SlideShare a Scribd company logo
Introduction to Big Data:
Ecosystem, Tools, and
Applications
Faculty Development Program
Presented by: [Your Name]
Institution: [Your Institution Name]
Date: [Insert Date]
Objectives of the Session
• - Understand the concept and characteristics
of Big Data
• - Explore the Big Data ecosystem and
architecture
• - Learn about key tools and technologies
• - Examine real-world examples and use cases
• - Discuss applications in education, industry,
and research
What is Big Data?
• - Refers to datasets too large/complex for
traditional data tools
• - Sources: Social media, sensors, web data,
etc.
• - Goal: Extract meaningful insights and trends
5 Vs of Big Data
• 1. Volume: Massive amounts of data
• 2. Velocity: Speed of data
generation/processing
• 3. Variety: Different data types
• 4. Veracity: Quality and accuracy
• 5. Value: Insights extracted
Big Data vs Traditional Data
• Traditional Data vs Big Data
• - GBs to TBs vs TBs to ZBs
• - Structured vs Structured + Unstructured
• - Batch processing vs Real-time + Batch
• - RDBMS vs Hadoop, Spark, etc.
Big Data Architecture
• 1. Data Sources: Web, IoT, Apps, Logs
• 2. Ingestion Layer: Kafka, Flume, Sqoop
• 3. Storage Layer: HDFS, NoSQL
• 4. Processing Layer: Spark, MapReduce
• 5. Analytics Layer: Hive, Pig
• 6. Visualization: Tableau, Power BI
Big Data Ecosystem Overview
• - Storage: HDFS, Amazon S3
• - Processing: Hadoop, Spark
• - Streaming: Kafka, Flink
• - NoSQL: MongoDB, Cassandra
• - Analytics: Hive, MLlib
• - Visualization: Tableau, Power BI
Important Big Data Tools
• - Storage: HDFS, S3
• - Batch: MapReduce, Spark
• - Streaming: Kafka, Flink
• - Querying: Hive, Pig
• - ML: Mahout, Spark MLlib
• - Visualization: Tableau, Kibana
Real-World Examples
• - Healthcare: Patient monitoring
• - Retail: Amazon recommendations
• - Banking: Fraud detection
• - Transportation: Uber optimization
• - Education: Performance analytics
Applications in Higher Education
• - Student dropout prediction
• - Curriculum personalization
• - Research trend analysis
• - Smart campus initiatives
• - Data-driven administration
Challenges in Big Data
• - Privacy and security
• - Skill gaps
• - Integration of diverse data
• - Ensuring data quality
Career Opportunities
• - Big Data Engineer
• - Data Scientist
• - ML Engineer
• - Data Analyst
• - Cloud Architect
Summary
• - Big Data enables smarter decisions
• - The ecosystem is evolving
• - Applications are cross-domain
• - Embrace Big Data in teaching, research,
administration
Q&A
• Let’s Discuss Your Thoughts and Questions!

More Related Content

PPTX
Unit 1 - Introduction to Big Data and hadoop.pptx
PDF
big data analytics introduction chapter 1
PPT
Lecture 5 - Big Data and Hadoop Intro.ppt
PPTX
Understanding the Critical Relationship Between Hadoop, Big Data, and Deep Le...
PPTX
PPT 1.1.4.pptx_PPT 1.1.4.pptx_PPT 1.1.4.pptx
PPT
Data analytics & its Trends
PDF
Big Data Analytics M1.pdf big data analytics
PPTX
Unit-1 -2-3- BDA PIET 6 AIDS.pptx
Unit 1 - Introduction to Big Data and hadoop.pptx
big data analytics introduction chapter 1
Lecture 5 - Big Data and Hadoop Intro.ppt
Understanding the Critical Relationship Between Hadoop, Big Data, and Deep Le...
PPT 1.1.4.pptx_PPT 1.1.4.pptx_PPT 1.1.4.pptx
Data analytics & its Trends
Big Data Analytics M1.pdf big data analytics
Unit-1 -2-3- BDA PIET 6 AIDS.pptx

Similar to Big_Data_Lecture_Presentation for dummies (20)

PPTX
big_data_presentation with creativitty__
PDF
PDF
Big Data for Data Scientists - WeCloudData
PPTX
PPT 1.1.2.pptx ehhllo hi hwi bdfhd dbdhu
PPT
data analytics lecture3 nice pdf to learn
PPT
data analytics lecture3.ppt
PPTX
bda ghhhhhftttyygghhjjuuujjjhhunit1.pptx
PPTX
Big Data is a term used to describe vast and complicated collections of data
PPTX
Big Data is a term used to describe vast and complicated collections of data
PDF
Big_data_1674238705.ppt is a basic background
PDF
Mastering Big Data: Tools, Techniques, and Applications
PDF
big data
PPTX
Big data: Descoberta de conhecimento em ambientes de big data e computação na...
PDF
Big-Data-Unveiled-A-Beginners-Guide-to-Modern-Data-Technologies
PPTX
Big data Intro - Presentation to OCHackerz Meetup Group
PDF
Lesson 1 introduction to_big_data_and_hadoop.pptx
PPTX
1. Introduction of big data in mca .pptx
PPTX
selected topics in CS-CHaaapteerobe.pptx
DOC
Big Data Technologies - Hadoop, Spark, and Beyond.doc
PPTX
bigdata.pptx
big_data_presentation with creativitty__
Big Data for Data Scientists - WeCloudData
PPT 1.1.2.pptx ehhllo hi hwi bdfhd dbdhu
data analytics lecture3 nice pdf to learn
data analytics lecture3.ppt
bda ghhhhhftttyygghhjjuuujjjhhunit1.pptx
Big Data is a term used to describe vast and complicated collections of data
Big Data is a term used to describe vast and complicated collections of data
Big_data_1674238705.ppt is a basic background
Mastering Big Data: Tools, Techniques, and Applications
big data
Big data: Descoberta de conhecimento em ambientes de big data e computação na...
Big-Data-Unveiled-A-Beginners-Guide-to-Modern-Data-Technologies
Big data Intro - Presentation to OCHackerz Meetup Group
Lesson 1 introduction to_big_data_and_hadoop.pptx
1. Introduction of big data in mca .pptx
selected topics in CS-CHaaapteerobe.pptx
Big Data Technologies - Hadoop, Spark, and Beyond.doc
bigdata.pptx
Ad

Recently uploaded (20)

PPTX
1_Introduction to advance data techniques.pptx
PDF
TRAFFIC-MANAGEMENT-AND-ACCIDENT-INVESTIGATION-WITH-DRIVING-PDF-FILE.pdf
PPTX
Introduction to Firewall Analytics - Interfirewall and Transfirewall.pptx
PPTX
mbdjdhjjodule 5-1 rhfhhfjtjjhafbrhfnfbbfnb
PDF
Foundation of Data Science unit number two notes
PPT
Miokarditis (Inflamasi pada Otot Jantung)
PDF
BF and FI - Blockchain, fintech and Financial Innovation Lesson 2.pdf
PPT
ISS -ESG Data flows What is ESG and HowHow
PDF
annual-report-2024-2025 original latest.
PPT
Quality review (1)_presentation of this 21
PPTX
Computer network topology notes for revision
PDF
Clinical guidelines as a resource for EBP(1).pdf
PPTX
Introduction to Basics of Ethical Hacking and Penetration Testing -Unit No. 1...
PPT
Reliability_Chapter_ presentation 1221.5784
PDF
Galatica Smart Energy Infrastructure Startup Pitch Deck
PPTX
Introduction to machine learning and Linear Models
PPTX
AI Strategy room jwfjksfksfjsjsjsjsjfsjfsj
PPTX
Database Infoormation System (DBIS).pptx
PDF
Recruitment and Placement PPT.pdfbjfibjdfbjfobj
PDF
168300704-gasification-ppt.pdfhghhhsjsjhsuxush
1_Introduction to advance data techniques.pptx
TRAFFIC-MANAGEMENT-AND-ACCIDENT-INVESTIGATION-WITH-DRIVING-PDF-FILE.pdf
Introduction to Firewall Analytics - Interfirewall and Transfirewall.pptx
mbdjdhjjodule 5-1 rhfhhfjtjjhafbrhfnfbbfnb
Foundation of Data Science unit number two notes
Miokarditis (Inflamasi pada Otot Jantung)
BF and FI - Blockchain, fintech and Financial Innovation Lesson 2.pdf
ISS -ESG Data flows What is ESG and HowHow
annual-report-2024-2025 original latest.
Quality review (1)_presentation of this 21
Computer network topology notes for revision
Clinical guidelines as a resource for EBP(1).pdf
Introduction to Basics of Ethical Hacking and Penetration Testing -Unit No. 1...
Reliability_Chapter_ presentation 1221.5784
Galatica Smart Energy Infrastructure Startup Pitch Deck
Introduction to machine learning and Linear Models
AI Strategy room jwfjksfksfjsjsjsjsjfsjfsj
Database Infoormation System (DBIS).pptx
Recruitment and Placement PPT.pdfbjfibjdfbjfobj
168300704-gasification-ppt.pdfhghhhsjsjhsuxush
Ad

Big_Data_Lecture_Presentation for dummies

  • 1. Introduction to Big Data: Ecosystem, Tools, and Applications Faculty Development Program Presented by: [Your Name] Institution: [Your Institution Name] Date: [Insert Date]
  • 2. Objectives of the Session • - Understand the concept and characteristics of Big Data • - Explore the Big Data ecosystem and architecture • - Learn about key tools and technologies • - Examine real-world examples and use cases • - Discuss applications in education, industry, and research
  • 3. What is Big Data? • - Refers to datasets too large/complex for traditional data tools • - Sources: Social media, sensors, web data, etc. • - Goal: Extract meaningful insights and trends
  • 4. 5 Vs of Big Data • 1. Volume: Massive amounts of data • 2. Velocity: Speed of data generation/processing • 3. Variety: Different data types • 4. Veracity: Quality and accuracy • 5. Value: Insights extracted
  • 5. Big Data vs Traditional Data • Traditional Data vs Big Data • - GBs to TBs vs TBs to ZBs • - Structured vs Structured + Unstructured • - Batch processing vs Real-time + Batch • - RDBMS vs Hadoop, Spark, etc.
  • 6. Big Data Architecture • 1. Data Sources: Web, IoT, Apps, Logs • 2. Ingestion Layer: Kafka, Flume, Sqoop • 3. Storage Layer: HDFS, NoSQL • 4. Processing Layer: Spark, MapReduce • 5. Analytics Layer: Hive, Pig • 6. Visualization: Tableau, Power BI
  • 7. Big Data Ecosystem Overview • - Storage: HDFS, Amazon S3 • - Processing: Hadoop, Spark • - Streaming: Kafka, Flink • - NoSQL: MongoDB, Cassandra • - Analytics: Hive, MLlib • - Visualization: Tableau, Power BI
  • 8. Important Big Data Tools • - Storage: HDFS, S3 • - Batch: MapReduce, Spark • - Streaming: Kafka, Flink • - Querying: Hive, Pig • - ML: Mahout, Spark MLlib • - Visualization: Tableau, Kibana
  • 9. Real-World Examples • - Healthcare: Patient monitoring • - Retail: Amazon recommendations • - Banking: Fraud detection • - Transportation: Uber optimization • - Education: Performance analytics
  • 10. Applications in Higher Education • - Student dropout prediction • - Curriculum personalization • - Research trend analysis • - Smart campus initiatives • - Data-driven administration
  • 11. Challenges in Big Data • - Privacy and security • - Skill gaps • - Integration of diverse data • - Ensuring data quality
  • 12. Career Opportunities • - Big Data Engineer • - Data Scientist • - ML Engineer • - Data Analyst • - Cloud Architect
  • 13. Summary • - Big Data enables smarter decisions • - The ecosystem is evolving • - Applications are cross-domain • - Embrace Big Data in teaching, research, administration
  • 14. Q&A • Let’s Discuss Your Thoughts and Questions!