© MAN Diesel A/S
L/7396-6.0/0601 (3250/BGJ)
Load Lines - Freeboard Draught
T T
ropical
S Summer
W W
inter
W
NA W
inter - theNorth
Atlantic
D L
D: Freeboard draught
Seawater
Freshwater
Danish
load mark
TF
F
D
Freeboard deck
© MAN Diesel A/S
L/7397-8.0/0601 (3250/BGJ)
Hull Dimensions
Length between perpendiculars . . . : L
Length on waterline. . . . . . . . . . . . . : L
Length o : L
Breadth on waterline . . . . . . . . . . . .: B
Draught . . . . . . . . . . . . . . . . . . . . . . : D= 1/2 (D +D )
Midship section area . . . . . . . . . . . .: A
PP
WL
OA
WL
m
F A
verall . . . . . . . . . . . . . . . . .
© MAN Diesel A/S
L/7399-1.0/0601 (3250/BGJ)
Hull Coefficients of a Ship
LW
L
AW
L
BW
L
D
AM
W
aterlineplane
LPP
,
Midship section coefficient . . . . . .
V
olume of displacement. . . . . . .
W
aterlinearea. . . . . . . . . . . . . . .
Block coefficient L based. . . . .
W
aterplanearea coefficient. . . . .
WL
Longitudinal prismatic coefficient
:
:
: =
: =
: =
: =
A
C
C
C
C
W
L
B
W
L
M
P
L B
WL x x D
WL
B x D
WL
A x L
M WL
L B
WL WL
x
AWL
AM
© MAN Diesel A/S
L/7238-6.0/0601 (3250/BGJ)
Total Ship Towing Resistance
RT = RF + RW + RE + RA
RF
V
RA
V
RW
RE
Ship speed V
% of R
T
T
ypeof
resistance
R
A
R
W
R
E
R
F = Friction
= W
ave
= Eddy
= Air
High
speed
ship
Low
speed
ship
45- 90
40- 5
5- 3
10- 2
© MAN Diesel A/S
L/7763-3.0/0601 (3250/BGJ)
The “Wave Wall”
Ship Speed Barrier
20 knots
Normal service point
Ship speed
New service point
kW
© MAN Diesel A/S
L/7400-3.0/0601 (3250/BGJ)
The Propulsion of
a Ship - Theory
Efficiencies
1 t
1 w
Relativerotativeefficiency . . . . . :
Propeller efficiency - open water :
Propeller efficiency - behind hull : =
Propulsiveefficiency. . . . . . . . . : =
Shaft efficiency. . . . . . . . . . . . . :
T
otal efficiency
. . . . . . . . . . . . . . :
_
_
x
x
Power
Effective(T
owing)power. . . . . . . : P = R V
bythepropeller to water . . . . . . : P = P /
Power delivered to propeller. . . . : P = P /
Brakepower of main engine . . . : P = P /
E T
T E
D T
B D
x
Hull efficiency
. . . . . . . . . . . . . . . : =
Thrust power delivered
H
H
B
D
S
T B
S
B
0 R
T
---- ---- x ---- x ---- x x x x x
= = = =
P P P P
B T D B
P P P P
E E T D
H
S H 0 R S
H
R
0
B
Velocities
Ship’s speed . . . . . . . . . . . . . . . . : V
Arriving water velocity to propeller. : V
Effectivewakevelocity
. . . . . . . . . . : V = V_V
A
W A
Forces
T
owing resistance. . . . . . . . . . . . . : R
Thrust force. . . . . . . . . . . . . . . . . : T
Thrust deduction fraction . . . . . . . : F= T_R
T_R
T
T
T
T
Thrust deduction coefficient . . . . . : t =
W
akefraction coefficient. . . . . . . . : w =
(Speed of advanceof propeller)
V_V
V
A
VA
V
VW
PD
PE
PT PB
V
T
RT
F
© MAN Diesel A/S
L/7239-8.0/0601 (3250/BGJ)
Propeller Types
Controllable pitch propeller
(CP-Propeller)
Fixed pitch propeller
(FP-Propeller)
Monobloc with
fixed propeller
blades
(copper alloy)
Hub with a
mechanismfor
control of the
pitch of the blades
(hydraulically activated)
© MAN Diesel A/S
L/7401-5.1/0201 (3250/BGJ)
Obtainable Propeller Efficiency
- Open Water
0.3
0.2
0.4
0
0.6
0.1
0.6
0.5
V
n xd
A
Advance number J =
0.4 0.5
0.2 0.3
0 0.1
0
0.7
Propeller
efficiency
Reefers
Container ships
Small tankers
20,000 DW
T
Large tankers
>150,000 DW
T
n (revs./s )
1.66
2.00
0.7
© MAN Diesel A/S
L/9802-8.1/0201 (3250/BGJ)
Propeller Design - Influence of
Diameter and Pitch
110 120
100 r/min
130
Shaft power
80 90
8,800
70
8,700
8,900
9,100
8,600
8,500
9,400
0.95
9,200
9,300
9,000
d =Propeller diameter
p/d =P
itch/diameter ratio
Power and speed curve
for various propeller
diameters d with
optimump/d
Propeller speed
Power and speed curve
for thegiven propeller
diameter d = 7.2mwith
different p/d
80,000 dwt crudeoil tanker
Design draught = 12.2 m
Ship speed = 14.5 kn
9,500
0.90
0.85
0.80
0.71
1.00
0.60
0.75
d
0.65
0.55
6.8 m
p/d
0.67
7.2 m
6.6 m
7.4 m
7.0 m
0.70
0.68
0.69
0.50
p/d
p/d
d
kW
© MAN Diesel A/S
L/6846-7.0/0701 (3250/BGJ)
Movement of a Ship´s
Propeller, with Slip
Sx p x n
Vor VA
Pitch p
n
0.7 x r
r
d
p x n
Slip
The apparent slip ratio : S = = 1 _
A
The real slip ratio : S = = 1 _
R
p x n _V V
p x n p x n
A A
p x n _V V
p x n p x n
© MAN Diesel A/S
L/6645-5.0/0701 (3250/BGJ)
Movement of a Corkscrew,
without Slip
V
elocity of corkscrew: V= p x n
Pitch p
Wine bottle
Corkscrew Cork
V
n
© MAN Diesel A/S
L/5537-1.1/0201 (3250/BGJ)
Ship Speed Performance at
15% Sea Margin
(Logarithmic scales)
15.6 knots
115% power
15.0 knots
100% power
15% Sea
margin
Power
Ship speed
Propeller curve for clean
hull and calmweather
15.0 knots
115% power
B
A
© MAN Diesel A/S
L/5408-5.1/0201 (3250/BGJ)
Propeller Speed Performance
at 15% Sea Margin
15.6 knots
115% power
15.0 knots
100% power
15% Sea
margin
Slip
Propeller speed
Propeller curve for clean
hull and calmweather
15.0 knots
115% power
Power
(Logarithmic scales)
A
B’
B
© MAN Diesel A/S
L/5481-7.1/0201 (3250/BGJ)
Propeller Speed Performance at
Large Extra Ship Resistance
(Logarithmic scales)
15.0 knots
100% power
12.3 knots
50% power
Propeller curve
for clean hull and
calmweather
12.3 knots
100% power
Propeller speed
Propeller curve
for fouled hull
and heavy seas
LR
Power
10.0 knots
50% power
Slip
HR
HR= Heavy running
LR= Light running
D’
C
A
D
© MAN Diesel A/S
L/8554-2.0/0601 (3250/BGJ)
Service Data over a Period af a Year
Returned from a Single Screw Container Ship
BHP
21,000
18,000
15,000
12,000
9,000
6,000
76 80 92
84 96
88 100
Shipspeed
knots
Shaft power
Cleanhull and draught D
D = 6.50 m
D = 5.25m
D = 7.75 m
Source: Lloyd's Register
MEAN
F
A
Averageweather 3%
E
xtremely good weather 0%
E
xtremely bad weather 6%
Propeller speed
Apparent slip
10%
6%
Heavy
running
2%
-2%
13
16
19
22
C
B
A
C
B
A
r/min
© MAN Diesel A/S
L/7606-5.1/0201 (3250/BGJ)
Measured Relationship Between Power,
Propeller and Ship Speed During Seatrial
Propeller curve
"tail w
ind"
Reefer ship
SMCR: 13,000 kWx 105 r/min
Wind velocity : 2.5 m/s
W
ave height : 4 m
Propeller/engine speed
100
90
105
85
100
95
80
101
99 103 105 % SMCR
102
97 98
96 104
Heavy
running
Engine
"propeller curve"
Propeller curve
"head
w
ind"
Propeller design
light running
*20.5
21.5
*
20.5
*
*
20.8
*21.2
*22.0
21.1 *
7
5
1
3
4
Shaft power, % SMCR
22.3 *
21.8
*
SMCR
*21.1
Head wind
T
ail wind
(Logarithmic scales)
© MAN Diesel A/S
L/71325-5.1/0701 (3250/BGJ)
Engine Load Diagram -
Acceleration
80 100 105
85
50
75
65 90 95
60
60
70
80
90
mep
110%
Engine speed, % A
40
100
Engine shaft power, % A
100%
90%
80%
70%
60%
O
A 100% referencepoint
M Specified engineMCR
O Optimising point
110
Logarithmic Scale
© MAN Diesel A/S
L/6847-9.1/0701 (3250/BGJ)
Relationship Between Linear Functions
Using Linear Scales and Power Functions
Using Logarithmic Scales
A. Straight lines
in linear scales
a
2
1 2
0
1
0
b
y = ax + b
B. Power function curves
logarithmic scales
in
P= engine power
c = constant
n = enginespeed
log(P) = i x log(n)+ log(c)
y = ax + b
P= c x ni
i = 1
i = 2
i = 3
y = log (P)
i = 0
X= log (n)
y = log (P)= log (c x n )
i
y
© MAN Diesel A/S
L/5417-3.1/0701 (3250/BGJ)
Ship Propulsion Running
Points and Engine Layout
Engine speed
Power
MP
Seamargin
(15% of PD)
2 6
SP
2 Heavy propeller curve-
hull and heavy weather
6 Light propeller curve-
hull and calmweather
MP: Specified propulsionMCRpoint
SP: Servicepropulsion point
PD: Propeller designpoint
PD`: Alternativepropeller design point
LR
: Light running factor
HR
: Heavy running
fouled
clean
HR
PD´
PD
E
nginemargin
(10% of MP)
© MAN Diesel A/S
L/7116-6.1/0701 (3250/BGJ)
Engine Load Diagram
Load diagram
Line 1: Propeller curve through
optimising point (O)
layout curvefor engine
Line 2: Heavy propeller curve
fouled hull and heavy seas
Line 3: Speed limit
Line 4: T
orque/speed limit
Line 5: Mean effective
pressurelimit
Line 6: Light propeller curve clean
hull and calmweather
layout curvefor propeller
Line 7: Power limit for
continuous running
Line 8: Overload limit
Line 9: Seatrial speed limit
Line 10: Constant mean effective pressure(mep) lines
80 100 105
85
50
70 75
65 90 95
60
60
70
80
90
mep
110%
40
2
4
9
7
8
5
100
Engine shaft power, % A
6
100%
90%
80%
70%
60%
1
10
3
O
A 100% reference point
M Specified engine MCR
O Optimising point
110
© MAN Diesel A/S
L/7402-7.1/0701 (3250/BGJ)
Example 1 with FPP -
Engine Layout without SG (normal case)
Point Aof load diagram
Line 1: Propeller curve through
optimising point (O)
Line 7: Constant power line through
specified MCR(M)
Point A: Intersection between
lines 1 and 7
Power
A=M=MP
Propulsion and engine service
curve for heavy running
7
S=SP
O
2
1
6
M: Specified MCR
of engine
S: Continuous service
rating of engine
O: Optimising point
of engine
A: Reference point
of load diagram
© MAN Diesel A/S
L/7403-9.1/0701 (3250/BGJ)
Example 1 with FPP -
Load Diagram without SG (normal case)
Engine speed
A=M
Propulsion and engine service
curve for heavy running
3.3% A
5
6
2
4
Power 1
S
7
O
5
6
3
4 1
7
2
5% A
5% L1
M: Specified MCR
of engine
S: Continuous service
rating of engine
O: Optimising point
of engine
A: Reference point
of load diagram
© MAN Diesel A/S
L/7404-0.1/0701 (3250/BGJ)
Example 2 with FPP -
Engine Layout without SG (special case)
Point Aof load diagram
Line 1: Propeller curve through
optimising point (O)
Line 7: Constant power line through
specified MCR(M)
Point A: Intersection between
lines 1 and 7 Engine speed
M=MP
Propulsion and
engine service curve
for heavy running
7
S=SP
6
2
1
O
Power
A
M: Specified MCR
of engine
S: Continuous service
rating of engine
O: Optimising point
of engine
A: Reference point
of load diagram
© MAN Diesel A/S
L/7405-2.1/0701 (3250/BGJ)
Example 2 with FPP -
Load Diagram without SG (special case)
M
Propulsion and engine service
curve for heavy running
3.3% A
5
6
2
4
1
S
7
5
6
3
4 1
7
2
5% A
A
O
Engine speed
Power
M: Specified MCR
of engine
S: Continuous service
rating of engine
O: Optimising point
of engine
A: Reference point
of load diagram
© MAN Diesel A/S
L/7406-4.1/0701 (3250/BGJ)
Example 3 with FPP -
Engine Layout with SG (normal case)
Point Aof load diagram
Line 1: Propeller curve through
optimising point (O)
Line 7: Constant power line through
specified MCR(M)
Point A: Intersection between
lines 1 and 7
M: Specified MCR
of engine
S: Continuous service
rating of engine
O: Optimising point
of engine
A: Reference point
of load diagram
S
h
a
f
t
g
e
n
e
r
a
t
o
r
Propulsion curve
for heavy running
O
7
1 2
Engine service curve
for heavy running
MP
SG
6
S
SG
SP
Power A=M
© MAN Diesel A/S
L/7407-6.1/0701 (3250/BGJ)
Example 3 with FPP -
Load Diagram with SG (normal case)
S
h
a
f
t
g
e
n
e
r
a
t
o
r
Propulsion curve
for heavy running
3.3% A
S
5
6
2
4
1
7
O
5
6
3
4 1
7
2
5% A
5% L1
A=M
Engine service curve
for heavy running
MP
SP
Engine speed
Power
M: Specified MCR
of engine
S: Continuous service
rating of engine
O: Optimising point
of engine
A: Reference point
of load diagram SG
SG
© MAN Diesel A/S
L/7408-8.1/0701 (3250/BGJ)
Example 4 with FPP -
Engine Layout with SG (special case)
S
h
a
f
t
g
e
n
e
r
a
t
o
r
Propulsion curve
for heavy running
SG
6
1
7
2
M
Engine service curve
for heavy running
MP
SP
A
M´
Power
M: Specified MCR
of engine
S: Continuous service
rating of engine
O: Optimising point
of engine
A: Reference point
of load diagram
© MAN Diesel A/S
L/7438-7.1/0701 (3250/BGJ)
Example 4 with FPP -
Load Diagram with SG (special case)
S
h
a
f
t
g
e
n
e
r
a
t
o
r
Propulsion curve
for heavy running
3.3% A
SG
5
6
2
4
1
7
6
3
1
7
2
5% A
5% L1
Engine service curve
for heavy running
SP
A
M´
5
4
Engine speed
Power
M: Specified MCR
of engine
S: Continuous service
rating of engine
O: Optimising point
of engine
A: Reference point
of load diagram
© MAN Diesel A/S
L/7439-9.1/0701 (3250/BGJ)
Example 5 with FPP -
Load Diagram with SG (special case)
© MAN Diesel A/S
L/7440-9.1/0701 (3250/BGJ)
Influence of Different Types of Ship
Resistance on the Continuous Service Rating
8
5
9
3
2
1
7
4
90
85
95
75
70
85
105
100
110
80
90 95 100 105
S3
80 110
SP
100% ref. point (A)
Specified MCR(M)
6
S2
S1
S0
PD
Engine speed, % of A
A=M
Engine shaft power, % of A
PD: Propeller design point, clean hull and calmweather
S0: Clean hull and calmweather, loaded ship
S1: Clean hull and calmweather, ballast (trial)
S2: Clean hull and 15% seamargin, loaded ship
SP: Fouled hull and heavy weather, loaded ship
S3: V
ery heavy seaand wave resistance
Continuous service rating for propulsion with
a power equal to 90% specified MCR, based on:
Line1: Propeller curvethrough point A=M
Line2: Heavy propeller curve, fouled
hull and heavy weather, loaded ship
Line6: Light propeller curve, clean hull and
calmweather, loaded ship
Line6.1: Propeller curve, clean hull and
calmweather, ballast (trial)
Line6.2: Propeller curve, clean hull and
15% seamargin, loaded ship
Line6.3: Propeller curve, very heavy sea
and wave resistance

More Related Content

PDF
Mechanics of Materials 8th Edition R.C. Hibbeler
PPT
Ship handling
PPTX
Strength of materials
PDF
Guide for the design of crane supporting steel structures
PPTX
faradays law and its applications ppt
PPT
1.1 bearing types and appl. guidelines
Mechanics of Materials 8th Edition R.C. Hibbeler
Ship handling
Strength of materials
Guide for the design of crane supporting steel structures
faradays law and its applications ppt
1.1 bearing types and appl. guidelines

What's hot (20)

PDF
PDF
double bottom structure
DOCX
Determination of principal particulars of ship
PPT
Propeller and Rudder
PPT
Ship Loads and stresses
PPTX
Ship stresses
PPT
Ship Structural Components
PDF
Introduction to Ship Resistance and Propulsion.pdf
PPTX
Propulsion Systems Of Ships
PDF
Steering gear system
PDF
Ship Construction by Jayan Pillai
DOCX
Scantling of Ship
PDF
Ship Propulsion system
PPT
2 classification societies
PPS
Ism curso conocimientos generales 2 construcción
PPT
Ship Rudders
PDF
Surveys of Merchant Ships
DOCX
CONTAINER SHIP DESIGN REPORT
PPTX
Steering gears and rudders -propellers
PPTX
Ship design project Final presentation
double bottom structure
Determination of principal particulars of ship
Propeller and Rudder
Ship Loads and stresses
Ship stresses
Ship Structural Components
Introduction to Ship Resistance and Propulsion.pdf
Propulsion Systems Of Ships
Steering gear system
Ship Construction by Jayan Pillai
Scantling of Ship
Ship Propulsion system
2 classification societies
Ism curso conocimientos generales 2 construcción
Ship Rudders
Surveys of Merchant Ships
CONTAINER SHIP DESIGN REPORT
Steering gears and rudders -propellers
Ship design project Final presentation
Ad

Similar to basis-propulsion.pdf (20)

PPTX
Tugas 3 Contoh Perhitungan Pompa.pptx
PDF
IRJET- Theoretical Analysis of Rocker Arm
PDF
3-chapter-2.fgpdfffffgggggfsssfgggdfgfgggsd
PDF
12 h7 sist-electrico-serie-4er (1)
PDF
IRJET- Study on Different Estimation Methods of Propulsion Power for 60 Mts O...
PDF
Радиально-поршневые гидромоторы Hägglunds CA Bosch Rexroth
PPTX
MD II Fall 2024 week 7ggregrehgdehhdh.pptx
PPTX
Nir_pres_Hagana_v1
PDF
Caterpillar cat c18 industrial engine (prefix n8 f) service repair manual (n8...
PDF
Caterpillar cat c18 industrial engine (prefix n8 f) service repair manual (n8...
PDF
Caterpillar cat c18 industrial engine (prefix n8 f) service repair manual (n8...
PPSX
Masson Marine 2011
PPT
UNIT IV design of Electrical Apparatus
PPTX
NAME 338 ( Ship Design Project and Presentation )
PDF
Caterpillar Cat C18 Industrial Engine (Prefix N8F) Service Repair Manual Inst...
PDF
Caterpillar Cat C18 Industrial Engine (Prefix N8F) Service Repair Manual Inst...
PDF
Caterpillar Cat C18 Industrial Engine (Prefix N8F) Service Repair Manual Inst...
PDF
Caterpillar Cat C18 Industrial Engine (Prefix N8F) Service Repair Manual Inst...
PDF
Caterpillar Cat C18 Industrial Engine (Prefix N8F) Service Repair Manual Inst...
PDF
Havila subsea.pdf
Tugas 3 Contoh Perhitungan Pompa.pptx
IRJET- Theoretical Analysis of Rocker Arm
3-chapter-2.fgpdfffffgggggfsssfgggdfgfgggsd
12 h7 sist-electrico-serie-4er (1)
IRJET- Study on Different Estimation Methods of Propulsion Power for 60 Mts O...
Радиально-поршневые гидромоторы Hägglunds CA Bosch Rexroth
MD II Fall 2024 week 7ggregrehgdehhdh.pptx
Nir_pres_Hagana_v1
Caterpillar cat c18 industrial engine (prefix n8 f) service repair manual (n8...
Caterpillar cat c18 industrial engine (prefix n8 f) service repair manual (n8...
Caterpillar cat c18 industrial engine (prefix n8 f) service repair manual (n8...
Masson Marine 2011
UNIT IV design of Electrical Apparatus
NAME 338 ( Ship Design Project and Presentation )
Caterpillar Cat C18 Industrial Engine (Prefix N8F) Service Repair Manual Inst...
Caterpillar Cat C18 Industrial Engine (Prefix N8F) Service Repair Manual Inst...
Caterpillar Cat C18 Industrial Engine (Prefix N8F) Service Repair Manual Inst...
Caterpillar Cat C18 Industrial Engine (Prefix N8F) Service Repair Manual Inst...
Caterpillar Cat C18 Industrial Engine (Prefix N8F) Service Repair Manual Inst...
Havila subsea.pdf
Ad

Recently uploaded (20)

PPTX
Graph Data Structures with Types, Traversals, Connectivity, and Real-Life App...
PDF
Level 2 – IBM Data and AI Fundamentals (1)_v1.1.PDF
PPT
Total quality management ppt for engineering students
PDF
SMART SIGNAL TIMING FOR URBAN INTERSECTIONS USING REAL-TIME VEHICLE DETECTI...
PDF
PREDICTION OF DIABETES FROM ELECTRONIC HEALTH RECORDS
PPTX
Management Information system : MIS-e-Business Systems.pptx
PPT
INTRODUCTION -Data Warehousing and Mining-M.Tech- VTU.ppt
PPTX
Module 8- Technological and Communication Skills.pptx
PPTX
Sorting and Hashing in Data Structures with Algorithms, Techniques, Implement...
PDF
22EC502-MICROCONTROLLER AND INTERFACING-8051 MICROCONTROLLER.pdf
PDF
737-MAX_SRG.pdf student reference guides
PDF
Accra-Kumasi Expressway - Prefeasibility Report Volume 1 of 7.11.2018.pdf
PDF
distributed database system" (DDBS) is often used to refer to both the distri...
PDF
Categorization of Factors Affecting Classification Algorithms Selection
PPTX
Current and future trends in Computer Vision.pptx
PPTX
tack Data Structure with Array and Linked List Implementation, Push and Pop O...
PPTX
CyberSecurity Mobile and Wireless Devices
PDF
UNIT no 1 INTRODUCTION TO DBMS NOTES.pdf
PDF
Soil Improvement Techniques Note - Rabbi
PPTX
Fundamentals of Mechanical Engineering.pptx
Graph Data Structures with Types, Traversals, Connectivity, and Real-Life App...
Level 2 – IBM Data and AI Fundamentals (1)_v1.1.PDF
Total quality management ppt for engineering students
SMART SIGNAL TIMING FOR URBAN INTERSECTIONS USING REAL-TIME VEHICLE DETECTI...
PREDICTION OF DIABETES FROM ELECTRONIC HEALTH RECORDS
Management Information system : MIS-e-Business Systems.pptx
INTRODUCTION -Data Warehousing and Mining-M.Tech- VTU.ppt
Module 8- Technological and Communication Skills.pptx
Sorting and Hashing in Data Structures with Algorithms, Techniques, Implement...
22EC502-MICROCONTROLLER AND INTERFACING-8051 MICROCONTROLLER.pdf
737-MAX_SRG.pdf student reference guides
Accra-Kumasi Expressway - Prefeasibility Report Volume 1 of 7.11.2018.pdf
distributed database system" (DDBS) is often used to refer to both the distri...
Categorization of Factors Affecting Classification Algorithms Selection
Current and future trends in Computer Vision.pptx
tack Data Structure with Array and Linked List Implementation, Push and Pop O...
CyberSecurity Mobile and Wireless Devices
UNIT no 1 INTRODUCTION TO DBMS NOTES.pdf
Soil Improvement Techniques Note - Rabbi
Fundamentals of Mechanical Engineering.pptx

basis-propulsion.pdf

  • 1. © MAN Diesel A/S L/7396-6.0/0601 (3250/BGJ) Load Lines - Freeboard Draught T T ropical S Summer W W inter W NA W inter - theNorth Atlantic D L D: Freeboard draught Seawater Freshwater Danish load mark TF F D Freeboard deck
  • 2. © MAN Diesel A/S L/7397-8.0/0601 (3250/BGJ) Hull Dimensions Length between perpendiculars . . . : L Length on waterline. . . . . . . . . . . . . : L Length o : L Breadth on waterline . . . . . . . . . . . .: B Draught . . . . . . . . . . . . . . . . . . . . . . : D= 1/2 (D +D ) Midship section area . . . . . . . . . . . .: A PP WL OA WL m F A verall . . . . . . . . . . . . . . . . .
  • 3. © MAN Diesel A/S L/7399-1.0/0601 (3250/BGJ) Hull Coefficients of a Ship LW L AW L BW L D AM W aterlineplane LPP , Midship section coefficient . . . . . . V olume of displacement. . . . . . . W aterlinearea. . . . . . . . . . . . . . . Block coefficient L based. . . . . W aterplanearea coefficient. . . . . WL Longitudinal prismatic coefficient : : : = : = : = : = A C C C C W L B W L M P L B WL x x D WL B x D WL A x L M WL L B WL WL x AWL AM
  • 4. © MAN Diesel A/S L/7238-6.0/0601 (3250/BGJ) Total Ship Towing Resistance RT = RF + RW + RE + RA RF V RA V RW RE Ship speed V % of R T T ypeof resistance R A R W R E R F = Friction = W ave = Eddy = Air High speed ship Low speed ship 45- 90 40- 5 5- 3 10- 2
  • 5. © MAN Diesel A/S L/7763-3.0/0601 (3250/BGJ) The “Wave Wall” Ship Speed Barrier 20 knots Normal service point Ship speed New service point kW
  • 6. © MAN Diesel A/S L/7400-3.0/0601 (3250/BGJ) The Propulsion of a Ship - Theory Efficiencies 1 t 1 w Relativerotativeefficiency . . . . . : Propeller efficiency - open water : Propeller efficiency - behind hull : = Propulsiveefficiency. . . . . . . . . : = Shaft efficiency. . . . . . . . . . . . . : T otal efficiency . . . . . . . . . . . . . . : _ _ x x Power Effective(T owing)power. . . . . . . : P = R V bythepropeller to water . . . . . . : P = P / Power delivered to propeller. . . . : P = P / Brakepower of main engine . . . : P = P / E T T E D T B D x Hull efficiency . . . . . . . . . . . . . . . : = Thrust power delivered H H B D S T B S B 0 R T ---- ---- x ---- x ---- x x x x x = = = = P P P P B T D B P P P P E E T D H S H 0 R S H R 0 B Velocities Ship’s speed . . . . . . . . . . . . . . . . : V Arriving water velocity to propeller. : V Effectivewakevelocity . . . . . . . . . . : V = V_V A W A Forces T owing resistance. . . . . . . . . . . . . : R Thrust force. . . . . . . . . . . . . . . . . : T Thrust deduction fraction . . . . . . . : F= T_R T_R T T T T Thrust deduction coefficient . . . . . : t = W akefraction coefficient. . . . . . . . : w = (Speed of advanceof propeller) V_V V A VA V VW PD PE PT PB V T RT F
  • 7. © MAN Diesel A/S L/7239-8.0/0601 (3250/BGJ) Propeller Types Controllable pitch propeller (CP-Propeller) Fixed pitch propeller (FP-Propeller) Monobloc with fixed propeller blades (copper alloy) Hub with a mechanismfor control of the pitch of the blades (hydraulically activated)
  • 8. © MAN Diesel A/S L/7401-5.1/0201 (3250/BGJ) Obtainable Propeller Efficiency - Open Water 0.3 0.2 0.4 0 0.6 0.1 0.6 0.5 V n xd A Advance number J = 0.4 0.5 0.2 0.3 0 0.1 0 0.7 Propeller efficiency Reefers Container ships Small tankers 20,000 DW T Large tankers >150,000 DW T n (revs./s ) 1.66 2.00 0.7
  • 9. © MAN Diesel A/S L/9802-8.1/0201 (3250/BGJ) Propeller Design - Influence of Diameter and Pitch 110 120 100 r/min 130 Shaft power 80 90 8,800 70 8,700 8,900 9,100 8,600 8,500 9,400 0.95 9,200 9,300 9,000 d =Propeller diameter p/d =P itch/diameter ratio Power and speed curve for various propeller diameters d with optimump/d Propeller speed Power and speed curve for thegiven propeller diameter d = 7.2mwith different p/d 80,000 dwt crudeoil tanker Design draught = 12.2 m Ship speed = 14.5 kn 9,500 0.90 0.85 0.80 0.71 1.00 0.60 0.75 d 0.65 0.55 6.8 m p/d 0.67 7.2 m 6.6 m 7.4 m 7.0 m 0.70 0.68 0.69 0.50 p/d p/d d kW
  • 10. © MAN Diesel A/S L/6846-7.0/0701 (3250/BGJ) Movement of a Ship´s Propeller, with Slip Sx p x n Vor VA Pitch p n 0.7 x r r d p x n Slip The apparent slip ratio : S = = 1 _ A The real slip ratio : S = = 1 _ R p x n _V V p x n p x n A A p x n _V V p x n p x n
  • 11. © MAN Diesel A/S L/6645-5.0/0701 (3250/BGJ) Movement of a Corkscrew, without Slip V elocity of corkscrew: V= p x n Pitch p Wine bottle Corkscrew Cork V n
  • 12. © MAN Diesel A/S L/5537-1.1/0201 (3250/BGJ) Ship Speed Performance at 15% Sea Margin (Logarithmic scales) 15.6 knots 115% power 15.0 knots 100% power 15% Sea margin Power Ship speed Propeller curve for clean hull and calmweather 15.0 knots 115% power B A
  • 13. © MAN Diesel A/S L/5408-5.1/0201 (3250/BGJ) Propeller Speed Performance at 15% Sea Margin 15.6 knots 115% power 15.0 knots 100% power 15% Sea margin Slip Propeller speed Propeller curve for clean hull and calmweather 15.0 knots 115% power Power (Logarithmic scales) A B’ B
  • 14. © MAN Diesel A/S L/5481-7.1/0201 (3250/BGJ) Propeller Speed Performance at Large Extra Ship Resistance (Logarithmic scales) 15.0 knots 100% power 12.3 knots 50% power Propeller curve for clean hull and calmweather 12.3 knots 100% power Propeller speed Propeller curve for fouled hull and heavy seas LR Power 10.0 knots 50% power Slip HR HR= Heavy running LR= Light running D’ C A D
  • 15. © MAN Diesel A/S L/8554-2.0/0601 (3250/BGJ) Service Data over a Period af a Year Returned from a Single Screw Container Ship BHP 21,000 18,000 15,000 12,000 9,000 6,000 76 80 92 84 96 88 100 Shipspeed knots Shaft power Cleanhull and draught D D = 6.50 m D = 5.25m D = 7.75 m Source: Lloyd's Register MEAN F A Averageweather 3% E xtremely good weather 0% E xtremely bad weather 6% Propeller speed Apparent slip 10% 6% Heavy running 2% -2% 13 16 19 22 C B A C B A r/min
  • 16. © MAN Diesel A/S L/7606-5.1/0201 (3250/BGJ) Measured Relationship Between Power, Propeller and Ship Speed During Seatrial Propeller curve "tail w ind" Reefer ship SMCR: 13,000 kWx 105 r/min Wind velocity : 2.5 m/s W ave height : 4 m Propeller/engine speed 100 90 105 85 100 95 80 101 99 103 105 % SMCR 102 97 98 96 104 Heavy running Engine "propeller curve" Propeller curve "head w ind" Propeller design light running *20.5 21.5 * 20.5 * * 20.8 *21.2 *22.0 21.1 * 7 5 1 3 4 Shaft power, % SMCR 22.3 * 21.8 * SMCR *21.1 Head wind T ail wind (Logarithmic scales)
  • 17. © MAN Diesel A/S L/71325-5.1/0701 (3250/BGJ) Engine Load Diagram - Acceleration 80 100 105 85 50 75 65 90 95 60 60 70 80 90 mep 110% Engine speed, % A 40 100 Engine shaft power, % A 100% 90% 80% 70% 60% O A 100% referencepoint M Specified engineMCR O Optimising point 110 Logarithmic Scale
  • 18. © MAN Diesel A/S L/6847-9.1/0701 (3250/BGJ) Relationship Between Linear Functions Using Linear Scales and Power Functions Using Logarithmic Scales A. Straight lines in linear scales a 2 1 2 0 1 0 b y = ax + b B. Power function curves logarithmic scales in P= engine power c = constant n = enginespeed log(P) = i x log(n)+ log(c) y = ax + b P= c x ni i = 1 i = 2 i = 3 y = log (P) i = 0 X= log (n) y = log (P)= log (c x n ) i y
  • 19. © MAN Diesel A/S L/5417-3.1/0701 (3250/BGJ) Ship Propulsion Running Points and Engine Layout Engine speed Power MP Seamargin (15% of PD) 2 6 SP 2 Heavy propeller curve- hull and heavy weather 6 Light propeller curve- hull and calmweather MP: Specified propulsionMCRpoint SP: Servicepropulsion point PD: Propeller designpoint PD`: Alternativepropeller design point LR : Light running factor HR : Heavy running fouled clean HR PD´ PD E nginemargin (10% of MP)
  • 20. © MAN Diesel A/S L/7116-6.1/0701 (3250/BGJ) Engine Load Diagram Load diagram Line 1: Propeller curve through optimising point (O) layout curvefor engine Line 2: Heavy propeller curve fouled hull and heavy seas Line 3: Speed limit Line 4: T orque/speed limit Line 5: Mean effective pressurelimit Line 6: Light propeller curve clean hull and calmweather layout curvefor propeller Line 7: Power limit for continuous running Line 8: Overload limit Line 9: Seatrial speed limit Line 10: Constant mean effective pressure(mep) lines 80 100 105 85 50 70 75 65 90 95 60 60 70 80 90 mep 110% 40 2 4 9 7 8 5 100 Engine shaft power, % A 6 100% 90% 80% 70% 60% 1 10 3 O A 100% reference point M Specified engine MCR O Optimising point 110
  • 21. © MAN Diesel A/S L/7402-7.1/0701 (3250/BGJ) Example 1 with FPP - Engine Layout without SG (normal case) Point Aof load diagram Line 1: Propeller curve through optimising point (O) Line 7: Constant power line through specified MCR(M) Point A: Intersection between lines 1 and 7 Power A=M=MP Propulsion and engine service curve for heavy running 7 S=SP O 2 1 6 M: Specified MCR of engine S: Continuous service rating of engine O: Optimising point of engine A: Reference point of load diagram
  • 22. © MAN Diesel A/S L/7403-9.1/0701 (3250/BGJ) Example 1 with FPP - Load Diagram without SG (normal case) Engine speed A=M Propulsion and engine service curve for heavy running 3.3% A 5 6 2 4 Power 1 S 7 O 5 6 3 4 1 7 2 5% A 5% L1 M: Specified MCR of engine S: Continuous service rating of engine O: Optimising point of engine A: Reference point of load diagram
  • 23. © MAN Diesel A/S L/7404-0.1/0701 (3250/BGJ) Example 2 with FPP - Engine Layout without SG (special case) Point Aof load diagram Line 1: Propeller curve through optimising point (O) Line 7: Constant power line through specified MCR(M) Point A: Intersection between lines 1 and 7 Engine speed M=MP Propulsion and engine service curve for heavy running 7 S=SP 6 2 1 O Power A M: Specified MCR of engine S: Continuous service rating of engine O: Optimising point of engine A: Reference point of load diagram
  • 24. © MAN Diesel A/S L/7405-2.1/0701 (3250/BGJ) Example 2 with FPP - Load Diagram without SG (special case) M Propulsion and engine service curve for heavy running 3.3% A 5 6 2 4 1 S 7 5 6 3 4 1 7 2 5% A A O Engine speed Power M: Specified MCR of engine S: Continuous service rating of engine O: Optimising point of engine A: Reference point of load diagram
  • 25. © MAN Diesel A/S L/7406-4.1/0701 (3250/BGJ) Example 3 with FPP - Engine Layout with SG (normal case) Point Aof load diagram Line 1: Propeller curve through optimising point (O) Line 7: Constant power line through specified MCR(M) Point A: Intersection between lines 1 and 7 M: Specified MCR of engine S: Continuous service rating of engine O: Optimising point of engine A: Reference point of load diagram S h a f t g e n e r a t o r Propulsion curve for heavy running O 7 1 2 Engine service curve for heavy running MP SG 6 S SG SP Power A=M
  • 26. © MAN Diesel A/S L/7407-6.1/0701 (3250/BGJ) Example 3 with FPP - Load Diagram with SG (normal case) S h a f t g e n e r a t o r Propulsion curve for heavy running 3.3% A S 5 6 2 4 1 7 O 5 6 3 4 1 7 2 5% A 5% L1 A=M Engine service curve for heavy running MP SP Engine speed Power M: Specified MCR of engine S: Continuous service rating of engine O: Optimising point of engine A: Reference point of load diagram SG SG
  • 27. © MAN Diesel A/S L/7408-8.1/0701 (3250/BGJ) Example 4 with FPP - Engine Layout with SG (special case) S h a f t g e n e r a t o r Propulsion curve for heavy running SG 6 1 7 2 M Engine service curve for heavy running MP SP A M´ Power M: Specified MCR of engine S: Continuous service rating of engine O: Optimising point of engine A: Reference point of load diagram
  • 28. © MAN Diesel A/S L/7438-7.1/0701 (3250/BGJ) Example 4 with FPP - Load Diagram with SG (special case) S h a f t g e n e r a t o r Propulsion curve for heavy running 3.3% A SG 5 6 2 4 1 7 6 3 1 7 2 5% A 5% L1 Engine service curve for heavy running SP A M´ 5 4 Engine speed Power M: Specified MCR of engine S: Continuous service rating of engine O: Optimising point of engine A: Reference point of load diagram
  • 29. © MAN Diesel A/S L/7439-9.1/0701 (3250/BGJ) Example 5 with FPP - Load Diagram with SG (special case)
  • 30. © MAN Diesel A/S L/7440-9.1/0701 (3250/BGJ) Influence of Different Types of Ship Resistance on the Continuous Service Rating 8 5 9 3 2 1 7 4 90 85 95 75 70 85 105 100 110 80 90 95 100 105 S3 80 110 SP 100% ref. point (A) Specified MCR(M) 6 S2 S1 S0 PD Engine speed, % of A A=M Engine shaft power, % of A PD: Propeller design point, clean hull and calmweather S0: Clean hull and calmweather, loaded ship S1: Clean hull and calmweather, ballast (trial) S2: Clean hull and 15% seamargin, loaded ship SP: Fouled hull and heavy weather, loaded ship S3: V ery heavy seaand wave resistance Continuous service rating for propulsion with a power equal to 90% specified MCR, based on: Line1: Propeller curvethrough point A=M Line2: Heavy propeller curve, fouled hull and heavy weather, loaded ship Line6: Light propeller curve, clean hull and calmweather, loaded ship Line6.1: Propeller curve, clean hull and calmweather, ballast (trial) Line6.2: Propeller curve, clean hull and 15% seamargin, loaded ship Line6.3: Propeller curve, very heavy sea and wave resistance