SlideShare a Scribd company logo
CASSANDRA COMMUNITY WEBINARS APRIL 2013
INTRODUCTION TO
APACHE CASSANDRA 1.2
Aaron Morton
Apache Cassandra Committer, Data Stax MVP for Apache Cassandra
@aaronmorton
www.thelastpickle.com
Licensed under a Creative Commons Attribution-NonCommercial 3.0 New Zealand License
Cassandra Summit 2013
June 11 & 12
San Francisco
Use SFSummit25 for 25% off
Cassandra Summit 2013
DataStax Ac*ademy
Free certification during the
summit.
Overview
The Cluster
The Node
The Data Model
Cassandra
- Started at Facebook
- Open sourced in 2008
- Top Level Apache project
since 2010.
Used by...
Netflix,Twitter, Reddit,
Rackspace...
Inspiration
- Google Big Table (2006)
- Amazon Dynamo (2007)
Why Cassandra?
- Scale
- Operations
- Data Model
Overview
The Cluster
The Node
The Data Model
Store ‘foo’ key with Replication Factor 3.
Node 1 - 'foo'
Node 2 - 'foo'Node 4
Node 3 - 'foo'
Consistent Hashing.
- Evenly map keys to nodes
- Minimise key movements
when nodes join or leave
Partitioner.
RandomPartitioner
transforms Keys to Tokens
using MD5.
(Default pre version 1.2.)
Partitioner.
Murmur3Partitioner
transforms Keys to Tokens
using Murmur3.
(Default in version 1.2.)
Keys andTokens?
token 0 99
key 'fop' 'foo'
10 90
Token Ring.
'foo'
token: 90
'fop'
token: 10
99 0
Token Ranges pre v1.2.
Node 1
token: 0
Node 2
token: 25
Node 4
token: 75
Node 3
token: 50
1-2576-0
Token Ranges withVirtual Nodes in v1.2.
Node 1
Node 2
Node 3
Node 4
LocateToken Range.
Node 1
Node 2
Node 3
Node 4
'foo'
token: 90
Replication Strategy selects
Replication Factor number of
nodes for a row.
SimpleStrategy with RF 3.
Node 1
Node 2
Node 3
Node 4
'foo'
token: 90
NetworkTopologyStrategy uses
a Replication Factor per Data
Centre.
(Default.)
Multi DC Replication with RF 3 and RF 2.
Node 1
Node 2
Node 3
Node 4
'foo'
token: 90
Node 1
Node 2
Node 3
Node 4
West DC East DC
The Snitch knows which Data
Centre and Rack the Node is
in.
SimpleSnitch.
Places all nodes in the same
DC and Rack.
(Default, there are others.)
EC2Snitch.
DC is set to AWS Region and
a Rack to Availability Zone.
The Client and the Coordinator.
Node 1
Node 2
Node 3
Node 4
'foo'
token: 90
Client
Multi DC Client and the Coordinator.
Node 1
Node 2
Node 3
Node 4
'foo'
token: 90
Client
Node 10
Node 20
Node 30
Node 40
Gossip.
Nodes share information with
a small number of neighbours.
Who share information with a
small number of neigh..
Consistency Level (CL).
- Specified for each request
- Number of nodes to wait
for.
Consistency Level (CL)
- Any*
- One,Two Three
- QUORUM
- LOCAL_QUORUM, EACH_QUOURM*
QUOURM at Replication Factor...
Replication
Factor
QUOURM
2 or 3 4 or 5 6 or 7
2 3 4
Write ‘foo’ at QUOURM with Hinted Handoff.
Node 1
Node 2
Node 3
Node 4
'foo' for #3
'foo'
token: 90
Client
Read ‘foo’ at QUOURM.
Node 1
Node 2
Node 3
Node 4
'foo'
token: 90
Client
Column Timestamps
used to resolve
differences.
Resolving differences.
Column Node 1 Node 2 Node 3
purple
cromulent
(timestamp 10)
cromulent
(timestamp 10)
<missing>
monkey
embiggens
(timestamp 10)
embiggens
(timestamp 10)
debigulator
(timestamp 5)
dishwasher
tomato
(timestamp 10)
tomato
(timestamp 10)
tomacco
(timestamp 15)
Consistent read for ‘foo’ at QUOURM.
Node 1
Node 2
Node 3
Node 4
Client
cromulent
cromulent
<empty>
Node 1
Node 2
Node 3
Node 4
Client
cromulent cromulent
Strong Consistency
W + R > N
(#Write Nodes + #Read Nodes> Replication Factor)
Achieving Strong Consistency.
- QUOURM Read + QUORUM Write
- ALL Read + ONE Write
- ONE Read + ALL Write
Achieving Consistency
- Consistency Level
- Hinted Handoff
- Read Repair
- Anti Entropy
Overview
The Cluster
The Node
The Data Model
Optimised for
Writes.
Write path
Append to Write
Ahead Log.
(fsync every 10s by default, other options available)
Write path...
Merge Columns
into Memtable.
(Lock free, always in memory.)
(Later.)
Asynchronously flush
Memtable to new files.
(May be 10’s or 100’s of MB in size.)
Data is stored in
immutable SSTables.
(Sorted String table.)
SSTable files.
*-Data.db
*-Index.db
*-Filter.db
(And others)
SSTables.
SSTable 1
foo:
dishwasher (ts 10):
tomato
purple (ts 10):
cromulent
SSTable 2
foo:
frink (ts 20):
flayven
monkey (ts 10):
embiggins
SSTable 3 SSTable 4
foo:
dishwasher (ts 15):
tomacco
SSTable 5
Read purple, monkey, dishwasher.
SSTable 1-Data.db
foo:
dishwasher (ts 10):
tomato
purple (ts 10):
cromulent
SSTable 2-Data.db
foo:
frink (ts 20):
flayven
monkey (ts 10):
embiggins
SSTable 3-Data.db SSTable 4-Data.db
foo:
dishwasher (ts 15):
tomacco
SSTable 5-Data.db
Bloom Filter
Index Sample
SSTable 1-Index.db
Bloom Filter
Index Sample
SSTable 2-Index.db
Bloom Filter
Index Sample
SSTable 3-Index.db
Bloom Filter
Index Sample
SSTable 4-Index.db
Bloom Filter
Index Sample
SSTable 5-Index.db
Memory
Disk
Key Cache caches row key
position in *-Data.db file.
(Removes up to1disk seek per SSTable.)
Read with Key Cache.
SSTable 1-Data.db
foo:
dishwasher (ts 10):
tomato
purple (ts 10):
cromulent
SSTable 2-Data.db
foo:
frink (ts 20):
flayven
monkey (ts 10):
embiggins
SSTable 3-Data.db SSTable 4-Data.db
foo:
dishwasher (ts 15):
tomacco
SSTable 5-Data.db
Key Cache
Index Sample
SSTable 1-Index.db
Key Cache
Index Sample
SSTable 2-Index.db
Key Cache
Index Sample
SSTable 3-Index.db
Key Cache
Index Sample
SSTable 4-Index.db
Key Cache
Index Sample
SSTable 5-Index.db
Memory
Disk
Bloom Filter Bloom Filter Bloom Filter Bloom Filter Bloom Filter
Row Cache caches entire row.
(Removes all disk IO.)
Read with Row Cache.
Row Cache
SSTable 1-Data.db
foo:
dishwasher (ts 10):
tomato
purple (ts 10):
cromulent
SSTable 2-Data.db
foo:
frink (ts 20):
flayven
monkey (ts 10):
embiggins
SSTable 3-Data.db SSTable 4-Data.db
foo:
dishwasher (ts 15):
tomacco
SSTable 5-Data.db
Key Cache
Index Sample
SSTable 1-Index.db
Key Cache
Index Sample
SSTable 2-Index.db
Key Cache
Index Sample
SSTable 3-Index.db
Key Cache
Index Sample
SSTable 4-Index.db
Key Cache
Index Sample
SSTable 5-Index.db
Memory
Disk
Bloom Filter Bloom Filter Bloom Filter Bloom Filter Bloom Filter
Compaction merges truth from
multiple SSTables into one
SSTable with the same truth.
(Manual and continuous background process.)
Compaction.
Column SSTable 1 SSTable 2 SSTable 4 New
purple
cromulent
(timestamp 10)
<tombstone>
(timestamp 15)
<tombstone>
(timestamp 15)
monkey
embiggens
(timestamp 10)
embiggens
(timestamp 10)
dishwasher
tomato
(timestamp 10)
tomacco
(timestamp 15)
tomacco
(timestamp 15)
Overview
The Cluster
The Node
The Data Model
Cassandra is good at
reading data from a row in the
order it is stored.
Typically an efficient data model will
denormalize data and use the
storage engine order.
To create a good data model
understand the queries your
application requires.
API Choice
Thrift
Original and still fully
supported API.
API Choice
CQL3
New and fully supported API.
CQL 3
A Table Orientated, Schema
Driven, Data Model and
Query language similar to
SQL.
CQL 3
A Table Orientated, Schema
Driven, Data Model and
Query language similar to
SQL.
Twitter clone
using CQL 3 via the cqlsh
tool.
bin/cqlsh
Queries?
- Post Tweet to Followers
- Get Tweet by ID
- List Tweets by User
- List Tweets in User Timeline
- List Followers
Keyspace
A Namespace container.
Our Keyspace
CREATE KEYSPACE
cass_community
WITH replication =
{'class':'NetworkTopologyStrategy',
'datacenter1':1};
Table
A sparse collection of well
known, ordered columns.
FirstTable
CREATE TABLE User
(
user_name text,
password text,
real_name text,
PRIMARY KEY (user_name)
);
Some users
cqlsh:cass_community> INSERT INTO User
... (user_name, password, real_name)
... VALUES
... ('fred', 'sekr8t', 'Mr Foo');
cqlsh:cass_community> select * from User;
user_name | password | real_name
-----------+----------+-----------
fred | sekr8t | Mr Foo
Some users
cqlsh:cass_community> INSERT INTO User
... (user_name, password)
... VALUES
... ('bob', 'pwd');
cqlsh:cass_community> select * from User where user_name =
'bob';
user_name | password | real_name
-----------+----------+-----------
bob | pwd | null
Data Model (so far)
Table /
Value
User
user_name Primary Key
TweetTable
CREATE TABLE Tweet
(
tweet_id bigint,
body text,
user_name text,
timestamp timestamp,
PRIMARY KEY (tweet_id)
);
TweetTable...
cqlsh:cass_community> INSERT INTO Tweet
... (tweet_id, body, user_name, timestamp)
... VALUES
... (1, 'The Tweet','fred',1352150816917);
cqlsh:cass_community> select * from Tweet where tweet_id = 1;
tweet_id | body | timestamp | user_name
----------+-----------+--------------------------+-----------
1 | The Tweet | 2012-11-06 10:26:56+1300 | fred
Data Model (so far)
Table /
Value
User Tweet
user_name Primary Key Field
tweet_id Primary Key
UserTweetsTable
CREATE TABLE UserTweets
(
tweet_id bigint,
user_name text,
body text,
timestamp timestamp,
PRIMARY KEY (user_name, tweet_id)
);
UserTweetsTable...
cqlsh:cass_community> INSERT INTO UserTweets
... (tweet_id, body, user_name, timestamp)
... VALUES
... (1, 'The Tweet','fred',1352150816917);
cqlsh:cass_community> select * from UserTweets where
user_name='fred';
user_name | tweet_id | body | timestamp
-----------+----------+-----------+--------------------------
fred | 1 | The Tweet | 2012-11-06 10:26:56+1300
UserTweetsTable...
cqlsh:cass_community> select * from UserTweets where
user_name='fred' and tweet_id=1;
user_name | tweet_id | body | timestamp
-----------+----------+-----------+--------------------------
fred | 1 | The Tweet | 2012-11-06 10:26:56+1300
UserTweetsTable...
cqlsh:cass_community> INSERT INTO UserTweets
... (tweet_id, body, user_name, timestamp)
... VALUES
... (2, 'Second Tweet', 'fred', 1352150816918);
cqlsh:cass_community> select * from UserTweets where user_name = 'fred';
user_name | tweet_id | body | timestamp
-----------+----------+--------------+--------------------------
fred | 1 | The Tweet | 2012-11-06 10:26:56+1300
fred | 2 | Second Tweet | 2012-11-06 10:26:56+1300
UserTweetsTable...
cqlsh:cass_community> select * from UserTweets where user_name = 'fred' order by
tweet_id desc;
user_name | tweet_id | body | timestamp
-----------+----------+--------------+--------------------------
fred | 2 | Second Tweet | 2012-11-06 10:26:56+1300
fred | 1 | The Tweet | 2012-11-06 10:26:56+1300
UserTimeline
CREATE TABLE UserTimeline
(
user_name text,
tweet_id bigint,
tweet_user text,
body text,
timestamp timestamp,
PRIMARY KEY (user_name, tweet_id)
)
WITH CLUSTERING ORDER BY (tweet_id DESC);
UserTimeline
cqlsh:cass_community> INSERT INTO UserTimeline
... (user_name, tweet_id, tweet_user, body, timestamp)
... VALUES
... ('fred', 1, 'fred', 'The Tweet',1352150816917);
cqlsh:cass_community> INSERT INTO UserTimeline
... (user_name, tweet_id, tweet_user, body, timestamp)
... VALUES
... ('fred', 100, 'bob', 'My Tweet',1352150846917);
UserTimeline
cqlsh:cass_community> select * from UserTimeline where user_name = 'fred';
user_name | tweet_id | body | timestamp | tweet_user
-----------+----------+-----------+--------------------------+------------
fred | 100 | My Tweet | 2012-11-06 10:27:26+1300 | bob
fred | 1 | The Tweet | 2012-11-06 10:26:56+1300 | fred
Data Model (so far)
Table /
Value
User Tweet
User
Tweets
User
Timeline
user_name Primary Key Field Primary Key Primary Key
tweet_id Primary Key
Primary Key
Component
Primary Key
Component
UserMetricsTable
CREATE TABLE UserMetrics
(
user_name text,
tweets counter,
followers counter,
following counter,
PRIMARY KEY (user_name)
);
UserMetricsTable...
cqlsh:cass_community> UPDATE
... UserMetrics
... SET
... tweets = tweets + 1
... WHERE
... user_name = 'fred';
cqlsh:cass_community> select * from UserMetrics where
user_name = 'fred';
user_name | followers | following | tweets
-----------+-----------+-----------+--------
fred | null | null | 1
Data Model (so far)
Table /
Value
User Tweet
User
Tweets
User
Timeline
User Metrics
user_name
Primary
Key
Field
Primary
Key
Primary
Key
Primary
Key
tweet_id
Primary
Key
Primary Key
Component
Primary Key
Component
Relationships
CREATE TABLE Followers
(
user_name text,
follower text,
timestamp timestamp,
PRIMARY KEY (user_name, follower)
);
CREATE TABLE Following
(
user_name text,
following text,
timestamp timestamp,
PRIMARY KEY (user_name, following)
);
Relationships
cqlsh:cass_community> INSERT INTO
... Following
... (user_name, following, timestamp)
... VALUES
... ('bob', 'fred', 1352247749161);
cqlsh:cass_community> INSERT INTO
... Followers
... (user_name, follower, timestamp)
... VALUES
... ('fred', 'bob', 1352247749161);
Relationships
cqlsh:cass_community> select * from Following;
user_name | following | timestamp
-----------+-----------+--------------------------
bob | fred | 2012-11-07 13:22:29+1300
cqlsh:cass_community> select * from Followers;
user_name | follower | timestamp
-----------+----------+--------------------------
fred | bob | 2012-11-07 13:22:29+1300
Data Model
Table /
Value
User Tweet
User
Tweets
User
Timeline
User
Metrics
Follows
Followers
user_name
Primary
Key
Field
Primary
Key
Primary
Key
Primary
Key
Primary
Key
tweet_id
Primary
Key
Primary Key
Component
Primary Key
Component
Cassandra Summit 2013
June 11 & 12
San Francisco
Use SFSummit25 for 25% off
Thanks.
Aaron Morton
@aaronmorton
www.thelastpickle.com
Licensed under a Creative Commons Attribution-NonCommercial 3.0 New Zealand License

More Related Content

PPTX
ODP
Linux-Fu for PHP Developers
DOC
Most frequently used unix commands for database administrator
PPTX
Linux networking
PDF
various tricks for remote linux exploits  by Seok-Ha Lee (wh1ant)
PDF
Pdxpugday2010 pg90
PDF
Process Address Space: The way to create virtual address (page table) of user...
PDF
John Melesky - Federating Queries Using Postgres FDW @ Postgres Open
Linux-Fu for PHP Developers
Most frequently used unix commands for database administrator
Linux networking
various tricks for remote linux exploits  by Seok-Ha Lee (wh1ant)
Pdxpugday2010 pg90
Process Address Space: The way to create virtual address (page table) of user...
John Melesky - Federating Queries Using Postgres FDW @ Postgres Open

What's hot (20)

PDF
The Ring programming language version 1.10 book - Part 92 of 212
PDF
Computer Security
PDF
The Ring programming language version 1.7 book - Part 29 of 196
PDF
Redis for the Everyday Developer
PDF
The Ring programming language version 1.5.1 book - Part 24 of 180
PDF
Python postgre sql a wonderful wedding
PPT
Threads Advance in System Administration with Linux
PDF
How to create a pluggable database by cloning an existing local pdb
PPTX
{'python': 'dict'}
PDF
uerj201212
PDF
gemdiff
PDF
Linux Kernel - Virtual File System
PDF
Новый InterSystems: open-source, митапы, хакатоны
PPTX
Lecture 3 Perl & FreeBSD administration
PDF
제 6회 엑셈 수요 세미나 자료 연구컨텐츠팀
PPTX
Introduction to Python and TensorFlow
ODP
Rpm Introduction
PDF
The Ring programming language version 1.6 book - Part 28 of 189
PDF
StackOverflow
The Ring programming language version 1.10 book - Part 92 of 212
Computer Security
The Ring programming language version 1.7 book - Part 29 of 196
Redis for the Everyday Developer
The Ring programming language version 1.5.1 book - Part 24 of 180
Python postgre sql a wonderful wedding
Threads Advance in System Administration with Linux
How to create a pluggable database by cloning an existing local pdb
{'python': 'dict'}
uerj201212
gemdiff
Linux Kernel - Virtual File System
Новый InterSystems: open-source, митапы, хакатоны
Lecture 3 Perl & FreeBSD administration
제 6회 엑셈 수요 세미나 자료 연구컨텐츠팀
Introduction to Python and TensorFlow
Rpm Introduction
The Ring programming language version 1.6 book - Part 28 of 189
StackOverflow
Ad

Viewers also liked (11)

PDF
Leveldb background
PDF
Google LevelDB Study Discuss
PDF
Cassandra - Wellington No Sql
PPTX
Level DB - Quick Cheat Sheet
PDF
Optimizing RocksDB for Open-Channel SSDs
PDF
Intro to Cassandra
PPTX
LSM Trees
PDF
Tech Talk: RocksDB Slides by Dhruba Borthakur & Haobo Xu of Facebook
PDF
The Google Bigtable
PPTX
RocksDB detail
PPTX
RocksDB compaction
Leveldb background
Google LevelDB Study Discuss
Cassandra - Wellington No Sql
Level DB - Quick Cheat Sheet
Optimizing RocksDB for Open-Channel SSDs
Intro to Cassandra
LSM Trees
Tech Talk: RocksDB Slides by Dhruba Borthakur & Haobo Xu of Facebook
The Google Bigtable
RocksDB detail
RocksDB compaction
Ad

Similar to Cassandra Community Webinar - Introduction To Apache Cassandra 1.2 (20)

PDF
Cassandra 101
PDF
Debugging Ruby Systems
PPT
Big Data & NoSQL - EFS'11 (Pavlo Baron)
PDF
RHCSA Discoverability Discoverability .pdf
PDF
PPT
ZFConf 2011: Что такое Sphinx, зачем он вообще нужен и как его использовать с...
PPT
Linux Networking Commands
PDF
Advanced Apache Cassandra Operations with JMX
PDF
Advanced Cassandra Operations via JMX (Nate McCall, The Last Pickle) | C* Sum...
PDF
AWS SSA Webinar 20 - Getting Started with Data Warehouses on AWS
PDF
Solr @ Etsy - Apache Lucene Eurocon
PDF
Beyond the Query: A Cassandra + Solr + Spark Love Triangle Using Datastax Ent...
PPTX
Apache Cassandra, part 2 – data model example, machinery
PDF
Debugging Ruby
PDF
Replication MongoDB Days 2013
PPT
NOSQL and Cassandra
PDF
A22 Introduction to DTrace by Kyle Hailey
PDF
Beyond the Query – Bringing Complex Access Patterns to NoSQL with DataStax - ...
PPT
101 3.2 process text streams using filters
PPT
strata_spark_streaming.ppt
Cassandra 101
Debugging Ruby Systems
Big Data & NoSQL - EFS'11 (Pavlo Baron)
RHCSA Discoverability Discoverability .pdf
ZFConf 2011: Что такое Sphinx, зачем он вообще нужен и как его использовать с...
Linux Networking Commands
Advanced Apache Cassandra Operations with JMX
Advanced Cassandra Operations via JMX (Nate McCall, The Last Pickle) | C* Sum...
AWS SSA Webinar 20 - Getting Started with Data Warehouses on AWS
Solr @ Etsy - Apache Lucene Eurocon
Beyond the Query: A Cassandra + Solr + Spark Love Triangle Using Datastax Ent...
Apache Cassandra, part 2 – data model example, machinery
Debugging Ruby
Replication MongoDB Days 2013
NOSQL and Cassandra
A22 Introduction to DTrace by Kyle Hailey
Beyond the Query – Bringing Complex Access Patterns to NoSQL with DataStax - ...
101 3.2 process text streams using filters
strata_spark_streaming.ppt

More from aaronmorton (19)

PDF
Cassandra South Bay Meetup - Backup And Restore For Apache Cassandra
PDF
Cassandra SF Meetup - CQL Performance With Apache Cassandra 3.X
PDF
Cassandra Day Atlanta 2016 - Monitoring Cassandra
PDF
Cassandra London March 2016 - Lightening talk - introduction to incremental ...
PDF
Cassandra SF 2015 - Repeatable, Scalable, Reliable, Observable Cassandra
PDF
Cassandra sf 2015 - Steady State Data Size With Compaction, Tombstones, and TTL
PDF
Cassandra TK 2014 - Large Nodes
PDF
Cassandra Community Webinar August 29th 2013 - In Case Of Emergency, Break Glass
PDF
Cassandra Community Webinar - August 22 2013 - Cassandra Internals
PDF
Cassandra SF 2013 - In Case Of Emergency Break Glass
PDF
Cassandra SF 2013 - Cassandra Internals
PDF
Apache Cassandra in Bangalore - Cassandra Internals and Performance
PDF
Apache Con NA 2013 - Cassandra Internals
KEY
Cassandra SF 2012 - Technical Deep Dive: query performance
KEY
Hello @world #cassandra
KEY
Cassandra does what ? Code Mania 2012
PDF
Nzpug welly-cassandra-02-12-2010
PDF
Introduction to Cassandra
PDF
Building a distributed Key-Value store with Cassandra
Cassandra South Bay Meetup - Backup And Restore For Apache Cassandra
Cassandra SF Meetup - CQL Performance With Apache Cassandra 3.X
Cassandra Day Atlanta 2016 - Monitoring Cassandra
Cassandra London March 2016 - Lightening talk - introduction to incremental ...
Cassandra SF 2015 - Repeatable, Scalable, Reliable, Observable Cassandra
Cassandra sf 2015 - Steady State Data Size With Compaction, Tombstones, and TTL
Cassandra TK 2014 - Large Nodes
Cassandra Community Webinar August 29th 2013 - In Case Of Emergency, Break Glass
Cassandra Community Webinar - August 22 2013 - Cassandra Internals
Cassandra SF 2013 - In Case Of Emergency Break Glass
Cassandra SF 2013 - Cassandra Internals
Apache Cassandra in Bangalore - Cassandra Internals and Performance
Apache Con NA 2013 - Cassandra Internals
Cassandra SF 2012 - Technical Deep Dive: query performance
Hello @world #cassandra
Cassandra does what ? Code Mania 2012
Nzpug welly-cassandra-02-12-2010
Introduction to Cassandra
Building a distributed Key-Value store with Cassandra

Recently uploaded (20)

PDF
Unlocking AI with Model Context Protocol (MCP)
PPTX
Cloud computing and distributed systems.
PDF
Build a system with the filesystem maintained by OSTree @ COSCUP 2025
PDF
Architecting across the Boundaries of two Complex Domains - Healthcare & Tech...
PPTX
A Presentation on Artificial Intelligence
PDF
Dropbox Q2 2025 Financial Results & Investor Presentation
PDF
NewMind AI Monthly Chronicles - July 2025
PDF
Peak of Data & AI Encore- AI for Metadata and Smarter Workflows
PPTX
MYSQL Presentation for SQL database connectivity
PDF
Advanced methodologies resolving dimensionality complications for autism neur...
PDF
Modernizing your data center with Dell and AMD
PDF
Blue Purple Modern Animated Computer Science Presentation.pdf.pdf
PPTX
Effective Security Operations Center (SOC) A Modern, Strategic, and Threat-In...
PPTX
20250228 LYD VKU AI Blended-Learning.pptx
PDF
cuic standard and advanced reporting.pdf
PPTX
PA Analog/Digital System: The Backbone of Modern Surveillance and Communication
PDF
Encapsulation_ Review paper, used for researhc scholars
PPTX
Digital-Transformation-Roadmap-for-Companies.pptx
PPT
“AI and Expert System Decision Support & Business Intelligence Systems”
PDF
Spectral efficient network and resource selection model in 5G networks
Unlocking AI with Model Context Protocol (MCP)
Cloud computing and distributed systems.
Build a system with the filesystem maintained by OSTree @ COSCUP 2025
Architecting across the Boundaries of two Complex Domains - Healthcare & Tech...
A Presentation on Artificial Intelligence
Dropbox Q2 2025 Financial Results & Investor Presentation
NewMind AI Monthly Chronicles - July 2025
Peak of Data & AI Encore- AI for Metadata and Smarter Workflows
MYSQL Presentation for SQL database connectivity
Advanced methodologies resolving dimensionality complications for autism neur...
Modernizing your data center with Dell and AMD
Blue Purple Modern Animated Computer Science Presentation.pdf.pdf
Effective Security Operations Center (SOC) A Modern, Strategic, and Threat-In...
20250228 LYD VKU AI Blended-Learning.pptx
cuic standard and advanced reporting.pdf
PA Analog/Digital System: The Backbone of Modern Surveillance and Communication
Encapsulation_ Review paper, used for researhc scholars
Digital-Transformation-Roadmap-for-Companies.pptx
“AI and Expert System Decision Support & Business Intelligence Systems”
Spectral efficient network and resource selection model in 5G networks

Cassandra Community Webinar - Introduction To Apache Cassandra 1.2