neural Architecture Search
“Neural Architecture Optimization” [Luo, et al.]
9
Systems for ML Workshop (NeurIPS 2018)
Massively Parallel
Hyperparameter Tuning
11
Blackbox Optimization
such as
Grid Search
Bayesian Optimization
…
Hyperparameter Tuner
LR: 0.00001 ~ 0.1
Dropout: 0.0 ~ 0.5
Massively Parallel Hyperparameter Tuning
12
•
•
–
– Optuna
–
Successive Halving
Related Work: Successive Halving (SHA)
13
• ( )
•
• Hyperband [16, Li, et al.]
Related Work: Successive Halving (SHA)
14
N
resource
config
config
config
config
config
config
config
config
config
resource
config
config
config
config
config
config
config
config
config
Related Work: Successive Halving (SHA)
15
N / η
η
( η=3 )
Related Work: Successive Halving (SHA)
16
N / η2
η2
resource
config
config
config
config
config
config
config
config
config
( η=3 )
Related Work: Successive Halving (SHA)
17
resource
config
config
config
config
config
config
config
config
config
Simple and Powerful!
18
Successive Halving
Random Search
Faster & better!
rung 2
rung 11 1 1 1
2 2
3
resource
19
Related Work: Synchronous SHA
parallelize
rung 3
config
config
config
config
1 2 3
worker 1
1 1 2
worker 2
1
rung 1 rung 2 rung 3
• : rung
• /
20
Problem with Synchronous SHA
Synchronous
Asynchronous
( )
Config
worker 1
1 1 2
worker 2
1 2 31
rung 1 rung 2 rung 3
• “ ” 1/η config
• config config
21
Proposed Method: Asynchronous SHA
1 1 ? 1 2
1 2 ?
( η=2 )
1 2 1
• PROS: rung
• CONS: mis-promote
– Config
– Mis-promote N -1/2
22
Proposed Method: Asynchronous SHA
PROS
(Massively Parallel Hyperparameter Tuning)
1 1 2
1 2 31
1 2 1
1 2 31
2 3
1
23
Experiments: Single Worker Setting
Mis-promote
Synchronous
( )
Synchronous SHA
Asynchronous SHA
24
Experiments: Multi Worker Setting
config
( )
Synchronous SHA
Asynchronous SHA
25
Conclusion
Successive Halving
NeurIPS 2018
Neural Architecture
Optimization
Neural Architecture Search
•
• ImageNet SOTA
27
28
Chain-structured Space
Tree-structured Space
Multi-branch Network
Cell Search Space
…
Full Evaluation
Lower Fidelities
Learning Curve Extrapolation
One-shot Architecture Search
…
Reinforcement Learning
Evolutionary Search
Bayesian Optimization
Monte Carlo Tree Search
…
Neural Architecture Optimization
29
•
•
– CIFAR (+cutout) SOTA
– 2018 PFN
Neural Architecture Search
Related Work: NASNet Search Space
30
• [16, Zoph et al.]
• NASNet Space ImageNet SOTA [17, Zoph et al.]
–
– ResNet ResBlock
Proposed Method: NAONet
•
– ?
• NASNet ( )
31
32
LSTMEncoder
Embedding
Vector
LSTMDecoder
FC Layers
Accuracy
Prediction
33
LSTMEncoder
Embedding
Vector
LSTMDecoder
Encoder-decoder
34
LSTMEncoder
Embedding
Vector
LSTMDecoder
FC Layers
Accuracy
Prediction
Embedding
Multi-task
Loss
35
LSTMEncoder
Embedding
Vector
FC Layers
Accuracy
Prediction
36
LSTMEncoder
Embedding
Vector
FC Layers
Accuracy
Prediction
37
LSTMEncoder
Embedding
Vector
LSTMDecoder
FC Layers
Accuracy
Prediction
38
NAONet
39
Experiments: SOTA on CIFAR-10
SOTA
40
Experiments: Transferring CIFAR-10 to CIFAR-100
SOTA
41
Experiments: Transferring PTB to WikiText-2
42
Conclusion
Neural Architecture Search
CIFAR SOTA
Define-by-run style hyperparameter search framework.
! Fat config & poor control syntax!
" High modularity!
" High representation power!

More Related Content

PDF
General Tips for participating Kaggle Competitions
PPTX
Ensemble methods
PDF
An Introduction to Neural Architecture Search
PPTX
Random forest
PPT
Decision tree and random forest
PDF
201907 AutoML and Neural Architecture Search
PDF
統計学における相関分析と仮説検定の基本的な考え方とその実践
PDF
dplyr と purrrを用いたデータハンドリング
General Tips for participating Kaggle Competitions
Ensemble methods
An Introduction to Neural Architecture Search
Random forest
Decision tree and random forest
201907 AutoML and Neural Architecture Search
統計学における相関分析と仮説検定の基本的な考え方とその実践
dplyr と purrrを用いたデータハンドリング

What's hot (20)

PDF
論文紹介 "DARTS: Differentiable Architecture Search"
PDF
Pattern Recognition and Machine Learning: Section 3.3
PDF
An Introduction to Supervised Machine Learning and Pattern Classification: Th...
PPTX
GANs Presentation.pptx
PDF
Deep learning with Keras
PDF
データ解析8 主成分分析の応用
PDF
汎化性能測定
PDF
因果探索: 基本から最近の発展までを概説
PPTX
Intro to modelling-supervised learning
PPTX
Decision Tree - C4.5&CART
PPTX
論文紹介: "MolGAN: An implicit generative model for small molecular graphs"
PDF
汎用なNeural Network Potential「Matlantis」を使った新素材探索_2022応用物理学会_2022/3/22
PPTX
Random Forest and KNN is fun
PDF
第2回 配信講義 計算科学技術特論A (2021)
PPTX
Introduction of Xgboost
PDF
The Evolution of AutoML
PDF
Introduction to XGBoost
PDF
Prepare your data for machine learning
PDF
Towards Causal Representation Learning
PDF
[DL輪読会]The Neural Process Family−Neural Processes関連の実装を読んで動かしてみる−
論文紹介 "DARTS: Differentiable Architecture Search"
Pattern Recognition and Machine Learning: Section 3.3
An Introduction to Supervised Machine Learning and Pattern Classification: Th...
GANs Presentation.pptx
Deep learning with Keras
データ解析8 主成分分析の応用
汎化性能測定
因果探索: 基本から最近の発展までを概説
Intro to modelling-supervised learning
Decision Tree - C4.5&CART
論文紹介: "MolGAN: An implicit generative model for small molecular graphs"
汎用なNeural Network Potential「Matlantis」を使った新素材探索_2022応用物理学会_2022/3/22
Random Forest and KNN is fun
第2回 配信講義 計算科学技術特論A (2021)
Introduction of Xgboost
The Evolution of AutoML
Introduction to XGBoost
Prepare your data for machine learning
Towards Causal Representation Learning
[DL輪読会]The Neural Process Family−Neural Processes関連の実装を読んで動かしてみる−
Ad

Similar to AutoML in NeurIPS 2018 (20)

PDF
PDF
AutoML lectures (ACDL 2019)
PDF
Federated Learning of Neural Network Models with Heterogeneous Structures.pdf
PDF
Optimizing, Profiling, and Deploying TensorFlow AI Models in Production with ...
PDF
ECML PKDD 2021 ML meets IoT Tutorial Part III: Deep Optimizations of CNNs and...
PPTX
Beyond data and model parallelism for deep neural networks
PDF
Efficient Model Selection for Deep Neural Networks on Massively Parallel Proc...
PDF
Neural Architecture Search: Learning How to Learn
PDF
Apache Spark Based Hyper-Parameter Selection and Adaptive Model Tuning for De...
PDF
Distributed deep learning optimizations - AI WithTheBest
PDF
Autimatic Machine Learning and Artificial Intelligence
PDF
PythonとAutoML at PyConJP 2019
PPTX
PR-105: MnasNet: Platform-Aware Neural Architecture Search for Mobile
PDF
Tuning the Untunable - Insights on Deep Learning Optimization
PDF
Junhua wang ai_next_con
PDF
Tutorial-on-DNN-09A-Co-design-Sparsity.pdf
PPTX
Build a Neural Network for ITSM with TensorFlow
PDF
Automated-tuned hyper-parameter deep neural network by using arithmetic optim...
PDF
Object Detection Beyond Mask R-CNN and RetinaNet II
PDF
Corinna Cortes, Head of Research, Google, at MLconf NYC 2017
AutoML lectures (ACDL 2019)
Federated Learning of Neural Network Models with Heterogeneous Structures.pdf
Optimizing, Profiling, and Deploying TensorFlow AI Models in Production with ...
ECML PKDD 2021 ML meets IoT Tutorial Part III: Deep Optimizations of CNNs and...
Beyond data and model parallelism for deep neural networks
Efficient Model Selection for Deep Neural Networks on Massively Parallel Proc...
Neural Architecture Search: Learning How to Learn
Apache Spark Based Hyper-Parameter Selection and Adaptive Model Tuning for De...
Distributed deep learning optimizations - AI WithTheBest
Autimatic Machine Learning and Artificial Intelligence
PythonとAutoML at PyConJP 2019
PR-105: MnasNet: Platform-Aware Neural Architecture Search for Mobile
Tuning the Untunable - Insights on Deep Learning Optimization
Junhua wang ai_next_con
Tutorial-on-DNN-09A-Co-design-Sparsity.pdf
Build a Neural Network for ITSM with TensorFlow
Automated-tuned hyper-parameter deep neural network by using arithmetic optim...
Object Detection Beyond Mask R-CNN and RetinaNet II
Corinna Cortes, Head of Research, Google, at MLconf NYC 2017
Ad

More from Shotaro Sano (7)

PDF
PFDet: 2nd Place Solutions to Open Images Competition
PDF
Binarized Neural Networks
PDF
Dropout Distillation
PDF
ディリクレ過程に基づく無限混合線形回帰モデル in 機械学習プロフェッショナルシリーズ輪読会
PDF
Microsoft Malware Classification Challenge 上位手法の紹介 (in Kaggle Study Meetup)
PDF
サポートベクトルデータ記述法による異常検知 in 機械学習プロフェッショナルシリーズ輪読会
PDF
再帰型ニューラルネット in 機械学習プロフェッショナルシリーズ輪読会
PFDet: 2nd Place Solutions to Open Images Competition
Binarized Neural Networks
Dropout Distillation
ディリクレ過程に基づく無限混合線形回帰モデル in 機械学習プロフェッショナルシリーズ輪読会
Microsoft Malware Classification Challenge 上位手法の紹介 (in Kaggle Study Meetup)
サポートベクトルデータ記述法による異常検知 in 機械学習プロフェッショナルシリーズ輪読会
再帰型ニューラルネット in 機械学習プロフェッショナルシリーズ輪読会

Recently uploaded (20)

PDF
Assigned Numbers - 2025 - Bluetooth® Document
PPTX
Big Data Technologies - Introduction.pptx
PDF
TokAI - TikTok AI Agent : The First AI Application That Analyzes 10,000+ Vira...
PPTX
1. Introduction to Computer Programming.pptx
PDF
Network Security Unit 5.pdf for BCA BBA.
PDF
Encapsulation_ Review paper, used for researhc scholars
PDF
Agricultural_Statistics_at_a_Glance_2022_0.pdf
PDF
Blue Purple Modern Animated Computer Science Presentation.pdf.pdf
PPTX
A Presentation on Artificial Intelligence
PDF
Per capita expenditure prediction using model stacking based on satellite ima...
PDF
Approach and Philosophy of On baking technology
PDF
Architecting across the Boundaries of two Complex Domains - Healthcare & Tech...
PPTX
Digital-Transformation-Roadmap-for-Companies.pptx
PPTX
20250228 LYD VKU AI Blended-Learning.pptx
PDF
Build a system with the filesystem maintained by OSTree @ COSCUP 2025
PDF
Spectral efficient network and resource selection model in 5G networks
PDF
Empathic Computing: Creating Shared Understanding
PDF
MIND Revenue Release Quarter 2 2025 Press Release
PDF
Accuracy of neural networks in brain wave diagnosis of schizophrenia
PDF
A comparative analysis of optical character recognition models for extracting...
Assigned Numbers - 2025 - Bluetooth® Document
Big Data Technologies - Introduction.pptx
TokAI - TikTok AI Agent : The First AI Application That Analyzes 10,000+ Vira...
1. Introduction to Computer Programming.pptx
Network Security Unit 5.pdf for BCA BBA.
Encapsulation_ Review paper, used for researhc scholars
Agricultural_Statistics_at_a_Glance_2022_0.pdf
Blue Purple Modern Animated Computer Science Presentation.pdf.pdf
A Presentation on Artificial Intelligence
Per capita expenditure prediction using model stacking based on satellite ima...
Approach and Philosophy of On baking technology
Architecting across the Boundaries of two Complex Domains - Healthcare & Tech...
Digital-Transformation-Roadmap-for-Companies.pptx
20250228 LYD VKU AI Blended-Learning.pptx
Build a system with the filesystem maintained by OSTree @ COSCUP 2025
Spectral efficient network and resource selection model in 5G networks
Empathic Computing: Creating Shared Understanding
MIND Revenue Release Quarter 2 2025 Press Release
Accuracy of neural networks in brain wave diagnosis of schizophrenia
A comparative analysis of optical character recognition models for extracting...

AutoML in NeurIPS 2018