SlideShare a Scribd company logo
CHALLENGE	
  	
  11	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  DIFFERENCES	
  OF	
  SQUARES	
     1	
  
               	
  

Finding the Difference of Squares
Write each expression in expanded form. Use FOIL or the distributive property.


Row 1                                            (x + 5)(x − 5)                                                                                                                         (b + 2)(b − 2)                                                                                                                                         (y + 6)(y − 6)

                          ____________________                                                                                                              _____________________                                                                                                                             _______________________

                          ____________________                                                                                                              _____________________                                                                                                                             _______________________

1. What pattern do you see in the answers from Row 1? ____________________________________

_________________________________________________________________________________

2. What happens to the two middle terms in these types of expressions? _______________________

_________________________________________________________________________________

3. Can you use that pattern to predict the expanded form of (x + 3)(x − 3) ? _____________________

_________________________________________________________________________________


The difference of squares means you’re taking two binomials with the exact same terms, but you’re
adding one pair of terms and subtracting the other pair of terms. The expression (x + 6)(x-6) is an
example of the difference of squares. Remember, difference simply means the answer to a subtraction
problem. The reason these expressions are referred to as the difference of squares is because the expanded
form ends up being the first term squared minus the second term squared.


      Rule                                                                                           The Difference of Squares


                 (a + b)(a − b) = a 2 − b 2                                                                                                             (x + 3)(x − 3) = x 2 − 3x + 3x − 9 = x 2 − 9
                                                                                                                                                        (3x + 4)(3x − 4) = 9x 2 −12x +12x −16 = 9x 2 −16
              Multiplying	
  the	
  sum	
  and	
  difference	
  of	
  the	
  exact	
  same	
  two	
  terms	
  will	
  always	
  give	
  a	
  product	
  called	
  
              the	
  difference	
  of	
  squares—the	
  first	
  term	
  squared	
  minus	
  the	
  second	
  term	
  squared.	
  




Example
Write each expression in expanded form. Use FOIL or the distributive property.

                 (x + 5)(x − 5)                                                                          Original equation
                       2
                  x − 5x + 5x − 25                                                                       Distribute (x+5)
                  x 2 − 25                                                                              Combine like terms
CHALLENGE	
  	
  11	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  DIFFERENCES	
  OF	
  SQUARES	
                         2	
  
     	
  
In challenge 5, we talked about square lots
                                                                                                                                                                                                                                                                                                                                                                                                                  -­‐	
  2	
  
that were changed into rectangles by
adding 2 meters to one side and                                                                                                                                                                              Square	
  lot	
                                                                                               Rectangular	
  
subtracting two meters from the other                                                                                                                                                                                                                                                                                          lot	
  
side. The factored form of this expression                                                                                                                                                                                                                                  x	
                                                                                                                                   x	
  	
  
was written as (x+2)(x-2)
                                                                                                                                                                                                                             x	
                                                                                                                    x	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  +	
  2	
  

4. Is the expression (x+2)(x-2) a difference of squares? How do you know? _____________________

_________________________________________________________________________________

5. What were the differences in area for any number we put in for x? (Hint: If you don’t remember, rewrite
(x+2)(x-2) in expanded form. __________________________________________________________

__________________________________________________________________________________


Practice
Write each expression in expanded form. Use FOIL or the distributive property.

                                                                                                                                                                                          	
  
         (a + 8)(a − 8)                                                                                                                                                                                                         (b − 5)(b + 5)




         (c + 3)(c − 3)                                                                                                                                                                                                         (2d + 6)(2d − 6)




         (5x + 7)(5x − 7)                                                                                                                                                                                                       (10y − 4)(10y + 4)

More Related Content

KEY
TEDxNYED -- Dan Meyer
PDF
Day 14 graphing linear equations day 2
PDF
Alg complex numbers
PDF
11 X1 T01 08 Simultaneous Equations (2010)
PPTX
2 6 complex fractions
PPTX
Chapter 9 - Rational Expressions
PPTX
(Mhs)2 calculator enrichment
PPT
Rational expressions
TEDxNYED -- Dan Meyer
Day 14 graphing linear equations day 2
Alg complex numbers
11 X1 T01 08 Simultaneous Equations (2010)
2 6 complex fractions
Chapter 9 - Rational Expressions
(Mhs)2 calculator enrichment
Rational expressions

What's hot (18)

PPT
Rational expressions ppt
PDF
Chapter 1 functions
DOCX
AS LEVEL QUADRATIC (CIE) EXPLAINED WITH EXAMPLE AND DIAGRAMS
PPTX
Lecture complex fractions
PPTX
Solving quadratic equations using the quadratic formula
PDF
Int Math 2 Section 2-5 1011
PPT
7.4
PDF
3 Rational Expressions Mar 9
DOCX
Simplifying Rational Expressions
PPT
Simplifying Rational Expression
PPTX
2 2 addition and subtraction ii
PPTX
11 applications of factoring
PDF
Module 2 linear functions
DOCX
Maths portffolio sequences (2)
PDF
Em02 im
PPT
PPT
PDF
Module 4 exponential and logarithmic functions
Rational expressions ppt
Chapter 1 functions
AS LEVEL QUADRATIC (CIE) EXPLAINED WITH EXAMPLE AND DIAGRAMS
Lecture complex fractions
Solving quadratic equations using the quadratic formula
Int Math 2 Section 2-5 1011
7.4
3 Rational Expressions Mar 9
Simplifying Rational Expressions
Simplifying Rational Expression
2 2 addition and subtraction ii
11 applications of factoring
Module 2 linear functions
Maths portffolio sequences (2)
Em02 im
Module 4 exponential and logarithmic functions
Ad

Viewers also liked (7)

ODT
PPTX
DOCX
PDF
Lean Six Sigma
DOCX
Opinión personal sobre la siguiente noticia
DOCX
Myers LOR
DOCX
Fragmento de edipo rey sofocles
Lean Six Sigma
Opinión personal sobre la siguiente noticia
Myers LOR
Fragmento de edipo rey sofocles
Ad

Similar to Challenge 11 multiplying differences of squares (20)

PPTX
TIU Math2 Session: Algebra by Young Einstein Learning Center
PDF
Challenge 10 square of a binomial
PDF
DOC
3rd Period Review Withanswers
DOCX
Practice Accum Exam 3rd Period 7th
PPTX
Algebra 1 chapter 1 complete notes
PPTX
Rational Expressions
PPT
Writingonestepequations
DOC
3rd period review withanswers
DOC
3rd period review withanswers
PPT
Chapter 2.5
PPTX
Wordproblem
PPTX
6 algebra
PPTX
What are sequences?
ZIP
AA Section 11-3 Day 1
PDF
Day 6 multiplying binomials
DOC
Mth 4108-1 - chapter 9 (ans)
PPT
Graph functions
DOC
Handout basic algebra
PDF
Linear Equations And Graphing
TIU Math2 Session: Algebra by Young Einstein Learning Center
Challenge 10 square of a binomial
3rd Period Review Withanswers
Practice Accum Exam 3rd Period 7th
Algebra 1 chapter 1 complete notes
Rational Expressions
Writingonestepequations
3rd period review withanswers
3rd period review withanswers
Chapter 2.5
Wordproblem
6 algebra
What are sequences?
AA Section 11-3 Day 1
Day 6 multiplying binomials
Mth 4108-1 - chapter 9 (ans)
Graph functions
Handout basic algebra
Linear Equations And Graphing

More from mrstrementozzi (11)

PDF
Chemical building blocks
PDF
Linear Equations and Graphs_Lesson 1_Slope and Rate of Change
PDF
02.07.2013 lesson notes
PDF
02.06.2013 lesson notes
PDF
Test 3 a study guide notes
PDF
Challenge 8 reteaching 8 3- multiplying binomials
PDF
Challenge 9 multiplying binomials
PDF
12.03.2012 module 5
PDF
12.03.2012 module 1
PDF
Distributive property
PDF
November 26, 2012: Polynomials (SmartBoard Note)
Chemical building blocks
Linear Equations and Graphs_Lesson 1_Slope and Rate of Change
02.07.2013 lesson notes
02.06.2013 lesson notes
Test 3 a study guide notes
Challenge 8 reteaching 8 3- multiplying binomials
Challenge 9 multiplying binomials
12.03.2012 module 5
12.03.2012 module 1
Distributive property
November 26, 2012: Polynomials (SmartBoard Note)

Challenge 11 multiplying differences of squares

  • 1. CHALLENGE    11                                                                                                                                                                          DIFFERENCES  OF  SQUARES   1     Finding the Difference of Squares Write each expression in expanded form. Use FOIL or the distributive property. Row 1 (x + 5)(x − 5) (b + 2)(b − 2) (y + 6)(y − 6) ____________________ _____________________ _______________________ ____________________ _____________________ _______________________ 1. What pattern do you see in the answers from Row 1? ____________________________________ _________________________________________________________________________________ 2. What happens to the two middle terms in these types of expressions? _______________________ _________________________________________________________________________________ 3. Can you use that pattern to predict the expanded form of (x + 3)(x − 3) ? _____________________ _________________________________________________________________________________ The difference of squares means you’re taking two binomials with the exact same terms, but you’re adding one pair of terms and subtracting the other pair of terms. The expression (x + 6)(x-6) is an example of the difference of squares. Remember, difference simply means the answer to a subtraction problem. The reason these expressions are referred to as the difference of squares is because the expanded form ends up being the first term squared minus the second term squared. Rule The Difference of Squares (a + b)(a − b) = a 2 − b 2 (x + 3)(x − 3) = x 2 − 3x + 3x − 9 = x 2 − 9 (3x + 4)(3x − 4) = 9x 2 −12x +12x −16 = 9x 2 −16 Multiplying  the  sum  and  difference  of  the  exact  same  two  terms  will  always  give  a  product  called   the  difference  of  squares—the  first  term  squared  minus  the  second  term  squared.   Example Write each expression in expanded form. Use FOIL or the distributive property. (x + 5)(x − 5) Original equation 2 x − 5x + 5x − 25 Distribute (x+5) x 2 − 25 Combine like terms
  • 2. CHALLENGE    11                                                                                                                                                                          DIFFERENCES  OF  SQUARES   2     In challenge 5, we talked about square lots -­‐  2   that were changed into rectangles by adding 2 meters to one side and Square  lot   Rectangular   subtracting two meters from the other lot   side. The factored form of this expression x   x     was written as (x+2)(x-2) x   x                        +  2   4. Is the expression (x+2)(x-2) a difference of squares? How do you know? _____________________ _________________________________________________________________________________ 5. What were the differences in area for any number we put in for x? (Hint: If you don’t remember, rewrite (x+2)(x-2) in expanded form. __________________________________________________________ __________________________________________________________________________________ Practice Write each expression in expanded form. Use FOIL or the distributive property.   (a + 8)(a − 8) (b − 5)(b + 5) (c + 3)(c − 3) (2d + 6)(2d − 6) (5x + 7)(5x − 7) (10y − 4)(10y + 4)