SlideShare a Scribd company logo
1 | P a g e
Q#No.1
For the Data Give below calculates: (1) Arithmetic mean (2) Median (3) Mode (4) Harmonic
mean (5) Geometric mean.
Solution:
(1) Arithmetic means
fX
X
f



4265
61
X 
69.918X 
(2) Median
2
h n
Median L c
f
 
   
   
10
60 30.5 16
15
Median   
69.67Median 
(3) Mode
   
1
1 2
m
m m
f f
Mode L h
f f f f

  
  
   
15 12
60 10
15 12 15 14
Mode

  
  
67.5Mode 
C-B f x fx f (
𝟏
𝒙
) C.f F log x
30-40 1 35 35 0.0285 1 1.5441
40-50 3 45 135 0.6666 4 4.9596
50-60 12 55 660 0.218 16 20.8844
60-70 15 65 975 0.230 31 27.1957
70-80 14 75 1050 0.1866 45 26.2508
80-90 11 85 935 0.129 56 21.2237
90-100 5 95 475 0.052 61 9.8886
61f  4265fx  1
( ) 0.9113f
x
  log 111.9449f x 
2 | P a g e
(4)Harmonic mean:
.
1
.
f
H M
f
x


 
 
 
61
.
0.9113
H M  . 66.93H M 
(5) Geometric mean:
(f logX)
. logG M anti
f



41.9449
. log
61
G M anti . 68.4227G M 
Q#NO.2
Find the (1) Arithmetic mean (2) Median (3) Mode (4) Harmonic mean (5) Geometric mean.
Solution:
(1) Arithmetic mean:
FX
X
F



18765
164
X  162.44X 
C-B f x fx Flogx f (
𝟏
𝒙
) C.f
0-40 6 20 120 7.8062 0.3 6
40-80 15 60 900 26.6723 0.25 21
80-120 22 100 2200 44 0.22 43
120-160 30 140 4200 64.3839 0.2143 73
160-200 45 180 8100 101.4873 0.25 118
200-140 27 220 5940 63.2455 0.1228 145
240-180 13 260 3380 31.3947 0.05 15.8
280-320 6 300 1800 14.8628 0.02 164
164f  26640fx  log 353.8527f x  1
( ) 1.427f
x
 
3 | P a g e
(2) Median
2
h n
Median L c
f
 
   
 
 
40
160 82 73
45
Median    168Median 
(3) Mode
   
1
1 2
m
m m
f f
Mode L h
f f f f

  
  
   
45 30
160 40
45 30 45 27
Mode

  
  
   
45 30
160 40
45 30 45 27
Mode

  
  
15
160 40
33
Mode   
178.18Mode 
(4)Harmonic mean:
.
1
.
f
H M
f
x


 
 
 
164
.
1.4271
H M 
. 114.92H M 
(5) Geometric mean:
(f logX)
. logG M anti
f



353.8527
. log
164
G M anti
 . log 2.1577G M anti . 143.789G M 
4 | P a g e
Q#No.3
Calculate the: (1) Arithmetic mean (2) Median (3) Mode (4) Harmonic mean (5) Geometric
mean.
Solution:
(1) Arithmetic mean:
fX
X
f



3372.5
55
X  61.318X 
(2) Median
2
h n
Median L c
f
 
   
 
 
55
60 27.5 2
18
Median    61.18Median 
(3) Mode
   
1
1 2
m
m m
f f
Mode L h
f f f f

  
  
   
18 12
60 5
18 12 18 13
Mode

  
  
30Mode 
(4)Harmonic mean:
.
1
.
f
H M
f
x


 
 
 
55
.
0.90587
H M  . 60.715H M 
C-B f X fx Flogx f (
𝟏
𝒙
) C.f
45-50 2 47.5 94 3.3533 0.0421 2
50-55 7 52.5 367.5 12.0411 0.1333 9
55-60 12 57.5 690 21.1160 0.2086 21
60-65 18 62.5 1125 32.3258 0.288 39
65-70 13 67.5 877.5 23.7809 0.1925 52
70-75 3 72.5 217.5 5.5810 0.04137 54
55f  3372.5fx  log 98.1981f x  1
( ) 0.90587f
x
 
5 | P a g e
(5) Geometric mean:
(f logX)
. logG M anti
f



98.1981
. log
55
G M anti
 . log 1.78542G M anti . 61.012G M 
Q#No.4
For the Data Give below calculates: (1) Arithmetic mean (2) Median (3) Mode (4) Harmonic
mean (5) Geometric mean.
Solution:
(1) Arithmetic mean:
fX
X
f



46350
850
X  54.526X 
(2) Median
2
h n
Median L c
f
 
   
 
 
10
60 425 420
190
Median    60.263Median 
(3) Mode
   
1
1 2
m
m m
f f
Mode L h
f f f f

  
      
190 125
60 10
190 125 190 240
Mode

  
  
 
65
60 10
65 50
Mode   
 
8.333Mode 
C-B f x fx Flogx f (
𝟏
𝒙
) C.f
0-10 25 5 125 17.47 5 25
10-20 40 15 600 47.043 2.667 65
20-30 60 25 1500 83.876 2.4 125
30-40 75 35 2625 115.80 2.142 200
40-50 95 45 4275 157.05 2.111 295
50-60 125 55 6875 217.54 2.272 420
60-70 190 65 12350 344.45 2.923 610
70-80 240 75 18000 445.75 3.2 850
850f  46350fx  log 1428.98f x  1
( ) 22.75f
x
 
6 | P a g e
(4) Harmonic mean:
.
1
.
f
H M
f
x


 
 
 
850
.
22.75
H M  . 37.36H M 
(5) Geometric mean:
(f logX)
. logG M anti
f



1428.98
. log
850
G M anti . 47.98G M 
Q#No.5
For the Data Give below calculates: (1) Arithmetic mean (2) Median (3) Mode (4) Harmonic
mean (5) Geometric mean.
Solution:
(1) Arithmetic mean:
fX
X
f



2005
72
X  27.847X 
(2) Median
2
h n
Median L c
f
 
   
 
 
5
22.5 36 24
19
Median    25.66Median 
C-B f X fx C.f F log x 1
f
x
 
 
 
12.5-17.5 2 15 30 2 2.3522 0.4
17.5-22.5 22 20 440 24 28.6227 1.1
22.5-27.5 19 25 475 43 26.5609 0.76
27.5-32.5 14 30 420 57 20.6797 0.4667
32.5-37.5 3 35 105 60 4.6322 0.857
37.5-42.5 4 40 160 64 6.4082 0.1
42.5-47.5 6 45 270 70 9.9193 0.1333
47.5-52.5 1 50 50 71 1.6989 0.02
52.5-57.5 1 55 55 72 1.7407 0.0181
∑f=72 ∑fx=2005 ∑flogx=102.6145 1
f
x
 
  
 
7 | P a g e
(3) Mode:
   
1
1 2
m
m m
f f
Mode L h
f f f f

  
      
22 2
17.5 5
22 2 22 19
Mode

  
  
20
17.5 5
20 3
Mode   

21.85Mode 
(4) Harmonic mean:
.
1
.
f
H M
f
x


 
 
 
72
.
3.0837
H M  . 23.35H M 
(5) Geometric mean:
(f logX)
. logG M anti
f



102.6145
. log
72
G M anti . 26.62G M 
8 | P a g e
Q#No.1
Calculate the correlation co-efficient between percentage of marks scored by 12 students in
statistics and economics.
Solution:
(1). Find the co-efficient of correlation:
2 2 2 2
( ) ( )
n xy x y
r
n x x n y y
   

           
2 2
12(23136) (750)(365)
12(47470) (750) 12(11385) (365)
r


       
  
3882
7140 3395
r 
710
45054900
r 
3882
4923.443917
r  0.7884r 
(2). Regression line:
Find the regression line of following data:
Y on X:
Y=a+bx
2 2
( )
yx
n xy x y
b
n x x
   

  
    
  2
12 23136 750 365
12 47470 (750)
yxb



277632 273750
569640 562500
yxb



3882
7140
yxb  0.543yxb 
X y xy 𝒙 𝟐
𝒚 𝟐
50 22 1100 2500 484
54 25 1350 2916 625
56 34 1904 3136 1156
59 25 1652 3481 784
60 26 1560 3600 678
61 30 1830 3721 900
62 32 1984 3844 1024
65 30 1950 4225 900
67 28 1876 4489 784
71 34 2414 5041 1156
71 36 2556 5041 1296
74 40 2960 5476 1600
∑x=750 ∑y=365 ∑xy=23136 ∑𝒙 𝟐=47470 ∑𝒚 𝟐=11385
9 | P a g e
yx
yx
y b x
a
n
  

    365 0.543 750
12
yxa

 3.52yxa  
The estimated regression line is as follows.
ˆ 3.52 0.543Y X  
(3). Regression line:
X on Y:
X=a+by
2 2
( )
xy
n xy x y
b
n y y
   

  
    
  2
12 23136 750 365
12 11385 (365)
xyb



277632 27375
136620 133225
xyb



3882
3395
xyb  1.143xyb 
.
xy
x bxy y
a
n
  

   750 1.143 (365)
12
xya

 27.73xya 
The estimated regression line is as follows.
ˆ 27.73 1.143x Y 
10 | P a g e
Q#No.2
Calculate the Co-efficientof correlationfromthe followingdataandalsocompute RegressionlineY onX
Solution:
(1).Find the co-efficient of correlation:
2 2 2 2
( ) ( )
n xy x y
r
n x x n y y
   

           
2 2
(11)(1336) (110)(125)
(11)(1210) (110) (11)(153) (125)
r


       
14696 13750
(13310 12100)(16841 15625)
r


 
946
(1210)(1216)
r 
946
1471360
r 
946
1212.99
r  0.779r 
(2). Regression line:
Y on X
Y a bx 
2 2
( )
yx
n xy x y
b
n x x
   

   2
(11)(1336) (110)(125)
(11)(1210) (110)
yxb



(14696) (13750)
(13310) (12100)
yxb



946
1210
yxb  0.781yxb 
X Y XY 𝒙 𝟐
𝒚 𝟐
5 9 45 25 81
6 6 36 36 36
7 10 70 49 100
8 8 64 64 64
9 13 117 81 169
10 11 110 100 121
11 14 154 121 196
12 10 120 144 100
13 14 182 169 196
14 12 168 196 144
15 18 270 225 324
∑X=110 ∑Y=125 ∑XY=1336 ∑𝑿 𝟐
=1240 ∑𝒀 𝟐
=1531
11 | P a g e
yx
yx
y b x
a
n
  

(125) (0.781)(110)
11
yxa


125 85.91
11
yxa


39.09
11
yxa  3.553yxa 
The estimated regression line is as follows.
ˆ 3.553 0.781Y x 
Q#NO.3
Calculate the Co-efficient of correlation from the following data and also compute Regression
line Y on X and X on Y.
Solution:
(1). Find the co-efficient of correlation:
2 2 2 2
( ) ( )
n xy x y
r
n x x n y y
   

           
2 2
(10)(33535) (655)(500)
(10)(46059) (655) (10)(25464) (500)
r


       
(335350) (327500)
(460590 429025)(254640 250000)
r


 
(7850)
(31565)(4640)
r 
X Y XY 𝒙 𝟐
𝒚 𝟐
16 40 640 256 1600
72 52 3744 5184 2704
73 43 3139 5329 1849
63 49 3087 3969 2401
83 61 5063 6889 3721
80 58 4640 6400 3364
66 44 2904 4359 1936
66 58 3828 4356 3364
74 50 3700 5476 2500
62 45 2790 3844 2025
∑X=655 ∑Y=500 ∑XY=33535 ∑𝑿 𝟐
=46059 ∑𝒀 𝟐
=25464
12 | P a g e
(7850)
12102.13204
r  0.6486r 
(2)Regression line Y on X
Y a bx 
2 2
( )
yx
n xy x y
b
n x x
   

   2
(10)(33535) (655)(500)
(10)(46059) (655)
yxb



(335350) (327500)
(460590) (429025)
yxb



7850
31565
yxb  0.249yxb 
yx
yx
y b x
a
n
  
 (500) (0.249)(655)
10
yxa


(500) (163.095)
10
yxa


336.905
10
yxa  33.6905yxa 
The estimated regression line is as follows.
ˆ 33.6905 0.249Y x 
(3)Regression line X on Y:
X a by 
2 2
( )
xy
n xy x y
b
n y y
   

   2
(10)(33535) (655)(500)
(10)(25464) (500)
xyb



(335350) (327500)
(254640) (250000)
xyb



7850
4640
xyb  1.6918103xyb 
xy
xy
x b y
a
n
  

(655) (1.6918)(500)
10
xya


(655) (845.9)
10
xya


190.9
10
xya

 19.09xya 
13 | P a g e
The estimated regression line is as follows.
ˆ 19.09 1.6918X x  
Q#NO.4
Find the co-efficient of correlation and fit the regression lines of the given data and also discuss
its result.
Solution:
(1). Find the co-efficient of correlation:
2 2 2 2
( ) ( )
n xy x y
r
n x x n y y
   

           
2 2
8(11245) (595)(150)
8(47375) (595) 8(3038) (150)
r


       
  
710
24975 1804
r 
710
45054900
r  710
6712.29469
r 
0.1058r 
(2). Regression line Y on X
Y a bx 
2 2
( )
yx
n xy x y
b
n x x
   

  
    
  2
8 11245 595 150
8 47375 (595)
yxb



X Y XY 𝒙 𝟐
𝒚 𝟐
40 17 680 1600 289
55 19 1045 3025 361
60 23 1380 3600 529
75 15 1125 5625 225
80 18 1440 6400 324
90 17 1530 8100 289
95 11 1045 9025 121
100 30 3000 10000 900
∑x=595 ∑y=150 ∑xy=11245 ∑𝒙 𝟐
=47375 ∑𝒚 𝟐
=3038
14 | P a g e
  2
89960 89250
8 47375 (595)
yxb



710
37900 354025
yxb 

710
24975
yxb  0.02843yxb 
yx
yx
y b x
a
n
  

    150 0.024843 595
8
yxa

 16.635yxa 
The estimated regression line is as follows.
ˆ 16.635 0.02843Y X 
(3) Regression line X on Y:
X a by 
2 2
( )
xy
n xy x y
b
n y y
   

  
    
  2
8 11245 595 150
8 3038 (150)
xyb



89960 89250
379000 22500
xyb



710
1804
xyb  0.39356xyb 
.
xy
x bxy y
a
n
  
    595 0.39356 (150)
8
xya

 67.99xya 
The estimated regression line is as follows.
ˆ 67.99 0.39356x  
15 | P a g e
Q#No.5: calculate the co-efficient of correlation from given data. And also find out regression
line Y on X and X on Y.
Solution:
x y xy 𝒙 𝟐
𝒚 𝟐
10 7 70 1000 49
15 8 120 225 64
20 3 60 400 9
25 7 175 625 49
30 18 540 900 324
35 6 210 1225 36
40 17 680 1600 289
∑x=175 ∑y=66 ∑xy=1855 ∑𝒙 𝟐
∑𝒚 𝟐
= 𝟖𝟐𝟎
(1). Find the co-efficient of correlation:
2 2 2 2
( ) ( )
n xy x y
r
n x x n y y
   

           
    
     
2 2
7 1855 175 66
7 5075 175 7 820 (66)
r


      
   
12985 11550
4900 1384
r



1435
6781600
r 
1435
2604.1505
r  0.551043r 
(2) . Regression line Y on X
Y a bx 
2 2
( )
yx
n xy x y
b
n x x
   

  
1435
4900
yxb  0.2928yxb 
yx
y byx x
a
n
  

    66 0.2928 175
7
yxa


66 51.24
7
yxa

 2.1085yxa 
The estimated regression line is as follows.
ˆ 2.1085 0.2928x x 
16 | P a g e
(3)Regression line X on Y:
X a by 
2 2
( )
xy
n xy x y
b
n y y
   

  
    
  2
7 1855 175 66
7 820 (66)
xyb



1435
1384
xyb  1.0368xyb 
xy
x bxy y
a
n
  

    175 1.036 66
7
xya


106.63
7
xya  15.2328xya 
The estimated regression line is as follows.
ˆ 15.2328 1.0368x y 

More Related Content

PDF
Finite frequency H∞control design for nonlinear systems
PDF
Vector mechanics for engineers statics 7th chapter 5
PPTX
Biostatistics Standard deviation and variance
PPT
Correlation & regression uwsb
PDF
Capítulo 05 deflexão e rigidez
PPTX
Numerical integration
PPT
Correlation & regression (2)
PDF
Solution shigley's
Finite frequency H∞control design for nonlinear systems
Vector mechanics for engineers statics 7th chapter 5
Biostatistics Standard deviation and variance
Correlation & regression uwsb
Capítulo 05 deflexão e rigidez
Numerical integration
Correlation & regression (2)
Solution shigley's

What's hot (18)

PDF
Capítulo 10 mola
PPT
Correlation & regression
PDF
Solved exercises line integral
PPT
Numerical differentiation integration
PPTX
Num Integration
PDF
Bending problems part 1
PDF
Spearman rank correlation coefficient
PDF
Tetsunao Matsuta
PDF
Hiroaki Shiokawa
PDF
Hand book of Howard Anton calculus exercises 8th edition
DOCX
Bending problems
DOCX
B.tech ii unit-3 material multiple integration
PDF
Hiroyuki Sato
PPTX
Regression analysis presentation
PPT
8.7 numerical integration
DOCX
PDF
Capitulo 2, 7ma edición
PPT
introduction to scientific computing
Capítulo 10 mola
Correlation & regression
Solved exercises line integral
Numerical differentiation integration
Num Integration
Bending problems part 1
Spearman rank correlation coefficient
Tetsunao Matsuta
Hiroaki Shiokawa
Hand book of Howard Anton calculus exercises 8th edition
Bending problems
B.tech ii unit-3 material multiple integration
Hiroyuki Sato
Regression analysis presentation
8.7 numerical integration
Capitulo 2, 7ma edición
introduction to scientific computing
Ad

Viewers also liked (14)

PDF
O sal e a água
PPTX
Retenedores
PPTX
ΙΤΑΛΙΑ
PPT
Presentacion juicios
PDF
Segunda competencia b
DOCX
D.R.C Conflict of 1994-2003, which is also known as Africa’s first world war.
PDF
De la Idea a los Alcances de Investigación
PDF
Perfil de Investigación
PDF
FEF Congratulates President Elect Rodrigo Duterte
PDF
Stata cheat sheet: data visualization
PDF
Bancassurance Models Around the World by Tobias schneider
PPTX
Route Optimization Algorithm..
PDF
An overview of access control
O sal e a água
Retenedores
ΙΤΑΛΙΑ
Presentacion juicios
Segunda competencia b
D.R.C Conflict of 1994-2003, which is also known as Africa’s first world war.
De la Idea a los Alcances de Investigación
Perfil de Investigación
FEF Congratulates President Elect Rodrigo Duterte
Stata cheat sheet: data visualization
Bancassurance Models Around the World by Tobias schneider
Route Optimization Algorithm..
An overview of access control
Ad

Similar to Central tedancy & correlation project - 2 (20)

PPTX
BS_2Geometric Mean.pptx
PDF
Numerical Methods: Solution of system of equations
PPT
Dispersion uwsb
PDF
Capítulo 03 materiais
DOCX
Statistics notes ,it includes mean to index numbers
PDF
Capítulo 02 considerações estatísticas
DOC
Chapter 6 indices
PDF
Applied numerical methods lec10
PDF
Shi20396 ch03
PDF
Geometric mean
PDF
Solucionario_Diseno_en_Ingenieria_Mecani (1).pdf
PDF
Solucionario_Diseno_en_Ingenieria_Mecani.pdf
PPTX
Normal probability distribution
PDF
Standard deviation
PPTX
Coefficient of variation
PPTX
MULTICOLLINERITY.pptx
PPTX
Measures of dispersion - united world school of business
PPTX
Standard Deviation and Variance
BS_2Geometric Mean.pptx
Numerical Methods: Solution of system of equations
Dispersion uwsb
Capítulo 03 materiais
Statistics notes ,it includes mean to index numbers
Capítulo 02 considerações estatísticas
Chapter 6 indices
Applied numerical methods lec10
Shi20396 ch03
Geometric mean
Solucionario_Diseno_en_Ingenieria_Mecani (1).pdf
Solucionario_Diseno_en_Ingenieria_Mecani.pdf
Normal probability distribution
Standard deviation
Coefficient of variation
MULTICOLLINERITY.pptx
Measures of dispersion - united world school of business
Standard Deviation and Variance

More from The Superior University, Lahore (11)

PDF
Current Affair 2020 Pakistan
DOCX
Concepts of change management
DOCX
Difference between money market and capital market
DOCX
Haleeb foods training and development project
PPTX
Chartered accountants 1961
DOCX
Impect of macroeconomics determinant on the gdp growth rate and performance o...
DOCX
Central tedancy & correlation project - 1
PPTX
Difference between companies
DOCX
Engro foods distribution channel
DOCX
Why is it important to set goal and remain consistant with it !
DOCX
Market demand and supply of coke
Current Affair 2020 Pakistan
Concepts of change management
Difference between money market and capital market
Haleeb foods training and development project
Chartered accountants 1961
Impect of macroeconomics determinant on the gdp growth rate and performance o...
Central tedancy & correlation project - 1
Difference between companies
Engro foods distribution channel
Why is it important to set goal and remain consistant with it !
Market demand and supply of coke

Recently uploaded (20)

PPTX
Pharmacology of Heart Failure /Pharmacotherapy of CHF
PDF
Chapter 2 Heredity, Prenatal Development, and Birth.pdf
PPTX
Lesson notes of climatology university.
PDF
3rd Neelam Sanjeevareddy Memorial Lecture.pdf
DOC
Soft-furnishing-By-Architect-A.F.M.Mohiuddin-Akhand.doc
PPTX
Tissue processing ( HISTOPATHOLOGICAL TECHNIQUE
PDF
Black Hat USA 2025 - Micro ICS Summit - ICS/OT Threat Landscape
PDF
A GUIDE TO GENETICS FOR UNDERGRADUATE MEDICAL STUDENTS
PDF
Chinmaya Tiranga quiz Grand Finale.pdf
PPTX
202450812 BayCHI UCSC-SV 20250812 v17.pptx
PPTX
1st Inaugural Professorial Lecture held on 19th February 2020 (Governance and...
PDF
A systematic review of self-coping strategies used by university students to ...
PPTX
PPT- ENG7_QUARTER1_LESSON1_WEEK1. IMAGERY -DESCRIPTIONS pptx.pptx
PDF
01-Introduction-to-Information-Management.pdf
PPTX
Orientation - ARALprogram of Deped to the Parents.pptx
PDF
FourierSeries-QuestionsWithAnswers(Part-A).pdf
PDF
Weekly quiz Compilation Jan -July 25.pdf
PPTX
IMMUNITY IMMUNITY refers to protection against infection, and the immune syst...
PPTX
Introduction-to-Literarature-and-Literary-Studies-week-Prelim-coverage.pptx
PDF
Yogi Goddess Pres Conference Studio Updates
Pharmacology of Heart Failure /Pharmacotherapy of CHF
Chapter 2 Heredity, Prenatal Development, and Birth.pdf
Lesson notes of climatology university.
3rd Neelam Sanjeevareddy Memorial Lecture.pdf
Soft-furnishing-By-Architect-A.F.M.Mohiuddin-Akhand.doc
Tissue processing ( HISTOPATHOLOGICAL TECHNIQUE
Black Hat USA 2025 - Micro ICS Summit - ICS/OT Threat Landscape
A GUIDE TO GENETICS FOR UNDERGRADUATE MEDICAL STUDENTS
Chinmaya Tiranga quiz Grand Finale.pdf
202450812 BayCHI UCSC-SV 20250812 v17.pptx
1st Inaugural Professorial Lecture held on 19th February 2020 (Governance and...
A systematic review of self-coping strategies used by university students to ...
PPT- ENG7_QUARTER1_LESSON1_WEEK1. IMAGERY -DESCRIPTIONS pptx.pptx
01-Introduction-to-Information-Management.pdf
Orientation - ARALprogram of Deped to the Parents.pptx
FourierSeries-QuestionsWithAnswers(Part-A).pdf
Weekly quiz Compilation Jan -July 25.pdf
IMMUNITY IMMUNITY refers to protection against infection, and the immune syst...
Introduction-to-Literarature-and-Literary-Studies-week-Prelim-coverage.pptx
Yogi Goddess Pres Conference Studio Updates

Central tedancy & correlation project - 2

  • 1. 1 | P a g e Q#No.1 For the Data Give below calculates: (1) Arithmetic mean (2) Median (3) Mode (4) Harmonic mean (5) Geometric mean. Solution: (1) Arithmetic means fX X f    4265 61 X  69.918X  (2) Median 2 h n Median L c f           10 60 30.5 16 15 Median    69.67Median  (3) Mode     1 1 2 m m m f f Mode L h f f f f            15 12 60 10 15 12 15 14 Mode        67.5Mode  C-B f x fx f ( 𝟏 𝒙 ) C.f F log x 30-40 1 35 35 0.0285 1 1.5441 40-50 3 45 135 0.6666 4 4.9596 50-60 12 55 660 0.218 16 20.8844 60-70 15 65 975 0.230 31 27.1957 70-80 14 75 1050 0.1866 45 26.2508 80-90 11 85 935 0.129 56 21.2237 90-100 5 95 475 0.052 61 9.8886 61f  4265fx  1 ( ) 0.9113f x   log 111.9449f x 
  • 2. 2 | P a g e (4)Harmonic mean: . 1 . f H M f x         61 . 0.9113 H M  . 66.93H M  (5) Geometric mean: (f logX) . logG M anti f    41.9449 . log 61 G M anti . 68.4227G M  Q#NO.2 Find the (1) Arithmetic mean (2) Median (3) Mode (4) Harmonic mean (5) Geometric mean. Solution: (1) Arithmetic mean: FX X F    18765 164 X  162.44X  C-B f x fx Flogx f ( 𝟏 𝒙 ) C.f 0-40 6 20 120 7.8062 0.3 6 40-80 15 60 900 26.6723 0.25 21 80-120 22 100 2200 44 0.22 43 120-160 30 140 4200 64.3839 0.2143 73 160-200 45 180 8100 101.4873 0.25 118 200-140 27 220 5940 63.2455 0.1228 145 240-180 13 260 3380 31.3947 0.05 15.8 280-320 6 300 1800 14.8628 0.02 164 164f  26640fx  log 353.8527f x  1 ( ) 1.427f x  
  • 3. 3 | P a g e (2) Median 2 h n Median L c f           40 160 82 73 45 Median    168Median  (3) Mode     1 1 2 m m m f f Mode L h f f f f            45 30 160 40 45 30 45 27 Mode            45 30 160 40 45 30 45 27 Mode        15 160 40 33 Mode    178.18Mode  (4)Harmonic mean: . 1 . f H M f x         164 . 1.4271 H M  . 114.92H M  (5) Geometric mean: (f logX) . logG M anti f    353.8527 . log 164 G M anti  . log 2.1577G M anti . 143.789G M 
  • 4. 4 | P a g e Q#No.3 Calculate the: (1) Arithmetic mean (2) Median (3) Mode (4) Harmonic mean (5) Geometric mean. Solution: (1) Arithmetic mean: fX X f    3372.5 55 X  61.318X  (2) Median 2 h n Median L c f           55 60 27.5 2 18 Median    61.18Median  (3) Mode     1 1 2 m m m f f Mode L h f f f f            18 12 60 5 18 12 18 13 Mode        30Mode  (4)Harmonic mean: . 1 . f H M f x         55 . 0.90587 H M  . 60.715H M  C-B f X fx Flogx f ( 𝟏 𝒙 ) C.f 45-50 2 47.5 94 3.3533 0.0421 2 50-55 7 52.5 367.5 12.0411 0.1333 9 55-60 12 57.5 690 21.1160 0.2086 21 60-65 18 62.5 1125 32.3258 0.288 39 65-70 13 67.5 877.5 23.7809 0.1925 52 70-75 3 72.5 217.5 5.5810 0.04137 54 55f  3372.5fx  log 98.1981f x  1 ( ) 0.90587f x  
  • 5. 5 | P a g e (5) Geometric mean: (f logX) . logG M anti f    98.1981 . log 55 G M anti  . log 1.78542G M anti . 61.012G M  Q#No.4 For the Data Give below calculates: (1) Arithmetic mean (2) Median (3) Mode (4) Harmonic mean (5) Geometric mean. Solution: (1) Arithmetic mean: fX X f    46350 850 X  54.526X  (2) Median 2 h n Median L c f           10 60 425 420 190 Median    60.263Median  (3) Mode     1 1 2 m m m f f Mode L h f f f f            190 125 60 10 190 125 190 240 Mode          65 60 10 65 50 Mode      8.333Mode  C-B f x fx Flogx f ( 𝟏 𝒙 ) C.f 0-10 25 5 125 17.47 5 25 10-20 40 15 600 47.043 2.667 65 20-30 60 25 1500 83.876 2.4 125 30-40 75 35 2625 115.80 2.142 200 40-50 95 45 4275 157.05 2.111 295 50-60 125 55 6875 217.54 2.272 420 60-70 190 65 12350 344.45 2.923 610 70-80 240 75 18000 445.75 3.2 850 850f  46350fx  log 1428.98f x  1 ( ) 22.75f x  
  • 6. 6 | P a g e (4) Harmonic mean: . 1 . f H M f x         850 . 22.75 H M  . 37.36H M  (5) Geometric mean: (f logX) . logG M anti f    1428.98 . log 850 G M anti . 47.98G M  Q#No.5 For the Data Give below calculates: (1) Arithmetic mean (2) Median (3) Mode (4) Harmonic mean (5) Geometric mean. Solution: (1) Arithmetic mean: fX X f    2005 72 X  27.847X  (2) Median 2 h n Median L c f           5 22.5 36 24 19 Median    25.66Median  C-B f X fx C.f F log x 1 f x       12.5-17.5 2 15 30 2 2.3522 0.4 17.5-22.5 22 20 440 24 28.6227 1.1 22.5-27.5 19 25 475 43 26.5609 0.76 27.5-32.5 14 30 420 57 20.6797 0.4667 32.5-37.5 3 35 105 60 4.6322 0.857 37.5-42.5 4 40 160 64 6.4082 0.1 42.5-47.5 6 45 270 70 9.9193 0.1333 47.5-52.5 1 50 50 71 1.6989 0.02 52.5-57.5 1 55 55 72 1.7407 0.0181 ∑f=72 ∑fx=2005 ∑flogx=102.6145 1 f x       
  • 7. 7 | P a g e (3) Mode:     1 1 2 m m m f f Mode L h f f f f            22 2 17.5 5 22 2 22 19 Mode        20 17.5 5 20 3 Mode     21.85Mode  (4) Harmonic mean: . 1 . f H M f x         72 . 3.0837 H M  . 23.35H M  (5) Geometric mean: (f logX) . logG M anti f    102.6145 . log 72 G M anti . 26.62G M 
  • 8. 8 | P a g e Q#No.1 Calculate the correlation co-efficient between percentage of marks scored by 12 students in statistics and economics. Solution: (1). Find the co-efficient of correlation: 2 2 2 2 ( ) ( ) n xy x y r n x x n y y                  2 2 12(23136) (750)(365) 12(47470) (750) 12(11385) (365) r              3882 7140 3395 r  710 45054900 r  3882 4923.443917 r  0.7884r  (2). Regression line: Find the regression line of following data: Y on X: Y=a+bx 2 2 ( ) yx n xy x y b n x x                2 12 23136 750 365 12 47470 (750) yxb    277632 273750 569640 562500 yxb    3882 7140 yxb  0.543yxb  X y xy 𝒙 𝟐 𝒚 𝟐 50 22 1100 2500 484 54 25 1350 2916 625 56 34 1904 3136 1156 59 25 1652 3481 784 60 26 1560 3600 678 61 30 1830 3721 900 62 32 1984 3844 1024 65 30 1950 4225 900 67 28 1876 4489 784 71 34 2414 5041 1156 71 36 2556 5041 1296 74 40 2960 5476 1600 ∑x=750 ∑y=365 ∑xy=23136 ∑𝒙 𝟐=47470 ∑𝒚 𝟐=11385
  • 9. 9 | P a g e yx yx y b x a n         365 0.543 750 12 yxa   3.52yxa   The estimated regression line is as follows. ˆ 3.52 0.543Y X   (3). Regression line: X on Y: X=a+by 2 2 ( ) xy n xy x y b n y y                2 12 23136 750 365 12 11385 (365) xyb    277632 27375 136620 133225 xyb    3882 3395 xyb  1.143xyb  . xy x bxy y a n        750 1.143 (365) 12 xya   27.73xya  The estimated regression line is as follows. ˆ 27.73 1.143x Y 
  • 10. 10 | P a g e Q#No.2 Calculate the Co-efficientof correlationfromthe followingdataandalsocompute RegressionlineY onX Solution: (1).Find the co-efficient of correlation: 2 2 2 2 ( ) ( ) n xy x y r n x x n y y                  2 2 (11)(1336) (110)(125) (11)(1210) (110) (11)(153) (125) r           14696 13750 (13310 12100)(16841 15625) r     946 (1210)(1216) r  946 1471360 r  946 1212.99 r  0.779r  (2). Regression line: Y on X Y a bx  2 2 ( ) yx n xy x y b n x x         2 (11)(1336) (110)(125) (11)(1210) (110) yxb    (14696) (13750) (13310) (12100) yxb    946 1210 yxb  0.781yxb  X Y XY 𝒙 𝟐 𝒚 𝟐 5 9 45 25 81 6 6 36 36 36 7 10 70 49 100 8 8 64 64 64 9 13 117 81 169 10 11 110 100 121 11 14 154 121 196 12 10 120 144 100 13 14 182 169 196 14 12 168 196 144 15 18 270 225 324 ∑X=110 ∑Y=125 ∑XY=1336 ∑𝑿 𝟐 =1240 ∑𝒀 𝟐 =1531
  • 11. 11 | P a g e yx yx y b x a n     (125) (0.781)(110) 11 yxa   125 85.91 11 yxa   39.09 11 yxa  3.553yxa  The estimated regression line is as follows. ˆ 3.553 0.781Y x  Q#NO.3 Calculate the Co-efficient of correlation from the following data and also compute Regression line Y on X and X on Y. Solution: (1). Find the co-efficient of correlation: 2 2 2 2 ( ) ( ) n xy x y r n x x n y y                  2 2 (10)(33535) (655)(500) (10)(46059) (655) (10)(25464) (500) r           (335350) (327500) (460590 429025)(254640 250000) r     (7850) (31565)(4640) r  X Y XY 𝒙 𝟐 𝒚 𝟐 16 40 640 256 1600 72 52 3744 5184 2704 73 43 3139 5329 1849 63 49 3087 3969 2401 83 61 5063 6889 3721 80 58 4640 6400 3364 66 44 2904 4359 1936 66 58 3828 4356 3364 74 50 3700 5476 2500 62 45 2790 3844 2025 ∑X=655 ∑Y=500 ∑XY=33535 ∑𝑿 𝟐 =46059 ∑𝒀 𝟐 =25464
  • 12. 12 | P a g e (7850) 12102.13204 r  0.6486r  (2)Regression line Y on X Y a bx  2 2 ( ) yx n xy x y b n x x         2 (10)(33535) (655)(500) (10)(46059) (655) yxb    (335350) (327500) (460590) (429025) yxb    7850 31565 yxb  0.249yxb  yx yx y b x a n     (500) (0.249)(655) 10 yxa   (500) (163.095) 10 yxa   336.905 10 yxa  33.6905yxa  The estimated regression line is as follows. ˆ 33.6905 0.249Y x  (3)Regression line X on Y: X a by  2 2 ( ) xy n xy x y b n y y         2 (10)(33535) (655)(500) (10)(25464) (500) xyb    (335350) (327500) (254640) (250000) xyb    7850 4640 xyb  1.6918103xyb  xy xy x b y a n     (655) (1.6918)(500) 10 xya   (655) (845.9) 10 xya   190.9 10 xya   19.09xya 
  • 13. 13 | P a g e The estimated regression line is as follows. ˆ 19.09 1.6918X x   Q#NO.4 Find the co-efficient of correlation and fit the regression lines of the given data and also discuss its result. Solution: (1). Find the co-efficient of correlation: 2 2 2 2 ( ) ( ) n xy x y r n x x n y y                  2 2 8(11245) (595)(150) 8(47375) (595) 8(3038) (150) r              710 24975 1804 r  710 45054900 r  710 6712.29469 r  0.1058r  (2). Regression line Y on X Y a bx  2 2 ( ) yx n xy x y b n x x                2 8 11245 595 150 8 47375 (595) yxb    X Y XY 𝒙 𝟐 𝒚 𝟐 40 17 680 1600 289 55 19 1045 3025 361 60 23 1380 3600 529 75 15 1125 5625 225 80 18 1440 6400 324 90 17 1530 8100 289 95 11 1045 9025 121 100 30 3000 10000 900 ∑x=595 ∑y=150 ∑xy=11245 ∑𝒙 𝟐 =47375 ∑𝒚 𝟐 =3038
  • 14. 14 | P a g e   2 89960 89250 8 47375 (595) yxb    710 37900 354025 yxb   710 24975 yxb  0.02843yxb  yx yx y b x a n         150 0.024843 595 8 yxa   16.635yxa  The estimated regression line is as follows. ˆ 16.635 0.02843Y X  (3) Regression line X on Y: X a by  2 2 ( ) xy n xy x y b n y y                2 8 11245 595 150 8 3038 (150) xyb    89960 89250 379000 22500 xyb    710 1804 xyb  0.39356xyb  . xy x bxy y a n        595 0.39356 (150) 8 xya   67.99xya  The estimated regression line is as follows. ˆ 67.99 0.39356x  
  • 15. 15 | P a g e Q#No.5: calculate the co-efficient of correlation from given data. And also find out regression line Y on X and X on Y. Solution: x y xy 𝒙 𝟐 𝒚 𝟐 10 7 70 1000 49 15 8 120 225 64 20 3 60 400 9 25 7 175 625 49 30 18 540 900 324 35 6 210 1225 36 40 17 680 1600 289 ∑x=175 ∑y=66 ∑xy=1855 ∑𝒙 𝟐 ∑𝒚 𝟐 = 𝟖𝟐𝟎 (1). Find the co-efficient of correlation: 2 2 2 2 ( ) ( ) n xy x y r n x x n y y                             2 2 7 1855 175 66 7 5075 175 7 820 (66) r              12985 11550 4900 1384 r    1435 6781600 r  1435 2604.1505 r  0.551043r  (2) . Regression line Y on X Y a bx  2 2 ( ) yx n xy x y b n x x         1435 4900 yxb  0.2928yxb  yx y byx x a n         66 0.2928 175 7 yxa   66 51.24 7 yxa   2.1085yxa  The estimated regression line is as follows. ˆ 2.1085 0.2928x x 
  • 16. 16 | P a g e (3)Regression line X on Y: X a by  2 2 ( ) xy n xy x y b n y y                2 7 1855 175 66 7 820 (66) xyb    1435 1384 xyb  1.0368xyb  xy x bxy y a n         175 1.036 66 7 xya   106.63 7 xya  15.2328xya  The estimated regression line is as follows. ˆ 15.2328 1.0368x y 