SlideShare a Scribd company logo
The Effect of Router Buffer Size on Subjective Gaming Quality Estimators based on Delay and Jitter
THE EFFECT OF ROUTER
BUFFER SIZE ON SUBJECTIVE
GAMING QUALITY ESTIMATORS
BASED ON DELAY AND JITTER
GTC

Communication
Technologies Group

Jose Saldana
Julián Fernández-Navajas
José Ruiz-Mas
Eduardo Viruete Navarro
Luis Casadesus
University of Zaragoza, Spain
Index
-

I. Introduction
II. Related Works
III. Tests and Results
IV. Conclusions
Index
-

I. Introduction
II. Related Works
III. Tests and Results
IV. Conclusions
Introduction
- The Internet was not designed
for real-time services.
- First deployed ones: e-mail, file
transfer

CCNC 2012. DENVECT Workshop. Las Vegas Jan 14, 2012
Introduction
- But real-time services are being
widely used: VoIP, video
conference, online gaming

CCNC 2012. DENVECT Workshop. Las Vegas Jan 14, 2012
Introduction
- Problem: Using a best effort
network for a real-time service.
- Users demand a quality similar to
the one they are used to.
- Research: Find the relationship
between network impairments and
perceived quality.
-

Delay, packet loss, bandwidth, jitter.

CCNC 2012. DENVECT Workshop. Las Vegas Jan 14, 2012
Introduction
- E-Model: ITU’s solution that
estimates perceived quality of voice,
as a function of delay, packet loss,
codec, etc.
- Battery of surveys in order to obtain
a MOS (Mean Opinion Score) model

CCNC 2012. DENVECT Workshop. Las Vegas Jan 14, 2012
FPS online games
- Very stringent Real-time
requirements:
- Interactivity (video)
- Players: Difficult to satisfy

CCNC 2012. DENVECT Workshop. Las Vegas Jan 14, 2012
FPS online games
- Traffic characteristics
-

-

UDP
Small packets (100 bytes maximum)
High frequency (25 to 85 pps)

A universal MOS does not exist
-

Some games are more sensitive to delay, or
packet loss, or jitter, etc.

CCNC 2012. DENVECT Workshop. Las Vegas Jan 14, 2012
Index
-

I. Introduction
II. Related Works
III. Tests and Results
IV. Conclusions
II. Related Works
- Buffer sizing problem
- Measuring subjective quality for
online games
II. Related Works
- Buffer sizing problem
- Measuring subjective quality for
online games
Buffer sizing problem
- Players mainly use access networks
- We are considering low-end routers,
i.e. the ones we can find in access
networks
-

Drop-tail FIFO tiny buffers, of some tens of
kilobytes

CCNC 2012. DENVECT Workshop. Las Vegas Jan 14, 2012
Buffer sizing problem
- Different proposals:
- Rule of the thumb: C x RTT
-

Maximize buffer occupancy
Too much delay

- Stanford model: C x RTT / sqrt(N)
- Tiny buffer: 20 to 50 packets

CCNC 2012. DENVECT Workshop. Las Vegas Jan 14, 2012
Buffer sizing trade-off
Bigger
delays

Bigger
Buffer

Bigger
jitter

Smaller
delays

Smaller
Buffer

Smaller
packet
loss

CCNC 2012. DENVECT Workshop. Las Vegas Jan 14, 2012

Smaller
jitter

Bigger
packet
loss
II. Related Works
- Buffer sizing problem
- Measuring subjective quality for
online games
Subjective quality for FPS
- MOS as a function of SRT (linear dependence)
C. Schaefer, T. Enderes, H. Ritter, M. Zitterbart. “Subjective quality assessment
for multiplayer real-time games”. In Proc 1st workshop on Network and system
support for games (NetGames '02). ACM, New York, NY, USA, 74-78. 2002.

- Influence of delay and packet loss (not
developing a MOS)
S. Zander, G. Armitage, “Empirically Measuring the QoS Sensitivity of Interactive
Online Game Players”. In Proc. Australian Telecommunications Networks &
Applications Conference (ATNAC 2004), Sydney, Australia, Dec. 2004.

-

Packet loss: different behavior:
-

Halo: Does not work with 4% loss
Quake III: Works with 35% loss

CCNC 2012. DENVECT Workshop. Las Vegas Jan 14, 2012
Subjective quality for FPS
- Only delay and jitter, but separately
M. Dick, O. Wellnitz, L. Wolf. “Analysis of factors affecting players' performance
and perception in multiplayer games”. In Proc. 4th ACM SIGCOMM workshop on
Network and system support for games (NetGames '05). ACM, New York, NY,
USA, 1-7, 2005.

- First developed MOS, adapted from E-model
A. F. Wattimena, R. E. Kooij, J. M. van Vugt, O. K. Ahmed, “Predicting the
perceived quality of a first person shooter: the Quake IV G-model”. In Proc. 5th
SIGCOMM workshop Network and system support for games (NetGames '06),
ACM, New York, NY, USA, 2006.

-

Only delay and jitter were considered
Game: Quake IV
G-model: We will use it to study quality

CCNC 2012. DENVECT Workshop. Las Vegas Jan 14, 2012
Index
-

I. Introduction
II. Related Works
III. Tests and Results
IV. Conclusions
Previous results with VoIP
- E-Model uses delay and packet
loss.
- Jitter is not considered, as a dejitter buffer is used

CCNC 2012. DENVECT Workshop. Las Vegas Jan 14, 2012
Previous results for VoIP
-

MOS presents a monotonically decreasing
behavior with background traffic
E-Model MOS
5
4.5
4

MOS

3.5
3

2.5
1 call
5 calls
10 calls
15 calls
20 calls

2
1.5
1
400

450

500

550

600

650

700

750

800

background traffic (kbps)

CCNC 2012. DENVECT Workshop. Las Vegas Jan 14, 2012

850

900

950

1000
Scenarios of interest
- A number of players connected
to the server sharing the same
router
buffer

Internet
.
.
.

Router
Game &
background
traffic

Users

CCNC 2012. DENVECT Workshop. Las Vegas Jan 14, 2012

Game Server
Test methodology
- The same scenario as in VoIP
- FPS game with a MOS: Quake IV
- Traffic traces available from CAIA
project
- Only client-to-server (the most
restrictive one)

CCNC 2012. DENVECT Workshop. Las Vegas Jan 14, 2012
Test methodology
- Inter-packet time and packet
size histograms
-

40.7 kbps / user

40 50 60 70 80 90 100 110
bytes

0

10 20 30 40 50 60 70
ms

79.5 bytes avg
CCNC 2012. DENVECT Workshop. Las Vegas Jan 14, 2012

64 pps
Test methodology
- 20 players sharing an Internet
connection
- Buffer: Drop-tail, fixed kB size
Bandwidth
Buffer size
2 Mbps
3 Mbps

10 kB
20 kB
50 kB
100 kB

CCNC 2012. DENVECT Workshop. Las Vegas Jan 14, 2012
Test methodology
-

Background traffic sharing the
connection
-

-

50% packets 40 bytes
10% packets 576 bytes
40% packets 1,500 bytes

Network RTT (avg 30 ms) added offline
buffer
Internet
.
.
.

Router
Game &
background
traffic

Users

CCNC 2012. DENVECT Workshop. Las Vegas Jan 14, 2012

Game Server
Test results: delay
RTT, 2 Mbps
450
10 kB
20 kB

400

50 kB
100 kB

350
300

ms

250
200
150
100
50
0
0

200

400

600

800

1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000
background traffic (kbps)

CCNC 2012. DENVECT Workshop. Las Vegas Jan 14, 2012
Test results: delay
RTT, 2 Mbps
450
10 kB
20 kB

400

50 kB
100 kB

350
300

ms

250
200

Bandwidth limit
40.7 x 20 = 814 kbps

150
100
50
0
0

200

400

600

800

1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000
background traffic (kbps)

CCNC 2012. DENVECT Workshop. Las Vegas Jan 14, 2012
Test results: delay
RTT, 2 Mbps
450
10 kB
20 kB

400

50 kB

Unacceptable delay

100 kB

350
300

ms

250
200
150
100
50
0
0

200

400

600

800

1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000
background traffic (kbps)

CCNC 2012. DENVECT Workshop. Las Vegas Jan 14, 2012
Test results: delay
RTT, 3 Mbps
450
10 kB
20 kB

400

50 kB
100 kB

350
300

ms

250
200
150
100
50
0
0

200

400

600

800

1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000
background traffic (kbps)

CCNC 2012. DENVECT Workshop. Las Vegas Jan 14, 2012
Test results: delay
RTT, 3 Mbps
450
10 kB
20 kB

400

50 kB
100 kB

350
300

ms

250
200

Bandwidth limit
40.7 x 20 = 814 kbps

150
100
50
0
0

200

400

600

800

1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000
background traffic (kbps)

CCNC 2012. DENVECT Workshop. Las Vegas Jan 14, 2012
Test results: delay
RTT, 3 Mbps
450
10 kB
20 kB

400

50 kB

Unacceptable delay

100 kB

350
300

ms

250
200
150
100
50
0
0

200

400

600

800

1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000
background traffic (kbps)

CCNC 2012. DENVECT Workshop. Las Vegas Jan 14, 2012
Test results: jitter
Jitter (delay standard deviation), 2 Mbps
110
10kB
100

20 kB
50 kB

90

100kB

80

ms

70

60
50
40
30
20
10
0
0

200

400

600

800

1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000
background traffic (kbps)

CCNC 2012. DENVECT Workshop. Las Vegas Jan 14, 2012
Test results: jitter
Jitter (delay standard deviation), 2 Mbps
110
10kB
100

20 kB
50 kB

90

Above the bandwidth
limit, the jitter
decreases, as the
buffer is always full

100kB

80

ms

70

60
50

Bandwidth limit
40.7 x 20 = 814 kbps

40
30
20
10
0
0

200

400

600

800

1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000
background traffic (kbps)

CCNC 2012. DENVECT Workshop. Las Vegas Jan 14, 2012
Test results: jitter
Jitter (delay standard deviation), 3 Mbps
110
10kB
100

20 kB
50 kB

90

100kB

80

ms

70

60
50
40
30
20
10
0
0

200

400

600

800

1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000
background traffic (kbps)

CCNC 2012. DENVECT Workshop. Las Vegas Jan 14, 2012
Test results: jitter
Jitter (delay standard deviation), 3 Mbps
110
10kB
100

20 kB

The peak is reduced
when bandwidth grows

50 kB

90

100kB

80

ms

70

60
50
40
30
20
10
0
0

200

400

600

800

1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000
background traffic (kbps)

CCNC 2012. DENVECT Workshop. Las Vegas Jan 14, 2012
Test results: packet loss
Packet Loss, buffer 10kB, 2 Mbps
45%
game (79 bytes avg)
40 bytes

40%

576 bytes
1500 bytes

35%
30%
25%
20%
15%
10%
5%
0%
0

200

400

600

800

1000

1200

1400

1600

1800

background traffic (kbps)

CCNC 2012. DENVECT Workshop. Las Vegas Jan 14, 2012

2000

2200

2400

2600

2800

3000
Test results: packet loss
Packet Loss, buffer 10kB, 2 Mbps
45%
game (79 bytes avg)
40 bytes

40%

576 bytes
1500 bytes

35%
30%

Small packets have a clear
advantage in a drop-tail
size limited buffer

25%
20%
15%
10%
5%
0%
0

200

400

600

800

1000

1200

1400

1600

1800

background traffic (kbps)

CCNC 2012. DENVECT Workshop. Las Vegas Jan 14, 2012

2000

2200

2400

2600

2800

3000
Test results: packet loss
Packet Loss, buffer 10kB, 3 Mbps
45%
game (79 bytes avg)
40 bytes

40%

576 bytes
1500 bytes

35%
30%
25%
20%
15%
10%
5%
0%
0

200

400

600

800

1000

1200

1400

1600

1800

background traffic (kbps)

CCNC 2012. DENVECT Workshop. Las Vegas Jan 14, 2012

2000

2200

2400

2600

2800

3000
Test results: MOS
-

G-Model MOS formula:
x = 0.104*ping_average + jitter_average

MOS = -0.00000587 x 3 + 0.00139 x2- 0.114 x + 4.37

-

Packet loss is not considered, unless it is
above 35%

CCNC 2012. DENVECT Workshop. Las Vegas Jan 14, 2012
Test results: MOS
G-Model MOS, 2 Mbps
5

4.5
4

MOS

3.5
3
2.5
2

10 kB
20 kB

1.5

50 kB
100 kB

1
0

200

400

600

800

1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000
background traffic (kbps)

CCNC 2012. DENVECT Workshop. Las Vegas Jan 14, 2012
Test results: MOS
G-Model MOS, 2 Mbps
5

4.5

Good quality
4

MOS

3.5

Medium quality
3
2.5
2

Bad quality

10 kB
20 kB

1.5

50 kB
100 kB

1
0

200

400

600

800

1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000
background traffic (kbps)

CCNC 2012. DENVECT Workshop. Las Vegas Jan 14, 2012
Test results: MOS
G-Model MOS, 2 Mbps
5

Delay and jitter
grow

4.5

Delay grows, but
jitter decreases
Not monotonically
decreasing

4

MOS

3.5
3
2.5
2

10 kB
20 kB

1.5

50 kB
100 kB

1
0

200

400

600

800

1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000
background traffic (kbps)

CCNC 2012. DENVECT Workshop. Las Vegas Jan 14, 2012
Test results: MOS
G-Model MOS, 2 Mbps
5

Small buffers
present the best
behavior

4.5
4

MOS

3.5
3
2.5
2

10 kB
20 kB

1.5

50 kB
100 kB

1
0

200

400

600

800

1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000
background traffic (kbps)

CCNC 2012. DENVECT Workshop. Las Vegas Jan 14, 2012
Test results: MOS
G-Model MOS, 3 Mbps
5
4.5
4

MOS

3.5
3
2.5
2

10 kB

20 kB
1.5

50 kB
100 kB

1
0

200

400

600

800

1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000
background traffic (kbps)

CCNC 2012. DENVECT Workshop. Las Vegas Jan 14, 2012
Test results: MOS
G-Model MOS, 3 Mbps
5
4.5

Good quality
4

MOS

3.5

Medium quality
3
2.5
2

Bad quality

10 kB

20 kB
1.5

50 kB
100 kB

1
0

200

400

600

800

1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000
background traffic (kbps)

CCNC 2012. DENVECT Workshop. Las Vegas Jan 14, 2012
Test results: MOS
G-Model MOS, 3 Mbps
5

Acceptable MOS
values above
bandwidth limit

4.5
4

MOS

3.5
3
2.5
2

10 kB

20 kB
1.5

50 kB
100 kB

1
0

200

400

600

800

1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000
background traffic (kbps)

CCNC 2012. DENVECT Workshop. Las Vegas Jan 14, 2012
Index
-

I. Introduction
II. Related Works
III. Tests and Results
IV. Conclusions
Conclusions
-

Access networks with low-end routers
Importance of the buffer size
Small buffers are better for real-time apps
Buffer implementation can penalyze big
packets
We cannot separately study each network
impairment
Need for subjective quality estimators to
calculate MOS
If delay and jitter are the considered
impairments, the jitter peak produces a MOS
valley

CCNC 2012. DENVECT Workshop. Las Vegas Jan 14, 2012
THANK YOU

GTC

Communication
Technologies Group

jsaldana@unizar.es
The Effect of Router Buffer Size on Subjective Gaming Quality Estimators based on Delay and Jitter
Extra Slides
Online games: genres

Real-time strategy

Sports

MMORPG

FPS

CCNC 2012. DENVECT Workshop. Las Vegas Jan 14, 2012
FPS online games
- Delay: Very important

CCNC 2012. DENVECT Workshop. Las Vegas Jan 14, 2012
CCNC 2012. DENVECT Workshop. Las Vegas Jan 14, 2012

More Related Content

PDF
Architecting for a scalable enterprise - John Davies
PPTX
CHEP2012_Upgrade_CMS_Event_Builder_AP_21052011
PPTX
Ad hoc wireless network final
PPTX
Qo s oriented distributed routing protocols : anna university 2nd review ppt
PDF
Influence of Online Games Traffic Multiplexing and Router Buffer on Subjectiv...
PDF
The problem of using a best-effort network for online games
PDF
Comparison of Multiplexing Policies for FPS Games in terms of Subjective Quality
PDF
Influence of the Router Buffer on Online Games Traffic Multiplexing
Architecting for a scalable enterprise - John Davies
CHEP2012_Upgrade_CMS_Event_Builder_AP_21052011
Ad hoc wireless network final
Qo s oriented distributed routing protocols : anna university 2nd review ppt
Influence of Online Games Traffic Multiplexing and Router Buffer on Subjectiv...
The problem of using a best-effort network for online games
Comparison of Multiplexing Policies for FPS Games in terms of Subjective Quality
Influence of the Router Buffer on Online Games Traffic Multiplexing

Similar to The Effect of Router Buffer Size on Subjective Gaming Quality Estimators based on Delay and Jitter (20)

PPT
An Empirical Evaluation of TCP Performance in Online Games
PDF
The Utility of Characterizing Packet Loss as a Function of Packet Size in Com...
PDF
An Empirical Evaluation of VoIP Playout Buffer Dimensioning in Skype, Google ...
PDF
Traffic Optimization for TCP-based Massive Multiplayer Online Games
PDF
Tech solutions and tricks in real time mobile multiplayer
PDF
The Effect of TCP Variants on the Coexistence of MMORPG and Best-Effort Traffic
PPTX
Online games: a real-time problem for the network
PPTX
Understanding The Performance of Thin-Client Gaming
PPT
Harlan Beverly Lag The Barrier to innovation gdc austin 2009
PPT
Poster Qos
PPT
QoS of multiplayer games over 802.11
PPTX
ENSA_Module_9.pptx_Quality_of_service_concepts
PPTX
ENSA_Module_9-QoS Concept.pptx
PPTX
SJNC13.pptx
PPT
Online Game QoE Evaluation using Paired Comparisons
PPTX
Cloud gaming abdul_wahab_2021.pptx
PDF
QoS in Network Gaming
PPTX
CCNA4 Verson6 Chapter6
PDF
Lets Play Together
PPT
ETE405-lec9.ppt
An Empirical Evaluation of TCP Performance in Online Games
The Utility of Characterizing Packet Loss as a Function of Packet Size in Com...
An Empirical Evaluation of VoIP Playout Buffer Dimensioning in Skype, Google ...
Traffic Optimization for TCP-based Massive Multiplayer Online Games
Tech solutions and tricks in real time mobile multiplayer
The Effect of TCP Variants on the Coexistence of MMORPG and Best-Effort Traffic
Online games: a real-time problem for the network
Understanding The Performance of Thin-Client Gaming
Harlan Beverly Lag The Barrier to innovation gdc austin 2009
Poster Qos
QoS of multiplayer games over 802.11
ENSA_Module_9.pptx_Quality_of_service_concepts
ENSA_Module_9-QoS Concept.pptx
SJNC13.pptx
Online Game QoE Evaluation using Paired Comparisons
Cloud gaming abdul_wahab_2021.pptx
QoS in Network Gaming
CCNA4 Verson6 Chapter6
Lets Play Together
ETE405-lec9.ppt
Ad

More from Jose Saldana (20)

PPTX
Pint of science Patinete as a Service
PDF
Mejorar tu empleabilidad como ingeniero
PDF
POUZ Universidad de Zaragoza - Telecomunicación 2º y 3º
PDF
Cómo se conectan los ordenadores y los móviles
PDF
La bala que dobló la esquina: el problema de los videojuegos online
PDF
Entretenimiento online. Una perspectiva cristiana
PDF
¿Por qué el WiFi se va y se viene?
PDF
Wi-5: Advanced Features for Low-cost Wi-Fi APs
PDF
Header compression and multiplexing in LISP
PDF
Simplemux traffic optimization
PDF
Improving Network Efficiency with Simplemux
PDF
GAIA and Alternative Networks
PDF
Bar-BoF session about Simplemux at IETF93, Prague
PDF
Alternative Network Deployments
PDF
Simplemux: a generic multiplexing protocol
PDF
Optimization of Low-efficiency Traffic in OpenFlow Software Defined Networks
PDF
TCM-TF 2014
PDF
Can We Multiplex ACKs without Harming the Performance of TCP?
PDF
The Effect of Multiplexing Delay on MMORPG TCP Traffic Flows
PDF
Online games traffic characterization and network support
Pint of science Patinete as a Service
Mejorar tu empleabilidad como ingeniero
POUZ Universidad de Zaragoza - Telecomunicación 2º y 3º
Cómo se conectan los ordenadores y los móviles
La bala que dobló la esquina: el problema de los videojuegos online
Entretenimiento online. Una perspectiva cristiana
¿Por qué el WiFi se va y se viene?
Wi-5: Advanced Features for Low-cost Wi-Fi APs
Header compression and multiplexing in LISP
Simplemux traffic optimization
Improving Network Efficiency with Simplemux
GAIA and Alternative Networks
Bar-BoF session about Simplemux at IETF93, Prague
Alternative Network Deployments
Simplemux: a generic multiplexing protocol
Optimization of Low-efficiency Traffic in OpenFlow Software Defined Networks
TCM-TF 2014
Can We Multiplex ACKs without Harming the Performance of TCP?
The Effect of Multiplexing Delay on MMORPG TCP Traffic Flows
Online games traffic characterization and network support
Ad

Recently uploaded (20)

PDF
RTP_AR_KS1_Tutor's Guide_English [FOR REPRODUCTION].pdf
PDF
Chinmaya Tiranga quiz Grand Finale.pdf
PPTX
human mycosis Human fungal infections are called human mycosis..pptx
PPTX
Cell Structure & Organelles in detailed.
PDF
Yogi Goddess Pres Conference Studio Updates
PDF
OBE - B.A.(HON'S) IN INTERIOR ARCHITECTURE -Ar.MOHIUDDIN.pdf
PDF
Trump Administration's workforce development strategy
PPTX
master seminar digital applications in india
PPTX
Pharma ospi slides which help in ospi learning
PPTX
IMMUNITY IMMUNITY refers to protection against infection, and the immune syst...
PDF
2.FourierTransform-ShortQuestionswithAnswers.pdf
PDF
Weekly quiz Compilation Jan -July 25.pdf
PDF
O7-L3 Supply Chain Operations - ICLT Program
PDF
STATICS OF THE RIGID BODIES Hibbelers.pdf
PDF
O5-L3 Freight Transport Ops (International) V1.pdf
PDF
Abdominal Access Techniques with Prof. Dr. R K Mishra
PPTX
Final Presentation General Medicine 03-08-2024.pptx
PPTX
Pharmacology of Heart Failure /Pharmacotherapy of CHF
PPTX
Introduction-to-Literarature-and-Literary-Studies-week-Prelim-coverage.pptx
PDF
Black Hat USA 2025 - Micro ICS Summit - ICS/OT Threat Landscape
RTP_AR_KS1_Tutor's Guide_English [FOR REPRODUCTION].pdf
Chinmaya Tiranga quiz Grand Finale.pdf
human mycosis Human fungal infections are called human mycosis..pptx
Cell Structure & Organelles in detailed.
Yogi Goddess Pres Conference Studio Updates
OBE - B.A.(HON'S) IN INTERIOR ARCHITECTURE -Ar.MOHIUDDIN.pdf
Trump Administration's workforce development strategy
master seminar digital applications in india
Pharma ospi slides which help in ospi learning
IMMUNITY IMMUNITY refers to protection against infection, and the immune syst...
2.FourierTransform-ShortQuestionswithAnswers.pdf
Weekly quiz Compilation Jan -July 25.pdf
O7-L3 Supply Chain Operations - ICLT Program
STATICS OF THE RIGID BODIES Hibbelers.pdf
O5-L3 Freight Transport Ops (International) V1.pdf
Abdominal Access Techniques with Prof. Dr. R K Mishra
Final Presentation General Medicine 03-08-2024.pptx
Pharmacology of Heart Failure /Pharmacotherapy of CHF
Introduction-to-Literarature-and-Literary-Studies-week-Prelim-coverage.pptx
Black Hat USA 2025 - Micro ICS Summit - ICS/OT Threat Landscape

The Effect of Router Buffer Size on Subjective Gaming Quality Estimators based on Delay and Jitter

  • 2. THE EFFECT OF ROUTER BUFFER SIZE ON SUBJECTIVE GAMING QUALITY ESTIMATORS BASED ON DELAY AND JITTER GTC Communication Technologies Group Jose Saldana Julián Fernández-Navajas José Ruiz-Mas Eduardo Viruete Navarro Luis Casadesus University of Zaragoza, Spain
  • 3. Index - I. Introduction II. Related Works III. Tests and Results IV. Conclusions
  • 4. Index - I. Introduction II. Related Works III. Tests and Results IV. Conclusions
  • 5. Introduction - The Internet was not designed for real-time services. - First deployed ones: e-mail, file transfer CCNC 2012. DENVECT Workshop. Las Vegas Jan 14, 2012
  • 6. Introduction - But real-time services are being widely used: VoIP, video conference, online gaming CCNC 2012. DENVECT Workshop. Las Vegas Jan 14, 2012
  • 7. Introduction - Problem: Using a best effort network for a real-time service. - Users demand a quality similar to the one they are used to. - Research: Find the relationship between network impairments and perceived quality. - Delay, packet loss, bandwidth, jitter. CCNC 2012. DENVECT Workshop. Las Vegas Jan 14, 2012
  • 8. Introduction - E-Model: ITU’s solution that estimates perceived quality of voice, as a function of delay, packet loss, codec, etc. - Battery of surveys in order to obtain a MOS (Mean Opinion Score) model CCNC 2012. DENVECT Workshop. Las Vegas Jan 14, 2012
  • 9. FPS online games - Very stringent Real-time requirements: - Interactivity (video) - Players: Difficult to satisfy CCNC 2012. DENVECT Workshop. Las Vegas Jan 14, 2012
  • 10. FPS online games - Traffic characteristics - - UDP Small packets (100 bytes maximum) High frequency (25 to 85 pps) A universal MOS does not exist - Some games are more sensitive to delay, or packet loss, or jitter, etc. CCNC 2012. DENVECT Workshop. Las Vegas Jan 14, 2012
  • 11. Index - I. Introduction II. Related Works III. Tests and Results IV. Conclusions
  • 12. II. Related Works - Buffer sizing problem - Measuring subjective quality for online games
  • 13. II. Related Works - Buffer sizing problem - Measuring subjective quality for online games
  • 14. Buffer sizing problem - Players mainly use access networks - We are considering low-end routers, i.e. the ones we can find in access networks - Drop-tail FIFO tiny buffers, of some tens of kilobytes CCNC 2012. DENVECT Workshop. Las Vegas Jan 14, 2012
  • 15. Buffer sizing problem - Different proposals: - Rule of the thumb: C x RTT - Maximize buffer occupancy Too much delay - Stanford model: C x RTT / sqrt(N) - Tiny buffer: 20 to 50 packets CCNC 2012. DENVECT Workshop. Las Vegas Jan 14, 2012
  • 16. Buffer sizing trade-off Bigger delays Bigger Buffer Bigger jitter Smaller delays Smaller Buffer Smaller packet loss CCNC 2012. DENVECT Workshop. Las Vegas Jan 14, 2012 Smaller jitter Bigger packet loss
  • 17. II. Related Works - Buffer sizing problem - Measuring subjective quality for online games
  • 18. Subjective quality for FPS - MOS as a function of SRT (linear dependence) C. Schaefer, T. Enderes, H. Ritter, M. Zitterbart. “Subjective quality assessment for multiplayer real-time games”. In Proc 1st workshop on Network and system support for games (NetGames '02). ACM, New York, NY, USA, 74-78. 2002. - Influence of delay and packet loss (not developing a MOS) S. Zander, G. Armitage, “Empirically Measuring the QoS Sensitivity of Interactive Online Game Players”. In Proc. Australian Telecommunications Networks & Applications Conference (ATNAC 2004), Sydney, Australia, Dec. 2004. - Packet loss: different behavior: - Halo: Does not work with 4% loss Quake III: Works with 35% loss CCNC 2012. DENVECT Workshop. Las Vegas Jan 14, 2012
  • 19. Subjective quality for FPS - Only delay and jitter, but separately M. Dick, O. Wellnitz, L. Wolf. “Analysis of factors affecting players' performance and perception in multiplayer games”. In Proc. 4th ACM SIGCOMM workshop on Network and system support for games (NetGames '05). ACM, New York, NY, USA, 1-7, 2005. - First developed MOS, adapted from E-model A. F. Wattimena, R. E. Kooij, J. M. van Vugt, O. K. Ahmed, “Predicting the perceived quality of a first person shooter: the Quake IV G-model”. In Proc. 5th SIGCOMM workshop Network and system support for games (NetGames '06), ACM, New York, NY, USA, 2006. - Only delay and jitter were considered Game: Quake IV G-model: We will use it to study quality CCNC 2012. DENVECT Workshop. Las Vegas Jan 14, 2012
  • 20. Index - I. Introduction II. Related Works III. Tests and Results IV. Conclusions
  • 21. Previous results with VoIP - E-Model uses delay and packet loss. - Jitter is not considered, as a dejitter buffer is used CCNC 2012. DENVECT Workshop. Las Vegas Jan 14, 2012
  • 22. Previous results for VoIP - MOS presents a monotonically decreasing behavior with background traffic E-Model MOS 5 4.5 4 MOS 3.5 3 2.5 1 call 5 calls 10 calls 15 calls 20 calls 2 1.5 1 400 450 500 550 600 650 700 750 800 background traffic (kbps) CCNC 2012. DENVECT Workshop. Las Vegas Jan 14, 2012 850 900 950 1000
  • 23. Scenarios of interest - A number of players connected to the server sharing the same router buffer Internet . . . Router Game & background traffic Users CCNC 2012. DENVECT Workshop. Las Vegas Jan 14, 2012 Game Server
  • 24. Test methodology - The same scenario as in VoIP - FPS game with a MOS: Quake IV - Traffic traces available from CAIA project - Only client-to-server (the most restrictive one) CCNC 2012. DENVECT Workshop. Las Vegas Jan 14, 2012
  • 25. Test methodology - Inter-packet time and packet size histograms - 40.7 kbps / user 40 50 60 70 80 90 100 110 bytes 0 10 20 30 40 50 60 70 ms 79.5 bytes avg CCNC 2012. DENVECT Workshop. Las Vegas Jan 14, 2012 64 pps
  • 26. Test methodology - 20 players sharing an Internet connection - Buffer: Drop-tail, fixed kB size Bandwidth Buffer size 2 Mbps 3 Mbps 10 kB 20 kB 50 kB 100 kB CCNC 2012. DENVECT Workshop. Las Vegas Jan 14, 2012
  • 27. Test methodology - Background traffic sharing the connection - - 50% packets 40 bytes 10% packets 576 bytes 40% packets 1,500 bytes Network RTT (avg 30 ms) added offline buffer Internet . . . Router Game & background traffic Users CCNC 2012. DENVECT Workshop. Las Vegas Jan 14, 2012 Game Server
  • 28. Test results: delay RTT, 2 Mbps 450 10 kB 20 kB 400 50 kB 100 kB 350 300 ms 250 200 150 100 50 0 0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 background traffic (kbps) CCNC 2012. DENVECT Workshop. Las Vegas Jan 14, 2012
  • 29. Test results: delay RTT, 2 Mbps 450 10 kB 20 kB 400 50 kB 100 kB 350 300 ms 250 200 Bandwidth limit 40.7 x 20 = 814 kbps 150 100 50 0 0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 background traffic (kbps) CCNC 2012. DENVECT Workshop. Las Vegas Jan 14, 2012
  • 30. Test results: delay RTT, 2 Mbps 450 10 kB 20 kB 400 50 kB Unacceptable delay 100 kB 350 300 ms 250 200 150 100 50 0 0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 background traffic (kbps) CCNC 2012. DENVECT Workshop. Las Vegas Jan 14, 2012
  • 31. Test results: delay RTT, 3 Mbps 450 10 kB 20 kB 400 50 kB 100 kB 350 300 ms 250 200 150 100 50 0 0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 background traffic (kbps) CCNC 2012. DENVECT Workshop. Las Vegas Jan 14, 2012
  • 32. Test results: delay RTT, 3 Mbps 450 10 kB 20 kB 400 50 kB 100 kB 350 300 ms 250 200 Bandwidth limit 40.7 x 20 = 814 kbps 150 100 50 0 0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 background traffic (kbps) CCNC 2012. DENVECT Workshop. Las Vegas Jan 14, 2012
  • 33. Test results: delay RTT, 3 Mbps 450 10 kB 20 kB 400 50 kB Unacceptable delay 100 kB 350 300 ms 250 200 150 100 50 0 0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 background traffic (kbps) CCNC 2012. DENVECT Workshop. Las Vegas Jan 14, 2012
  • 34. Test results: jitter Jitter (delay standard deviation), 2 Mbps 110 10kB 100 20 kB 50 kB 90 100kB 80 ms 70 60 50 40 30 20 10 0 0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 background traffic (kbps) CCNC 2012. DENVECT Workshop. Las Vegas Jan 14, 2012
  • 35. Test results: jitter Jitter (delay standard deviation), 2 Mbps 110 10kB 100 20 kB 50 kB 90 Above the bandwidth limit, the jitter decreases, as the buffer is always full 100kB 80 ms 70 60 50 Bandwidth limit 40.7 x 20 = 814 kbps 40 30 20 10 0 0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 background traffic (kbps) CCNC 2012. DENVECT Workshop. Las Vegas Jan 14, 2012
  • 36. Test results: jitter Jitter (delay standard deviation), 3 Mbps 110 10kB 100 20 kB 50 kB 90 100kB 80 ms 70 60 50 40 30 20 10 0 0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 background traffic (kbps) CCNC 2012. DENVECT Workshop. Las Vegas Jan 14, 2012
  • 37. Test results: jitter Jitter (delay standard deviation), 3 Mbps 110 10kB 100 20 kB The peak is reduced when bandwidth grows 50 kB 90 100kB 80 ms 70 60 50 40 30 20 10 0 0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 background traffic (kbps) CCNC 2012. DENVECT Workshop. Las Vegas Jan 14, 2012
  • 38. Test results: packet loss Packet Loss, buffer 10kB, 2 Mbps 45% game (79 bytes avg) 40 bytes 40% 576 bytes 1500 bytes 35% 30% 25% 20% 15% 10% 5% 0% 0 200 400 600 800 1000 1200 1400 1600 1800 background traffic (kbps) CCNC 2012. DENVECT Workshop. Las Vegas Jan 14, 2012 2000 2200 2400 2600 2800 3000
  • 39. Test results: packet loss Packet Loss, buffer 10kB, 2 Mbps 45% game (79 bytes avg) 40 bytes 40% 576 bytes 1500 bytes 35% 30% Small packets have a clear advantage in a drop-tail size limited buffer 25% 20% 15% 10% 5% 0% 0 200 400 600 800 1000 1200 1400 1600 1800 background traffic (kbps) CCNC 2012. DENVECT Workshop. Las Vegas Jan 14, 2012 2000 2200 2400 2600 2800 3000
  • 40. Test results: packet loss Packet Loss, buffer 10kB, 3 Mbps 45% game (79 bytes avg) 40 bytes 40% 576 bytes 1500 bytes 35% 30% 25% 20% 15% 10% 5% 0% 0 200 400 600 800 1000 1200 1400 1600 1800 background traffic (kbps) CCNC 2012. DENVECT Workshop. Las Vegas Jan 14, 2012 2000 2200 2400 2600 2800 3000
  • 41. Test results: MOS - G-Model MOS formula: x = 0.104*ping_average + jitter_average MOS = -0.00000587 x 3 + 0.00139 x2- 0.114 x + 4.37 - Packet loss is not considered, unless it is above 35% CCNC 2012. DENVECT Workshop. Las Vegas Jan 14, 2012
  • 42. Test results: MOS G-Model MOS, 2 Mbps 5 4.5 4 MOS 3.5 3 2.5 2 10 kB 20 kB 1.5 50 kB 100 kB 1 0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 background traffic (kbps) CCNC 2012. DENVECT Workshop. Las Vegas Jan 14, 2012
  • 43. Test results: MOS G-Model MOS, 2 Mbps 5 4.5 Good quality 4 MOS 3.5 Medium quality 3 2.5 2 Bad quality 10 kB 20 kB 1.5 50 kB 100 kB 1 0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 background traffic (kbps) CCNC 2012. DENVECT Workshop. Las Vegas Jan 14, 2012
  • 44. Test results: MOS G-Model MOS, 2 Mbps 5 Delay and jitter grow 4.5 Delay grows, but jitter decreases Not monotonically decreasing 4 MOS 3.5 3 2.5 2 10 kB 20 kB 1.5 50 kB 100 kB 1 0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 background traffic (kbps) CCNC 2012. DENVECT Workshop. Las Vegas Jan 14, 2012
  • 45. Test results: MOS G-Model MOS, 2 Mbps 5 Small buffers present the best behavior 4.5 4 MOS 3.5 3 2.5 2 10 kB 20 kB 1.5 50 kB 100 kB 1 0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 background traffic (kbps) CCNC 2012. DENVECT Workshop. Las Vegas Jan 14, 2012
  • 46. Test results: MOS G-Model MOS, 3 Mbps 5 4.5 4 MOS 3.5 3 2.5 2 10 kB 20 kB 1.5 50 kB 100 kB 1 0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 background traffic (kbps) CCNC 2012. DENVECT Workshop. Las Vegas Jan 14, 2012
  • 47. Test results: MOS G-Model MOS, 3 Mbps 5 4.5 Good quality 4 MOS 3.5 Medium quality 3 2.5 2 Bad quality 10 kB 20 kB 1.5 50 kB 100 kB 1 0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 background traffic (kbps) CCNC 2012. DENVECT Workshop. Las Vegas Jan 14, 2012
  • 48. Test results: MOS G-Model MOS, 3 Mbps 5 Acceptable MOS values above bandwidth limit 4.5 4 MOS 3.5 3 2.5 2 10 kB 20 kB 1.5 50 kB 100 kB 1 0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 background traffic (kbps) CCNC 2012. DENVECT Workshop. Las Vegas Jan 14, 2012
  • 49. Index - I. Introduction II. Related Works III. Tests and Results IV. Conclusions
  • 50. Conclusions - Access networks with low-end routers Importance of the buffer size Small buffers are better for real-time apps Buffer implementation can penalyze big packets We cannot separately study each network impairment Need for subjective quality estimators to calculate MOS If delay and jitter are the considered impairments, the jitter peak produces a MOS valley CCNC 2012. DENVECT Workshop. Las Vegas Jan 14, 2012
  • 54. Online games: genres Real-time strategy Sports MMORPG FPS CCNC 2012. DENVECT Workshop. Las Vegas Jan 14, 2012
  • 55. FPS online games - Delay: Very important CCNC 2012. DENVECT Workshop. Las Vegas Jan 14, 2012
  • 56. CCNC 2012. DENVECT Workshop. Las Vegas Jan 14, 2012