SlideShare a Scribd company logo
Fickr: Nikos Koutoulas
Big Data & Career Paths
Marcos Colebrook
Univ. de La Laguna
@MColebrook
ETS Ingeniería Informática – 16.06.2014#BigDataCanarias
Contents
Big Data facts
Definition of Big Data
Techs & Tools
Data Science: skills and career
paths
Conclusions
16.06.2014 #BigDataCanarias: "Big Data & Career Paths" 2
Big Data everywhere!!
16.06.2014 3#BigDataCanarias: "Big Data & Career Paths"
Data vs. God
“In God we trust, all others
bring data.“
 W.E. Deming
16.06.2014 4#BigDataCanarias: "Big Data & Career Paths"
16.06.2014 #BigDataCanarias: "Big Data & Career Paths" 5
Source: M. Deutscher, When Will the World Reach 8 Zetabytes of Stored Data? (2012).
16.06.2014 #BigDataCanarias: "Big Data & Career Paths" 6
Source: Intel (2014), What Happens In An Internet Minute?
Big Data in Facebook
16.06.2014 #BigDataCanarias: "Big Data & Career Paths" 7
Google trends on Big Data
16.06.2014 #BigDataCanarias: "Big Data & Career Paths" 8
Hadoop
Big Data
Data
Analytics
Massive Data
Father to the ‘Big Data’ term
16.06.2014 #BigDataCanarias: "Big Data & Career Paths" 9
Source: S. Lohr (2013), The Origins of ‘Big Data’: An Etymological Detective Story.
John R. Mashey
Chief Scientist at Silicon Graphics
Big Data: think-tank Policy Exchange
Big Data: datasets that are too
awkward to work with using traditional,
hands-on database management tools.
Big Data Analytics: the process of
examining and interrogating big data
assets to derive insights of value for
decision making.
16.06.2014 10#BigDataCanarias: "Big Data & Career Paths"
Source: C. Yiu (2012), The Big Data Opportunity.
What is Big Data?
Big Data is a term that describes
large volumes of high velocity,
complex and variable data that
require advanced techniques and
technologies to enable the capture,
storage, distribution, management,
and analysis of the information.
16.06.2014 11#BigDataCanarias: "Big Data & Career Paths"
Source: Demystifying Big Data (2012), TechAmerica Foundation.
Big Data
16.06.2014 #BigDataCanarias: "Big Data & Career Paths" 12
Source: J. Bloem et al. (2012), VINT Research Report 1: Creating Clarity with Big Data.
Sources & types of data
16.06.2014 #BigDataCanarias: "Big Data & Career Paths" 13
Source: Big Data, BBVA Innovation Edge 2013 (from Booz & Company “Benefitting from Big Data: Leveraging Unstructured
Data Capabilities for Competitive Advantage”)
Big Data sources
16.06.2014 #BigDataCanarias: "Big Data & Career Paths" 14
Source: M. Schroeck et al. (2012), Analytics: The Real-World Use of Big Data.
The three Vs of Big Data
16.06.2014 #BigDataCanarias: "Big Data & Career Paths" 15
Source: D. Soubra (2012), The 3Vs that define Big Data.
The other “Vs” in Big Data
“ ’Vs’ like veracity,
validity, value,
viability, etc. are
aspirational qualities
of all data, not
definitional qualities of
Big Data.”
 Doug Laney
16.06.2014 #BigDataCanarias: "Big Data & Career Paths" 16
Source: D. Laney (2013), Batman on Big Data.
What is really important in Big Data?
“The Big in Big Data relates to
importance not size”
 Rafael Irizarry
16.06.2014 17#BigDataCanarias: "Big Data & Career Paths"
Source: R. Irizarry (2014), The Big in Big Data relates to importance not size.
My best “V”
16.06.2014 #BigDataCanarias: "Big Data & Career Paths" 18
Is Big Data a marketing campaign?
“If you’re like me, the mere mention of Big Data now
turns your stomach.
Nearly every business intelligence (BI) vendor,
publication, and event has Big Data flashing in neon
colors in Times Square dimensions.
Never before have I seen an idea in the BI space elicit
this much obsession. Why all the fuss? Why, indeed.
Essentially, Big Data is a marketing campaign, pure
and simple.”
 Stephen Few
16.06.2014 19#BigDataCanarias: "Big Data & Career Paths"
Gartner's 2013 Hype Cycle
16.06.2014 #BigDataCanarias: "Big Data & Career Paths" 20
Source: Gartner's 2013 Hype Cycle for Emerging Technologies
Big Data: McKinsey Report
 140.000 – 190.000 more deep analytical talent positions,
and 1.5 million data savvy managers needed to take full
advantage of Big Data in the USA.
 Techniques: data mining (cluster analysis, classification,
regression, etc), (un)supervised learning, ML, neural
networks, optimization, predictive modeling, statistics,
simulation, etc.
 Technologies: BI, Cassandra, DW, ETL, Hadoop, HBase,
Map/Reduce, R, RDBMS, etc.
 Potential of Big Data in five domains:
 Healthcare
 Public Sector
 Retail
 Manufacturing
 Telecommunications.
16.06.2014 #BigDataCanarias: "Big Data & Career Paths" 21
Source: J. Manyika, et al. (2012), Big Data: The Next Frontier for Innovation, Competition and Productivity.
16.06.2014 #BigDataCanarias: "Big Data & Career Paths" 22
Hadoop-NoSQL Market Forecast
2012-2017
16.06.2014 #BigDataCanarias: "Big Data & Career Paths" 23
Source: J. Kelly (2013), Hadoop-NoSQL Software And Services Market Forecast 2012-2017.
Big Data Techs
16.06.2014 #BigDataCanarias: "Big Data & Career Paths" 24
16.06.2014 #BigDataCanarias: "Big Data & Career Paths" 25
Data Tools
16.06.2014 #BigDataCanarias: "Big Data & Career Paths" 26
Source: J. King, R. Magoulas (2013), Data Science Salary Survey.
Salary vs. Data Tools
16.06.2014 #BigDataCanarias: "Big Data & Career Paths" 27
Source: J. King, R. Magoulas (2013), Data Science Salary Survey.
Median Salary vs. #Tools
16.06.2014 #BigDataCanarias: "Big Data & Career Paths" 28
Source: J. King, R. Magoulas (2013), Data Science Salary Survey.
Data Skills
16.06.2014 #BigDataCanarias: "Big Data & Career Paths" 29
Source: H.D. Harris et al. (2013), Analyzing the Analyzers
Data Role vs. Data Skills
16.06.2014 #BigDataCanarias: "Big Data & Career Paths" 30
Source: H.D. Harris et al. (2013), Analyzing the Analyzers
Big Data capabilities
16.06.2014 #BigDataCanarias: "Big Data & Career Paths" 31
Source: M. Schroeck et al. (2012), Analytics: The Real-World Use of Big Dat.
Market & jobs opportunity
 The demand for Big Data services spending
projected to reach $132,300M in 2015.
 By 2015, Big Data demand will reach 4.4 million
jobs globally, but only one-third of those jobs will
be filled.
 The demand for services will generate 550,000
external services jobs in the next 3 years.
 Another 40,000 jobs will be created at software
vendors in the next 3 years.
16.06.2014 32#BigDataCanarias: "Big Data & Career Paths"
Source: Big Data, BBVA Innovation Edge 2013 (from Gartner’s “Top Technology Predictions for 2013 and Beyond”)
Statiscian: a sexy job
“I keep saying the sexy job in the next ten years will be
statisticians.
People think I’m joking, but who would’ve guessed that
computer engineers would’ve been the sexy job of the
1990s?
The ability to take data—to be able to understand it, to
process it, to extract value from it, to visualize it, to
communicate it—that’s going to be a hugely
important skill in the next decades [...]”
 Hal Varian
Google’s Chief Economist
16.06.2014 33#BigDataCanarias: "Big Data & Career Paths"
Source: Hal Varian on how the Web challenges managers, McKinsey & Co. 2009.
Data Scientist
16.06.2014 #BigDataCanarias: "Big Data & Career Paths" 34
Source: Josh Wills (2012).
Data Science Venn Diagram
16.06.2014 #BigDataCanarias: "Big Data & Career Paths" 35
Source: Drew Conway (2010).
Data Scientist skill set: ACM
A data scientist requires an integrated
skill set spanning mathematics,
machine learning, artificial
intelligence, statistics, databases, and
optimization, along with a deep
understanding of the craft of problem
formulation to engineer effective
solutions.
16.06.2014 36#BigDataCanarias: "Big Data & Career Paths"
Source: V. Dhar (2013), Data Science and Prediction, Comm. of the ACM.
Intelligence over DIKW
16.06.2014 #BigDataCanarias: "Big Data & Career Paths" 37
Source: The Internet of Things 2010 at YouTube (1:40).
Data→Info→Knowledge→Understanding
→Wisdom!!
“There are known knowns.
These are things we know that
we know.
There are known unknowns.
That is to say, there are things
that we know we don't know.
But there are also unknown
unknowns. There are things we
don't know we don't know.”
 Donald Rumsfeld
16.06.2014 #BigDataCanarias: "Big Data & Career Paths" 38
Source: C. Somohano (2013), Big Data [sorry] & Data Science: What Does a Data Scientist Do?
BI vs. Data Discovery
16.06.2014 #BigDataCanarias: "Big Data & Career Paths" 39
Source: J. Kolb (2010), The New Reality for Business Intelligence and Big Data.
Data Science Teams
Data scientists as having the following qualities:
 Technical expertise: the best data scientists typically have
deep expertise in some scientific discipline.
 Curiosity: a desire to go beneath the surface and discover
and distill a problem down into a very clear set of
hypotheses that can be tested.
 Storytelling: the ability to use data to tell a story and to be
able to communicate it effectively.
 Cleverness: the ability to look at a problem in different,
creative ways.
16.06.2014 40#BigDataCanarias: "Big Data & Career Paths"
Source: D.J. Patil (2011), Building Data Science Team.
Data Science skills: Accenture
16.06.2014 #BigDataCanarias: "Big Data & Career Paths" 41
Source: J.G. Harris et al. (2013), The Team Solution to the Data Scientist Shortage.
Insight Data Science Fellow Program
 6 week, full-time, postdoctoral
data science training fellowship
in Silicon Valley or New York City.
 Self-directed, project-based
learning (no classes!).
 Software Engineering Best
Practices: Python, Git, Flask,
Javascript.
 Storing and Retrieving Data:
MySQL, Hadoop, Hive.
 Statistical Analysis & Machine
Learning: NumPy & SciPy,
Pandas, scikit-learn, R.
 Visualizing and
Communicating Results: D3
Javascript library, visualization
and presentation best practices.
16.06.2014 #BigDataCanarias: "Big Data & Career Paths" 42
Insight Data Engineering Fellow
Program
 6 week, full-time,
professional data
engineering training
fellowship in Silicon Valley,
California.
 Self-directed, project-based
learning (no classes!).
 Big Data Infrastructure.
 Extracting data.
 Transforming data.
 Loading / Storing data.
 Building visualizations
and dashboards.
16.06.2014 #BigDataCanarias: "Big Data & Career Paths" 43
Conclusions
 Big Data is still an emerging topic that gathers a lot of new
technologies, and needs some time to mature.
 But, on the other hand, it has a true market opportunity.
 Data Science / Engineering skills to acquire:
 Math/Statistics and business knowledge.
 Technical expertise: R, Python, Hadoop, Spark/Storm, D3,
Java/Javascript, ...
 Curiosity and cleverness.
 Storytelling: ability to communicate results.
 Trends:
 Data Visualization
 Predictive Modelling
 Social Analytics
 Data Mining / Machine Learning
 Forensic Computer Science
 Spark / Storm vs. Hadoop MapReduce
16.06.2014 44#BigDataCanarias: "Big Data & Career Paths"
References (1/3)
1. Big Data (2013), BBVA Innovation Edge (31 pp).
2. Demystifying Big Data: A Practical Guide To Transforming The Business
of Government (2012), TechAmerica Foundation (40 pp).
3. Gartner's 2013 Hype Cycle for Emerging Technologies Maps Out
Evolving Relationship Between Humans and Machines (2013), Gartner.
4. Hal Varian on How the Web Challenges Managers (2009), McKinsey &
Co.
5. Insight Data Engineering Fellows Program (2014).
6. Insight Data Science Fellows Program (2014).
7. The Internet of Things (2010), IBM Social Media.
8. What Happens In An Internet Minute? (2014), Intel.
16.06.2014 45#BigDataCanarias: "Big Data & Career Paths"
References (2/3)
9. J. Bloem, M. van Doorn, S. Duivestein, T. van Manen, E. van Ommeren (2012), VINT Research Report
1: Creating Clarity with Big Data, SOGETI.
10. D. Conway (2010), The Data Science Venn Diagram.
11. M. Deutscher, When Will the World Reach 8 Zetabytes of Stored Data? (2012), Silicon Angle (blog).
12. V. Dhar (2013), Data Science and Prediction, Communications of the ACM 56 (12), pp. 64-73.
13. S. Few (2012), Big Data, Big Ruse, Perceptual Edge - Visual Business Intelligence Newsletter (blog,
8 pp).
14. H.D. Harris, S.P. Murphy, M. Vaisman (2013), Analyzing the Analyzers, O’Reilly Media (40 pp).
15. J.G. Harris, N. Shetterley, A.E. Alter, K. Schnell (2013), The Team Solution to the Data Scientist
Shortage, Accenture Institute for High Performance.
16. R. Irizarry (2014), The Big in Big Data Relates to Importance Not Size, Simply Statistics (blog).
17. J. King, R. Magoulas (2013), Data Science Salary Survey, O’Reilly Media (23 pp).
18. J. Kelly (2013), Hadoop-NoSQL Software and Services Market Forecast 2012-2017, Wikibon (blog).
19. J. Kolb (2010), The New Reality for Business Intelligence and Big Data, Applied Data Labs (blog).
20. D. Laney (2013), Batman on Big Data, Gartner.
16.06.2014 46#BigDataCanarias: "Big Data & Career Paths"
References (3/3)
21. D. Laney (2013), Batman on Big Data, Gartner.
22. S. Lohr (2013), The Origins of ‘Big Data’: An Etymological Detective Story, The New York Times.
23. J. Manyika, M. Chui, B. Brown, J. Bughin, R. Dobbs, C. Roxburgh, A.H. Byers (2012), Big Data: The Next
Frontier for Innovation, Competition and Productivity, McKinsey Global Institute (156 pp).
24. R. Nair, A. Narayanan (2012), Benefitting from Big Data: Leveraging Unstructured Data Capabilities
for Competitive Advantage, Booz & Company (16 pp).
25. D.J. Patil (2011), Building Data Science Teams, O’Reilly Media (26 pp).
26. G. Piatetsky (2014), Big Data Landscape v3.0 Analyzed, KDnuggets (blog).
27. J. Podesta, P. Pritzker, E.J. Moniz, J. Holdren, J. Zients (2014), Big Data: Seizing Opportunities,
Preserving Values, The White House (79 pp).
28. M. Schroeck, R. Shockley, J. Smart, D. Romero-Morales, P. Tufano (2012), Analytics: The Real-World
Use of Big Data, IBM Global Services.
29. C. Somohano (2013), Big Data [sorry] & Data Science: What Does a Data Scientist Do?, Data Science
London (55 pp).
30. D. Soubra (2012), The 3Vs that define Big Data, Data Science Central (blog).
31. C. Yiu, The Big Data Opportunity (2012), Policy Exchange (36 pp).
32. P. Zikopoulos, C. Eaton, D. deRoos, T. Deutsch, G. Lapis (2012), Understanding Big Data, McGraw-Hill.
16.06.2014 47#BigDataCanarias: "Big Data & Career Paths"
Datos de contacto y cuestiones
¡¡Gracias!!
¿Preguntas?
 Datos de contacto:
 Marcos Colebrook
 Email: mcolesan@ull.edu.es
 Twitter: @MColebrook
 SlideShare: www.slideshare.net/MarcosColebrookSantamaria
16.06.2014 48#BigDataCanarias: "Big Data & Career Paths"

More Related Content

PDF
Modernizing to a Cloud Data Architecture
PDF
Data Architecture, Solution Architecture, Platform Architecture — What’s the ...
PPTX
What Is Data Science? Data Science Course - Data Science Tutorial For Beginne...
PDF
Exploring Levels of Data Literacy
PDF
Master Data Management - Aligning Data, Process, and Governance
PDF
DataEd Webinar: Implementing Successful Data Strategies - Developing Organiza...
PPTX
bigquery.pptx
PDF
The Importance of Master Data Management
Modernizing to a Cloud Data Architecture
Data Architecture, Solution Architecture, Platform Architecture — What’s the ...
What Is Data Science? Data Science Course - Data Science Tutorial For Beginne...
Exploring Levels of Data Literacy
Master Data Management - Aligning Data, Process, and Governance
DataEd Webinar: Implementing Successful Data Strategies - Developing Organiza...
bigquery.pptx
The Importance of Master Data Management

What's hot (20)

PDF
Data Strategy Best Practices
PDF
Data Quality Best Practices
PDF
Data Governance Best Practices, Assessments, and Roadmaps
PDF
Modern Data architecture Design
PDF
Data Management, Metadata Management, and Data Governance – Working Together
PDF
Building a Data Strategy – Practical Steps for Aligning with Business Goals
PDF
Make Data Work for You
PDF
Data Catalogs Are the Answer – What is the Question?
PDF
Data Catalog as a Business Enabler
PDF
Data Governance for the Executive
PDF
Who is a Data Scientist? | How to become a Data Scientist? | Data Science Cou...
PDF
Data Management Best Practices
PDF
Data strategy demistifying data
PPTX
Cloudera SDX
PPTX
Databricks on AWS.pptx
PPTX
Presentation on Big Data
PDF
Data modeling for the business
PDF
Apache Kafka With Spark Structured Streaming With Emma Liu, Nitin Saksena, Ra...
PDF
You Need a Data Catalog. Do You Know Why?
PPTX
data science
Data Strategy Best Practices
Data Quality Best Practices
Data Governance Best Practices, Assessments, and Roadmaps
Modern Data architecture Design
Data Management, Metadata Management, and Data Governance – Working Together
Building a Data Strategy – Practical Steps for Aligning with Business Goals
Make Data Work for You
Data Catalogs Are the Answer – What is the Question?
Data Catalog as a Business Enabler
Data Governance for the Executive
Who is a Data Scientist? | How to become a Data Scientist? | Data Science Cou...
Data Management Best Practices
Data strategy demistifying data
Cloudera SDX
Databricks on AWS.pptx
Presentation on Big Data
Data modeling for the business
Apache Kafka With Spark Structured Streaming With Emma Liu, Nitin Saksena, Ra...
You Need a Data Catalog. Do You Know Why?
data science
Ad

Viewers also liked (20)

PPT
Wave Hackathon Intro
PPT
R for the semantic web, Quesada useR 2009
PPT
A quick overview of the available reference managers2010
PDF
Irmles2010 Random indexing spaces to bridge the human and data webs
PDF
Data science-retreat-how it works plus advice for upcoming data scientists
PPTX
Wikibon Big Data Capital Markets Day 2014
PPTX
Hortonworks Big Data Career Paths and Training
PDF
Create your Big Data vision and Hadoop-ify your data warehouse
PDF
Steps towards a Data Value Chain
PDF
Introduction to Big Data
PDF
Big data & data science challenges and opportunities
PPTX
Future of data science as a profession
PDF
Becoming a Data Driven Organisation
PDF
인공지능은 의료를 어떻게 혁신할 것인가 (ver 2)
PDF
"Hadoop and Data Warehouse (DWH) – Friends, Enemies or Profiteers? What about...
PDF
Lecture on Data Science in a Data-Driven Culture
PPTX
How to reach a Data Driven culture
PPTX
Ppt shapes
PPTX
The big data value chain r1-31 oct13
PDF
Big Data Industry Insights 2015
Wave Hackathon Intro
R for the semantic web, Quesada useR 2009
A quick overview of the available reference managers2010
Irmles2010 Random indexing spaces to bridge the human and data webs
Data science-retreat-how it works plus advice for upcoming data scientists
Wikibon Big Data Capital Markets Day 2014
Hortonworks Big Data Career Paths and Training
Create your Big Data vision and Hadoop-ify your data warehouse
Steps towards a Data Value Chain
Introduction to Big Data
Big data & data science challenges and opportunities
Future of data science as a profession
Becoming a Data Driven Organisation
인공지능은 의료를 어떻게 혁신할 것인가 (ver 2)
"Hadoop and Data Warehouse (DWH) – Friends, Enemies or Profiteers? What about...
Lecture on Data Science in a Data-Driven Culture
How to reach a Data Driven culture
Ppt shapes
The big data value chain r1-31 oct13
Big Data Industry Insights 2015
Ad

Similar to #BigDataCanarias: "Big Data & Career Paths" (20)

PDF
Top 3 Interesting Careers in Big Data.pdf
PDF
Intro to Data Science
PPTX
Big Data and HR - Talk @SwissHR Congress
PDF
Getting started in data science (4:3)
PDF
Getting started in data science (4:3)
PDF
Getting started in Data Science (April 2017, Los Angeles)
PDF
Level Seven - Expedient Big Data presentation
PPTX
On Big Data
PDF
How can Data Science benefit your business?
PDF
Getting Started in Data Science
PDF
Thinkful DC - Intro to Data Science
PDF
00-01 DSnDA.pdf
PPT
01-introduction.ppt the paper that you can unless you want to join me because...
PPSX
Intro to Data Science Big Data
PPTX
Analytics for actuaries cia
PPTX
Advanced Business Analytics for Actuaries - Canadian Institute of Actuaries J...
PDF
Big Data and Internet of Things for Managers
PPTX
Big Data v. Small data - Rules to thumb for 2015
PDF
Big Data; Big Potential: How to find the talent who can harness its power
Top 3 Interesting Careers in Big Data.pdf
Intro to Data Science
Big Data and HR - Talk @SwissHR Congress
Getting started in data science (4:3)
Getting started in data science (4:3)
Getting started in Data Science (April 2017, Los Angeles)
Level Seven - Expedient Big Data presentation
On Big Data
How can Data Science benefit your business?
Getting Started in Data Science
Thinkful DC - Intro to Data Science
00-01 DSnDA.pdf
01-introduction.ppt the paper that you can unless you want to join me because...
Intro to Data Science Big Data
Analytics for actuaries cia
Advanced Business Analytics for Actuaries - Canadian Institute of Actuaries J...
Big Data and Internet of Things for Managers
Big Data v. Small data - Rules to thumb for 2015
Big Data; Big Potential: How to find the talent who can harness its power

Recently uploaded (20)

PPTX
PA Analog/Digital System: The Backbone of Modern Surveillance and Communication
PPTX
MYSQL Presentation for SQL database connectivity
PDF
Shreyas Phanse Resume: Experienced Backend Engineer | Java • Spring Boot • Ka...
PDF
Network Security Unit 5.pdf for BCA BBA.
PDF
Approach and Philosophy of On baking technology
PPT
“AI and Expert System Decision Support & Business Intelligence Systems”
PDF
CIFDAQ's Market Insight: SEC Turns Pro Crypto
PDF
NewMind AI Monthly Chronicles - July 2025
PDF
cuic standard and advanced reporting.pdf
PDF
How UI/UX Design Impacts User Retention in Mobile Apps.pdf
PDF
Mobile App Security Testing_ A Comprehensive Guide.pdf
PDF
Architecting across the Boundaries of two Complex Domains - Healthcare & Tech...
PDF
Agricultural_Statistics_at_a_Glance_2022_0.pdf
PDF
Modernizing your data center with Dell and AMD
PDF
Encapsulation_ Review paper, used for researhc scholars
PDF
Dropbox Q2 2025 Financial Results & Investor Presentation
PDF
Advanced methodologies resolving dimensionality complications for autism neur...
PDF
Build a system with the filesystem maintained by OSTree @ COSCUP 2025
PDF
Building Integrated photovoltaic BIPV_UPV.pdf
PPTX
Big Data Technologies - Introduction.pptx
PA Analog/Digital System: The Backbone of Modern Surveillance and Communication
MYSQL Presentation for SQL database connectivity
Shreyas Phanse Resume: Experienced Backend Engineer | Java • Spring Boot • Ka...
Network Security Unit 5.pdf for BCA BBA.
Approach and Philosophy of On baking technology
“AI and Expert System Decision Support & Business Intelligence Systems”
CIFDAQ's Market Insight: SEC Turns Pro Crypto
NewMind AI Monthly Chronicles - July 2025
cuic standard and advanced reporting.pdf
How UI/UX Design Impacts User Retention in Mobile Apps.pdf
Mobile App Security Testing_ A Comprehensive Guide.pdf
Architecting across the Boundaries of two Complex Domains - Healthcare & Tech...
Agricultural_Statistics_at_a_Glance_2022_0.pdf
Modernizing your data center with Dell and AMD
Encapsulation_ Review paper, used for researhc scholars
Dropbox Q2 2025 Financial Results & Investor Presentation
Advanced methodologies resolving dimensionality complications for autism neur...
Build a system with the filesystem maintained by OSTree @ COSCUP 2025
Building Integrated photovoltaic BIPV_UPV.pdf
Big Data Technologies - Introduction.pptx

#BigDataCanarias: "Big Data & Career Paths"

  • 1. Fickr: Nikos Koutoulas Big Data & Career Paths Marcos Colebrook Univ. de La Laguna @MColebrook ETS Ingeniería Informática – 16.06.2014#BigDataCanarias
  • 2. Contents Big Data facts Definition of Big Data Techs & Tools Data Science: skills and career paths Conclusions 16.06.2014 #BigDataCanarias: "Big Data & Career Paths" 2
  • 3. Big Data everywhere!! 16.06.2014 3#BigDataCanarias: "Big Data & Career Paths"
  • 4. Data vs. God “In God we trust, all others bring data.“  W.E. Deming 16.06.2014 4#BigDataCanarias: "Big Data & Career Paths"
  • 5. 16.06.2014 #BigDataCanarias: "Big Data & Career Paths" 5 Source: M. Deutscher, When Will the World Reach 8 Zetabytes of Stored Data? (2012).
  • 6. 16.06.2014 #BigDataCanarias: "Big Data & Career Paths" 6 Source: Intel (2014), What Happens In An Internet Minute?
  • 7. Big Data in Facebook 16.06.2014 #BigDataCanarias: "Big Data & Career Paths" 7
  • 8. Google trends on Big Data 16.06.2014 #BigDataCanarias: "Big Data & Career Paths" 8 Hadoop Big Data Data Analytics Massive Data
  • 9. Father to the ‘Big Data’ term 16.06.2014 #BigDataCanarias: "Big Data & Career Paths" 9 Source: S. Lohr (2013), The Origins of ‘Big Data’: An Etymological Detective Story. John R. Mashey Chief Scientist at Silicon Graphics
  • 10. Big Data: think-tank Policy Exchange Big Data: datasets that are too awkward to work with using traditional, hands-on database management tools. Big Data Analytics: the process of examining and interrogating big data assets to derive insights of value for decision making. 16.06.2014 10#BigDataCanarias: "Big Data & Career Paths" Source: C. Yiu (2012), The Big Data Opportunity.
  • 11. What is Big Data? Big Data is a term that describes large volumes of high velocity, complex and variable data that require advanced techniques and technologies to enable the capture, storage, distribution, management, and analysis of the information. 16.06.2014 11#BigDataCanarias: "Big Data & Career Paths" Source: Demystifying Big Data (2012), TechAmerica Foundation.
  • 12. Big Data 16.06.2014 #BigDataCanarias: "Big Data & Career Paths" 12 Source: J. Bloem et al. (2012), VINT Research Report 1: Creating Clarity with Big Data.
  • 13. Sources & types of data 16.06.2014 #BigDataCanarias: "Big Data & Career Paths" 13 Source: Big Data, BBVA Innovation Edge 2013 (from Booz & Company “Benefitting from Big Data: Leveraging Unstructured Data Capabilities for Competitive Advantage”)
  • 14. Big Data sources 16.06.2014 #BigDataCanarias: "Big Data & Career Paths" 14 Source: M. Schroeck et al. (2012), Analytics: The Real-World Use of Big Data.
  • 15. The three Vs of Big Data 16.06.2014 #BigDataCanarias: "Big Data & Career Paths" 15 Source: D. Soubra (2012), The 3Vs that define Big Data.
  • 16. The other “Vs” in Big Data “ ’Vs’ like veracity, validity, value, viability, etc. are aspirational qualities of all data, not definitional qualities of Big Data.”  Doug Laney 16.06.2014 #BigDataCanarias: "Big Data & Career Paths" 16 Source: D. Laney (2013), Batman on Big Data.
  • 17. What is really important in Big Data? “The Big in Big Data relates to importance not size”  Rafael Irizarry 16.06.2014 17#BigDataCanarias: "Big Data & Career Paths" Source: R. Irizarry (2014), The Big in Big Data relates to importance not size.
  • 18. My best “V” 16.06.2014 #BigDataCanarias: "Big Data & Career Paths" 18
  • 19. Is Big Data a marketing campaign? “If you’re like me, the mere mention of Big Data now turns your stomach. Nearly every business intelligence (BI) vendor, publication, and event has Big Data flashing in neon colors in Times Square dimensions. Never before have I seen an idea in the BI space elicit this much obsession. Why all the fuss? Why, indeed. Essentially, Big Data is a marketing campaign, pure and simple.”  Stephen Few 16.06.2014 19#BigDataCanarias: "Big Data & Career Paths"
  • 20. Gartner's 2013 Hype Cycle 16.06.2014 #BigDataCanarias: "Big Data & Career Paths" 20 Source: Gartner's 2013 Hype Cycle for Emerging Technologies
  • 21. Big Data: McKinsey Report  140.000 – 190.000 more deep analytical talent positions, and 1.5 million data savvy managers needed to take full advantage of Big Data in the USA.  Techniques: data mining (cluster analysis, classification, regression, etc), (un)supervised learning, ML, neural networks, optimization, predictive modeling, statistics, simulation, etc.  Technologies: BI, Cassandra, DW, ETL, Hadoop, HBase, Map/Reduce, R, RDBMS, etc.  Potential of Big Data in five domains:  Healthcare  Public Sector  Retail  Manufacturing  Telecommunications. 16.06.2014 #BigDataCanarias: "Big Data & Career Paths" 21 Source: J. Manyika, et al. (2012), Big Data: The Next Frontier for Innovation, Competition and Productivity.
  • 22. 16.06.2014 #BigDataCanarias: "Big Data & Career Paths" 22
  • 23. Hadoop-NoSQL Market Forecast 2012-2017 16.06.2014 #BigDataCanarias: "Big Data & Career Paths" 23 Source: J. Kelly (2013), Hadoop-NoSQL Software And Services Market Forecast 2012-2017.
  • 24. Big Data Techs 16.06.2014 #BigDataCanarias: "Big Data & Career Paths" 24
  • 25. 16.06.2014 #BigDataCanarias: "Big Data & Career Paths" 25
  • 26. Data Tools 16.06.2014 #BigDataCanarias: "Big Data & Career Paths" 26 Source: J. King, R. Magoulas (2013), Data Science Salary Survey.
  • 27. Salary vs. Data Tools 16.06.2014 #BigDataCanarias: "Big Data & Career Paths" 27 Source: J. King, R. Magoulas (2013), Data Science Salary Survey.
  • 28. Median Salary vs. #Tools 16.06.2014 #BigDataCanarias: "Big Data & Career Paths" 28 Source: J. King, R. Magoulas (2013), Data Science Salary Survey.
  • 29. Data Skills 16.06.2014 #BigDataCanarias: "Big Data & Career Paths" 29 Source: H.D. Harris et al. (2013), Analyzing the Analyzers
  • 30. Data Role vs. Data Skills 16.06.2014 #BigDataCanarias: "Big Data & Career Paths" 30 Source: H.D. Harris et al. (2013), Analyzing the Analyzers
  • 31. Big Data capabilities 16.06.2014 #BigDataCanarias: "Big Data & Career Paths" 31 Source: M. Schroeck et al. (2012), Analytics: The Real-World Use of Big Dat.
  • 32. Market & jobs opportunity  The demand for Big Data services spending projected to reach $132,300M in 2015.  By 2015, Big Data demand will reach 4.4 million jobs globally, but only one-third of those jobs will be filled.  The demand for services will generate 550,000 external services jobs in the next 3 years.  Another 40,000 jobs will be created at software vendors in the next 3 years. 16.06.2014 32#BigDataCanarias: "Big Data & Career Paths" Source: Big Data, BBVA Innovation Edge 2013 (from Gartner’s “Top Technology Predictions for 2013 and Beyond”)
  • 33. Statiscian: a sexy job “I keep saying the sexy job in the next ten years will be statisticians. People think I’m joking, but who would’ve guessed that computer engineers would’ve been the sexy job of the 1990s? The ability to take data—to be able to understand it, to process it, to extract value from it, to visualize it, to communicate it—that’s going to be a hugely important skill in the next decades [...]”  Hal Varian Google’s Chief Economist 16.06.2014 33#BigDataCanarias: "Big Data & Career Paths" Source: Hal Varian on how the Web challenges managers, McKinsey & Co. 2009.
  • 34. Data Scientist 16.06.2014 #BigDataCanarias: "Big Data & Career Paths" 34 Source: Josh Wills (2012).
  • 35. Data Science Venn Diagram 16.06.2014 #BigDataCanarias: "Big Data & Career Paths" 35 Source: Drew Conway (2010).
  • 36. Data Scientist skill set: ACM A data scientist requires an integrated skill set spanning mathematics, machine learning, artificial intelligence, statistics, databases, and optimization, along with a deep understanding of the craft of problem formulation to engineer effective solutions. 16.06.2014 36#BigDataCanarias: "Big Data & Career Paths" Source: V. Dhar (2013), Data Science and Prediction, Comm. of the ACM.
  • 37. Intelligence over DIKW 16.06.2014 #BigDataCanarias: "Big Data & Career Paths" 37 Source: The Internet of Things 2010 at YouTube (1:40).
  • 38. Data→Info→Knowledge→Understanding →Wisdom!! “There are known knowns. These are things we know that we know. There are known unknowns. That is to say, there are things that we know we don't know. But there are also unknown unknowns. There are things we don't know we don't know.”  Donald Rumsfeld 16.06.2014 #BigDataCanarias: "Big Data & Career Paths" 38 Source: C. Somohano (2013), Big Data [sorry] & Data Science: What Does a Data Scientist Do?
  • 39. BI vs. Data Discovery 16.06.2014 #BigDataCanarias: "Big Data & Career Paths" 39 Source: J. Kolb (2010), The New Reality for Business Intelligence and Big Data.
  • 40. Data Science Teams Data scientists as having the following qualities:  Technical expertise: the best data scientists typically have deep expertise in some scientific discipline.  Curiosity: a desire to go beneath the surface and discover and distill a problem down into a very clear set of hypotheses that can be tested.  Storytelling: the ability to use data to tell a story and to be able to communicate it effectively.  Cleverness: the ability to look at a problem in different, creative ways. 16.06.2014 40#BigDataCanarias: "Big Data & Career Paths" Source: D.J. Patil (2011), Building Data Science Team.
  • 41. Data Science skills: Accenture 16.06.2014 #BigDataCanarias: "Big Data & Career Paths" 41 Source: J.G. Harris et al. (2013), The Team Solution to the Data Scientist Shortage.
  • 42. Insight Data Science Fellow Program  6 week, full-time, postdoctoral data science training fellowship in Silicon Valley or New York City.  Self-directed, project-based learning (no classes!).  Software Engineering Best Practices: Python, Git, Flask, Javascript.  Storing and Retrieving Data: MySQL, Hadoop, Hive.  Statistical Analysis & Machine Learning: NumPy & SciPy, Pandas, scikit-learn, R.  Visualizing and Communicating Results: D3 Javascript library, visualization and presentation best practices. 16.06.2014 #BigDataCanarias: "Big Data & Career Paths" 42
  • 43. Insight Data Engineering Fellow Program  6 week, full-time, professional data engineering training fellowship in Silicon Valley, California.  Self-directed, project-based learning (no classes!).  Big Data Infrastructure.  Extracting data.  Transforming data.  Loading / Storing data.  Building visualizations and dashboards. 16.06.2014 #BigDataCanarias: "Big Data & Career Paths" 43
  • 44. Conclusions  Big Data is still an emerging topic that gathers a lot of new technologies, and needs some time to mature.  But, on the other hand, it has a true market opportunity.  Data Science / Engineering skills to acquire:  Math/Statistics and business knowledge.  Technical expertise: R, Python, Hadoop, Spark/Storm, D3, Java/Javascript, ...  Curiosity and cleverness.  Storytelling: ability to communicate results.  Trends:  Data Visualization  Predictive Modelling  Social Analytics  Data Mining / Machine Learning  Forensic Computer Science  Spark / Storm vs. Hadoop MapReduce 16.06.2014 44#BigDataCanarias: "Big Data & Career Paths"
  • 45. References (1/3) 1. Big Data (2013), BBVA Innovation Edge (31 pp). 2. Demystifying Big Data: A Practical Guide To Transforming The Business of Government (2012), TechAmerica Foundation (40 pp). 3. Gartner's 2013 Hype Cycle for Emerging Technologies Maps Out Evolving Relationship Between Humans and Machines (2013), Gartner. 4. Hal Varian on How the Web Challenges Managers (2009), McKinsey & Co. 5. Insight Data Engineering Fellows Program (2014). 6. Insight Data Science Fellows Program (2014). 7. The Internet of Things (2010), IBM Social Media. 8. What Happens In An Internet Minute? (2014), Intel. 16.06.2014 45#BigDataCanarias: "Big Data & Career Paths"
  • 46. References (2/3) 9. J. Bloem, M. van Doorn, S. Duivestein, T. van Manen, E. van Ommeren (2012), VINT Research Report 1: Creating Clarity with Big Data, SOGETI. 10. D. Conway (2010), The Data Science Venn Diagram. 11. M. Deutscher, When Will the World Reach 8 Zetabytes of Stored Data? (2012), Silicon Angle (blog). 12. V. Dhar (2013), Data Science and Prediction, Communications of the ACM 56 (12), pp. 64-73. 13. S. Few (2012), Big Data, Big Ruse, Perceptual Edge - Visual Business Intelligence Newsletter (blog, 8 pp). 14. H.D. Harris, S.P. Murphy, M. Vaisman (2013), Analyzing the Analyzers, O’Reilly Media (40 pp). 15. J.G. Harris, N. Shetterley, A.E. Alter, K. Schnell (2013), The Team Solution to the Data Scientist Shortage, Accenture Institute for High Performance. 16. R. Irizarry (2014), The Big in Big Data Relates to Importance Not Size, Simply Statistics (blog). 17. J. King, R. Magoulas (2013), Data Science Salary Survey, O’Reilly Media (23 pp). 18. J. Kelly (2013), Hadoop-NoSQL Software and Services Market Forecast 2012-2017, Wikibon (blog). 19. J. Kolb (2010), The New Reality for Business Intelligence and Big Data, Applied Data Labs (blog). 20. D. Laney (2013), Batman on Big Data, Gartner. 16.06.2014 46#BigDataCanarias: "Big Data & Career Paths"
  • 47. References (3/3) 21. D. Laney (2013), Batman on Big Data, Gartner. 22. S. Lohr (2013), The Origins of ‘Big Data’: An Etymological Detective Story, The New York Times. 23. J. Manyika, M. Chui, B. Brown, J. Bughin, R. Dobbs, C. Roxburgh, A.H. Byers (2012), Big Data: The Next Frontier for Innovation, Competition and Productivity, McKinsey Global Institute (156 pp). 24. R. Nair, A. Narayanan (2012), Benefitting from Big Data: Leveraging Unstructured Data Capabilities for Competitive Advantage, Booz & Company (16 pp). 25. D.J. Patil (2011), Building Data Science Teams, O’Reilly Media (26 pp). 26. G. Piatetsky (2014), Big Data Landscape v3.0 Analyzed, KDnuggets (blog). 27. J. Podesta, P. Pritzker, E.J. Moniz, J. Holdren, J. Zients (2014), Big Data: Seizing Opportunities, Preserving Values, The White House (79 pp). 28. M. Schroeck, R. Shockley, J. Smart, D. Romero-Morales, P. Tufano (2012), Analytics: The Real-World Use of Big Data, IBM Global Services. 29. C. Somohano (2013), Big Data [sorry] & Data Science: What Does a Data Scientist Do?, Data Science London (55 pp). 30. D. Soubra (2012), The 3Vs that define Big Data, Data Science Central (blog). 31. C. Yiu, The Big Data Opportunity (2012), Policy Exchange (36 pp). 32. P. Zikopoulos, C. Eaton, D. deRoos, T. Deutsch, G. Lapis (2012), Understanding Big Data, McGraw-Hill. 16.06.2014 47#BigDataCanarias: "Big Data & Career Paths"
  • 48. Datos de contacto y cuestiones ¡¡Gracias!! ¿Preguntas?  Datos de contacto:  Marcos Colebrook  Email: mcolesan@ull.edu.es  Twitter: @MColebrook  SlideShare: www.slideshare.net/MarcosColebrookSantamaria 16.06.2014 48#BigDataCanarias: "Big Data & Career Paths"