Section 2-5
Multiply and Divide Variable Expressions
Essential Questions

 How are variable expressions simplified?
 How are variable expressions evaluated?


 Where you’ll see this:
   Part-time job, weather, engineering, spreadsheets
Vocabulary
1. Property of the Opposite of a Sum:




2. Distributive Property:
Vocabulary
1. Property of the Opposite of a Sum: The negative
    outside the parentheses makes everything inside
    it opposite


2. Distributive Property:
Vocabulary
1. Property of the Opposite of a Sum: The negative
    outside the parentheses makes everything inside
    it opposite


2. Distributive Property: Multiply each term inside the
    parentheses by the term outside
Example 1
                  Simplify.

a. − 2(n − 5)                 b. .3( x + .7)




c. -(2ab + 9ac)               d. 2x(4 x + 7y )
Example 1
                  Simplify.

a. − 2(n − 5)                 b. .3( x + .7)




c. -(2ab + 9ac)               d. 2x(4 x + 7y )
Example 1
                  Simplify.

a. − 2(n − 5)                 b. .3( x + .7)
    −2n


c. -(2ab + 9ac)               d. 2x(4 x + 7y )
Example 1
                  Simplify.

a. − 2(n − 5)                 b. .3( x + .7)
    −2n


c. -(2ab + 9ac)               d. 2x(4 x + 7y )
Example 1
                  Simplify.

a. − 2(n − 5)                 b. .3( x + .7)
    −2n +10


c. -(2ab + 9ac)               d. 2x(4 x + 7y )
Example 1
                  Simplify.

a. − 2(n − 5)                 b. .3( x + .7)
    −2n +10


c. -(2ab + 9ac)               d. 2x(4 x + 7y )
Example 1
                  Simplify.

a. − 2(n − 5)                 b. .3( x + .7)
    −2n +10                      .3x


c. -(2ab + 9ac)               d. 2x(4 x + 7y )
Example 1
                  Simplify.

a. − 2(n − 5)                 b. .3( x + .7)
    −2n +10                      .3x


c. -(2ab + 9ac)               d. 2x(4 x + 7y )
Example 1
                  Simplify.

a. − 2(n − 5)                 b. .3( x + .7)
    −2n +10                      .3x +.21


c. -(2ab + 9ac)               d. 2x(4 x + 7y )
Example 1
                  Simplify.

a. − 2(n − 5)                 b. .3( x + .7)
    −2n +10                      .3x +.21


c. -(2ab + 9ac)               d. 2x(4 x + 7y )
Example 1
                  Simplify.

a. − 2(n − 5)                 b. .3( x + .7)
    −2n +10                      .3x +.21


c. -(2ab + 9ac)               d. 2x(4 x + 7y )
   −2ab
Example 1
                  Simplify.

a. − 2(n − 5)                 b. .3( x + .7)
    −2n +10                      .3x +.21


c. -(2ab + 9ac)               d. 2x(4 x + 7y )
   −2ab
Example 1
                  Simplify.

a. − 2(n − 5)                 b. .3( x + .7)
    −2n +10                      .3x +.21


c. -(2ab + 9ac)               d. 2x(4 x + 7y )
   −2ab −9ac
Example 1
                  Simplify.

a. − 2(n − 5)                 b. .3( x + .7)
    −2n +10                      .3x +.21


c. -(2ab + 9ac)               d. 2x(4 x + 7y )
   −2ab −9ac
Example 1
                  Simplify.

a. − 2(n − 5)                 b. .3( x + .7)
    −2n +10                      .3x +.21


c. -(2ab + 9ac)               d. 2x(4 x + 7y )
   −2ab −9ac                      8x   2
Example 1
                  Simplify.

a. − 2(n − 5)                 b. .3( x + .7)
    −2n +10                      .3x +.21


c. -(2ab + 9ac)               d. 2x(4 x + 7y )
   −2ab −9ac                      8x   2
Example 1
                  Simplify.

a. − 2(n − 5)                 b. .3( x + .7)
    −2n +10                      .3x +.21


c. -(2ab + 9ac)               d. 2x(4 x + 7y )
   −2ab −9ac                      8 x +14 xy
                                     2
Dividing Variable
Expressions
Dividing Variable
Expressions
 Divide each term in numerator by denominator
Dividing Variable
Expressions
 Divide each term in numerator by denominator
 Rewrite as distribution
Dividing Variable
Expressions
 Divide each term in numerator by denominator
 Rewrite as distribution
         3− x
          2
Dividing Variable
Expressions
 Divide each term in numerator by denominator
 Rewrite as distribution
         3− x         1 3− x
                       i
          2           2 1
Dividing Variable
Expressions
 Divide each term in numerator by denominator
 Rewrite as distribution
         3− x         1 3− x
                       i
                                   1
                                   2
                                       (3 − x)
          2           2 1
Dividing Variable
Expressions
 Divide each term in numerator by denominator
 Rewrite as distribution
         3− x         1 3− x
                       i
                                   1
                                   2
                                       (3 − x)
          2           2 1

            3
            2
                − x
                 1
                 2
Dividing Variable
Expressions
 Divide each term in numerator by denominator
 Rewrite as distribution
         3− x         1 3− x
                       i
                                      1
                                      2
                                          (3 − x)
          2           2 1

            3
            2
                − x
                 1
                 2
                                − x+
                                  1
                                  2
                                             3
                                             2
Example 2
Simplify. Practice both methods of division to see
               which one you prefer.

     6x + 3                           10 y − 5
  a.                               b.
       3                                 2
Example 2
Simplify. Practice both methods of division to see
               which one you prefer.

     6x + 3                           10 y − 5
  a.                               b.
       3                                 2

    6x 3
      +
    3 3
Example 2
Simplify. Practice both methods of division to see
               which one you prefer.

     6x + 3                           10 y − 5
  a.                               b.
       3                                 2

    6x 3
      +
    3 3
    2x + 1
Example 2
Simplify. Practice both methods of division to see
               which one you prefer.

     6x + 3                           10 y − 5
  a.                               b.
       3                                 2

    6x 3
      +
                                    1
                                    2
                                        (10 y − 5)
    3 3
    2x + 1
Example 2
Simplify. Practice both methods of division to see
               which one you prefer.

     6x + 3                           10 y − 5
  a.                               b.
       3                                 2

    6x 3
      +
                                    1
                                    2
                                        (10 y − 5)
    3 3
    2x + 1                              5y −   5
                                               2
Example 2
Simplify. Practice both methods of division to see
               which one you prefer.
     1.6 − .8 z                       9x + 5y
  c.                               d.
        −8                               7
Example 2
Simplify. Practice both methods of division to see
               which one you prefer.
     1.6 − .8 z                       9x + 5y
  c.                               d.
        −8                               7
    1.6 .8 z
       −
    −8 −8
Example 2
Simplify. Practice both methods of division to see
               which one you prefer.
     1.6 − .8 z                       9x + 5y
  c.                               d.
        −8                               7
    1.6 .8 z
       −
    −8 −8
    −.2 + .1z
Example 2
Simplify. Practice both methods of division to see
               which one you prefer.
     1.6 − .8 z                       9x + 5y
  c.                               d.
        −8                               7
    1.6 .8 z
       −
    −8 −8
    −.2 + .1z
    .1z − .2
Example 2
Simplify. Practice both methods of division to see
               which one you prefer.
     1.6 − .8 z                       9x + 5y
  c.                               d.
        −8                               7
    1.6 .8 z
       −                            1
                                        (9 x + 5 y )
    −8 −8                           7


    −.2 + .1z
    .1z − .2
Example 2
Simplify. Practice both methods of division to see
               which one you prefer.
     1.6 − .8 z                       9x + 5y
  c.                               d.
        −8                               7
    1.6 .8 z
       −                            1
                                        (9 x + 5 y )
    −8 −8                           7


    −.2 + .1z
                                        9
                                            x+ y
                                              5
    .1z − .2                            7     7
Example 3
      Evaluate when x = 2 and y = -4.
  a. − 3( x + 1)
          2
                            b. − 4 6 − y
Example 3
      Evaluate when x = 2 and y = -4.
  a. − 3( x + 1)
            2
                            b. − 4 6 − y

   −3x − 3
        2
Example 3
      Evaluate when x = 2 and y = -4.
  a. − 3( x + 1)
             2
                            b. − 4 6 − y

   −3x − 3
        2


   −3(2) − 3
         2
Example 3
      Evaluate when x = 2 and y = -4.
  a. − 3( x + 1)
             2
                            b. − 4 6 − y

   −3x − 3
        2


   −3(2) − 3
         2


    −3(4) − 3
Example 3
      Evaluate when x = 2 and y = -4.
  a. − 3( x + 1)
             2
                            b. − 4 6 − y

   −3x − 3
        2


   −3(2) − 3
         2


    −3(4) − 3
    −12 − 3
Example 3
      Evaluate when x = 2 and y = -4.
  a. − 3( x + 1)
             2
                            b. − 4 6 − y

   −3x − 3
        2


   −3(2) − 3
         2


    −3(4) − 3
    −12 − 3
     −15
Example 3
      Evaluate when x = 2 and y = -4.
  a. − 3( x + 1)
             2
                            b. − 4 6 − y

   −3x − 3
        2
                            −4 6 − (−4)
   −3(2) − 3
         2


    −3(4) − 3
    −12 − 3
     −15
Example 3
      Evaluate when x = 2 and y = -4.
  a. − 3( x + 1)
             2
                            b. − 4 6 − y

   −3x − 3
        2
                            −4 6 − (−4)
   −3(2) − 3
         2
                              −4 6 + 4
    −3(4) − 3
    −12 − 3
     −15
Example 3
      Evaluate when x = 2 and y = -4.
  a. − 3( x + 1)
             2
                            b. − 4 6 − y

   −3x − 3
        2
                            −4 6 − (−4)
   −3(2) − 3
         2
                              −4 6 + 4
    −3(4) − 3                  −4 10
    −12 − 3
     −15
Example 3
      Evaluate when x = 2 and y = -4.
  a. − 3( x + 1)
             2
                            b. − 4 6 − y

   −3x − 3
        2
                            −4 6 − (−4)
   −3(2) − 3
         2
                              −4 6 + 4
    −3(4) − 3                  −4 10
    −12 − 3                    −4(10)
     −15
Example 3
      Evaluate when x = 2 and y = -4.
  a. − 3( x + 1)
             2
                            b. − 4 6 − y

   −3x − 3
        2
                            −4 6 − (−4)
   −3(2) − 3
         2
                              −4 6 + 4
    −3(4) − 3                  −4 10
    −12 − 3                    −4(10)
     −15                        −40
Example 3
    Evaluate when x = 2 and y = -4.
            y-x
       c.
            x-y
Example 3
    Evaluate when x = 2 and y = -4.
             y-x
       c.
             x-y

            −4 − 2
            2 − (−4)
Example 3
    Evaluate when x = 2 and y = -4.
             y-x
       c.
             x-y

            −4 − 2
            2 − (−4)

              −6
               6
Example 3
    Evaluate when x = 2 and y = -4.
             y-x
       c.                    6
             x-y
                             6
            −4 − 2
            2 − (−4)

              −6
               6
Example 3
    Evaluate when x = 2 and y = -4.
             y-x
       c.                    6
             x-y
                             6
            −4 − 2
            2 − (−4)         1
              −6
               6
Problem Set
Problem Set


                p. 74 #1-47 odd




“Nobody got anywhere in the world by simply being
           content.” - Louis L'Amour

More Related Content

PPTX
Operations on Polynomials
ZIP
Integrated Math 2 Section 2-5
PDF
Int Math 2 Section 2-4 1011
PDF
Dunman High Answers_tobechecked_
PPT
Operations on Polynomials
PDF
Surds,
PDF
11 X1 T01 08 Simultaneous Equations (2010)
KEY
Notes 12.1 multiplying polynomials
Operations on Polynomials
Integrated Math 2 Section 2-5
Int Math 2 Section 2-4 1011
Dunman High Answers_tobechecked_
Operations on Polynomials
Surds,
11 X1 T01 08 Simultaneous Equations (2010)
Notes 12.1 multiplying polynomials

What's hot (18)

KEY
Multiplying polynomials - part 1
KEY
Module 9 Topic 2 multiplying polynomials - part 1
PDF
Multiplying polynomials
PPT
Stacks image 1721_36
PPT
New stack
PPTX
11.2
DOC
Up1 math t 2012
PPT
Multiplying polynomials
PPTX
Power point chapter 8 test preparation
PPT
Multiplying Polynomials I
PDF
10.1.1.92.3502
PPT
Multiplying Polynomials
PPT
Adding and subtracting polynomials
PPTX
53 multiplication and division of rational expressions
PPTX
3 multiplication and division of rational expressions x
PPT
Adding Polynomials
PDF
Chapter 01
PDF
11 X1 T05 01 division of an interval (2010)
Multiplying polynomials - part 1
Module 9 Topic 2 multiplying polynomials - part 1
Multiplying polynomials
Stacks image 1721_36
New stack
11.2
Up1 math t 2012
Multiplying polynomials
Power point chapter 8 test preparation
Multiplying Polynomials I
10.1.1.92.3502
Multiplying Polynomials
Adding and subtracting polynomials
53 multiplication and division of rational expressions
3 multiplication and division of rational expressions x
Adding Polynomials
Chapter 01
11 X1 T05 01 division of an interval (2010)
Ad

Viewers also liked (15)

PPT
Remanente
PDF
Mckesson-HCA100
DOCX
Los jóvenes y su educación 11
PPTX
Teoria atomica jesus rodriguez seccion ´´4 a´´
DOCX
Diagrama hasta el 100 no
DOCX
Cronograma tentativo
PPTX
Story boar
PDF
eezeetags adv.
DOCX
Sd project
PPTX
PPTX
Abi respeto
PPTX
Situación de Aprendizaje - Docencia 11G. Omar A. Bautista
PDF
Geometry Section 11-1/11-2
PPTX
Reglas para la convivencia armònica
PDF
Intro a la epidemio clase 4
Remanente
Mckesson-HCA100
Los jóvenes y su educación 11
Teoria atomica jesus rodriguez seccion ´´4 a´´
Diagrama hasta el 100 no
Cronograma tentativo
Story boar
eezeetags adv.
Sd project
Abi respeto
Situación de Aprendizaje - Docencia 11G. Omar A. Bautista
Geometry Section 11-1/11-2
Reglas para la convivencia armònica
Intro a la epidemio clase 4
Ad

Similar to Int Math 2 Section 2-5 1011 (20)

PDF
Int Math 2 Section 2-6 1011
ZIP
Integrated 2 Section 2-6
DOC
MATH: ORDER OF OPERATIONS -QUIZ
ZIP
Integrated 2 Section 2-4
PPTX
Rational Expressions
KEY
Integrated Math 2 Section 9-1
DOC
Handout basic algebra
KEY
Int Math 2 Section 9-1
PPTX
PPTX
11.3
PPTX
Feb 19
PPT
Chapter 2.5
PPTX
Chapter 3. linear equation and linear equalities in one variables
PDF
algebra.pdf for teaching and learning and very easy
PPT
Distributive
PPT
Unit 5 powerpoint[1] algebra (1)
PDF
Day 9 distributive property equations day 2
KEY
Integrated Math 2 Section 9-4
KEY
Int Math 2 Section 9-4 1011
PDF
Math 17 midterm exam review jamie
Int Math 2 Section 2-6 1011
Integrated 2 Section 2-6
MATH: ORDER OF OPERATIONS -QUIZ
Integrated 2 Section 2-4
Rational Expressions
Integrated Math 2 Section 9-1
Handout basic algebra
Int Math 2 Section 9-1
11.3
Feb 19
Chapter 2.5
Chapter 3. linear equation and linear equalities in one variables
algebra.pdf for teaching and learning and very easy
Distributive
Unit 5 powerpoint[1] algebra (1)
Day 9 distributive property equations day 2
Integrated Math 2 Section 9-4
Int Math 2 Section 9-4 1011
Math 17 midterm exam review jamie

More from Jimbo Lamb (20)

PDF
Geometry Section 1-5
PDF
Geometry Section 1-4
PDF
Geometry Section 1-3
PDF
Geometry Section 1-2
PDF
Geometry Section 1-2
PDF
Geometry Section 1-1
PDF
Algebra 2 Section 5-3
PDF
Algebra 2 Section 5-2
PDF
Algebra 2 Section 5-1
PDF
Algebra 2 Section 4-9
PDF
Algebra 2 Section 4-8
PDF
Algebra 2 Section 4-6
PDF
Geometry Section 6-6
PDF
Geometry Section 6-5
PDF
Geometry Section 6-4
PDF
Geometry Section 6-3
PDF
Geometry Section 6-2
PDF
Geometry Section 6-1
PDF
Algebra 2 Section 4-5
PDF
Algebra 2 Section 4-4
Geometry Section 1-5
Geometry Section 1-4
Geometry Section 1-3
Geometry Section 1-2
Geometry Section 1-2
Geometry Section 1-1
Algebra 2 Section 5-3
Algebra 2 Section 5-2
Algebra 2 Section 5-1
Algebra 2 Section 4-9
Algebra 2 Section 4-8
Algebra 2 Section 4-6
Geometry Section 6-6
Geometry Section 6-5
Geometry Section 6-4
Geometry Section 6-3
Geometry Section 6-2
Geometry Section 6-1
Algebra 2 Section 4-5
Algebra 2 Section 4-4

Recently uploaded (20)

PDF
Environmental Education MCQ BD2EE - Share Source.pdf
PDF
احياء السادس العلمي - الفصل الثالث (التكاثر) منهج متميزين/كلية بغداد/موهوبين
PDF
FOISHS ANNUAL IMPLEMENTATION PLAN 2025.pdf
PDF
Trump Administration's workforce development strategy
PPTX
Share_Module_2_Power_conflict_and_negotiation.pptx
PPTX
CHAPTER IV. MAN AND BIOSPHERE AND ITS TOTALITY.pptx
DOC
Soft-furnishing-By-Architect-A.F.M.Mohiuddin-Akhand.doc
PDF
Chinmaya Tiranga quiz Grand Finale.pdf
PDF
What if we spent less time fighting change, and more time building what’s rig...
PDF
BP 704 T. NOVEL DRUG DELIVERY SYSTEMS (UNIT 1)
PDF
Complications of Minimal Access-Surgery.pdf
PDF
David L Page_DCI Research Study Journey_how Methodology can inform one's prac...
PDF
Hazard Identification & Risk Assessment .pdf
PPTX
ELIAS-SEZIURE AND EPilepsy semmioan session.pptx
PDF
BP 704 T. NOVEL DRUG DELIVERY SYSTEMS (UNIT 2).pdf
PDF
OBE - B.A.(HON'S) IN INTERIOR ARCHITECTURE -Ar.MOHIUDDIN.pdf
PDF
advance database management system book.pdf
PDF
medical_surgical_nursing_10th_edition_ignatavicius_TEST_BANK_pdf.pdf
PPTX
20th Century Theater, Methods, History.pptx
PDF
Paper A Mock Exam 9_ Attempt review.pdf.
Environmental Education MCQ BD2EE - Share Source.pdf
احياء السادس العلمي - الفصل الثالث (التكاثر) منهج متميزين/كلية بغداد/موهوبين
FOISHS ANNUAL IMPLEMENTATION PLAN 2025.pdf
Trump Administration's workforce development strategy
Share_Module_2_Power_conflict_and_negotiation.pptx
CHAPTER IV. MAN AND BIOSPHERE AND ITS TOTALITY.pptx
Soft-furnishing-By-Architect-A.F.M.Mohiuddin-Akhand.doc
Chinmaya Tiranga quiz Grand Finale.pdf
What if we spent less time fighting change, and more time building what’s rig...
BP 704 T. NOVEL DRUG DELIVERY SYSTEMS (UNIT 1)
Complications of Minimal Access-Surgery.pdf
David L Page_DCI Research Study Journey_how Methodology can inform one's prac...
Hazard Identification & Risk Assessment .pdf
ELIAS-SEZIURE AND EPilepsy semmioan session.pptx
BP 704 T. NOVEL DRUG DELIVERY SYSTEMS (UNIT 2).pdf
OBE - B.A.(HON'S) IN INTERIOR ARCHITECTURE -Ar.MOHIUDDIN.pdf
advance database management system book.pdf
medical_surgical_nursing_10th_edition_ignatavicius_TEST_BANK_pdf.pdf
20th Century Theater, Methods, History.pptx
Paper A Mock Exam 9_ Attempt review.pdf.

Int Math 2 Section 2-5 1011

  • 1. Section 2-5 Multiply and Divide Variable Expressions
  • 2. Essential Questions How are variable expressions simplified? How are variable expressions evaluated? Where you’ll see this: Part-time job, weather, engineering, spreadsheets
  • 3. Vocabulary 1. Property of the Opposite of a Sum: 2. Distributive Property:
  • 4. Vocabulary 1. Property of the Opposite of a Sum: The negative outside the parentheses makes everything inside it opposite 2. Distributive Property:
  • 5. Vocabulary 1. Property of the Opposite of a Sum: The negative outside the parentheses makes everything inside it opposite 2. Distributive Property: Multiply each term inside the parentheses by the term outside
  • 6. Example 1 Simplify. a. − 2(n − 5) b. .3( x + .7) c. -(2ab + 9ac) d. 2x(4 x + 7y )
  • 7. Example 1 Simplify. a. − 2(n − 5) b. .3( x + .7) c. -(2ab + 9ac) d. 2x(4 x + 7y )
  • 8. Example 1 Simplify. a. − 2(n − 5) b. .3( x + .7) −2n c. -(2ab + 9ac) d. 2x(4 x + 7y )
  • 9. Example 1 Simplify. a. − 2(n − 5) b. .3( x + .7) −2n c. -(2ab + 9ac) d. 2x(4 x + 7y )
  • 10. Example 1 Simplify. a. − 2(n − 5) b. .3( x + .7) −2n +10 c. -(2ab + 9ac) d. 2x(4 x + 7y )
  • 11. Example 1 Simplify. a. − 2(n − 5) b. .3( x + .7) −2n +10 c. -(2ab + 9ac) d. 2x(4 x + 7y )
  • 12. Example 1 Simplify. a. − 2(n − 5) b. .3( x + .7) −2n +10 .3x c. -(2ab + 9ac) d. 2x(4 x + 7y )
  • 13. Example 1 Simplify. a. − 2(n − 5) b. .3( x + .7) −2n +10 .3x c. -(2ab + 9ac) d. 2x(4 x + 7y )
  • 14. Example 1 Simplify. a. − 2(n − 5) b. .3( x + .7) −2n +10 .3x +.21 c. -(2ab + 9ac) d. 2x(4 x + 7y )
  • 15. Example 1 Simplify. a. − 2(n − 5) b. .3( x + .7) −2n +10 .3x +.21 c. -(2ab + 9ac) d. 2x(4 x + 7y )
  • 16. Example 1 Simplify. a. − 2(n − 5) b. .3( x + .7) −2n +10 .3x +.21 c. -(2ab + 9ac) d. 2x(4 x + 7y ) −2ab
  • 17. Example 1 Simplify. a. − 2(n − 5) b. .3( x + .7) −2n +10 .3x +.21 c. -(2ab + 9ac) d. 2x(4 x + 7y ) −2ab
  • 18. Example 1 Simplify. a. − 2(n − 5) b. .3( x + .7) −2n +10 .3x +.21 c. -(2ab + 9ac) d. 2x(4 x + 7y ) −2ab −9ac
  • 19. Example 1 Simplify. a. − 2(n − 5) b. .3( x + .7) −2n +10 .3x +.21 c. -(2ab + 9ac) d. 2x(4 x + 7y ) −2ab −9ac
  • 20. Example 1 Simplify. a. − 2(n − 5) b. .3( x + .7) −2n +10 .3x +.21 c. -(2ab + 9ac) d. 2x(4 x + 7y ) −2ab −9ac 8x 2
  • 21. Example 1 Simplify. a. − 2(n − 5) b. .3( x + .7) −2n +10 .3x +.21 c. -(2ab + 9ac) d. 2x(4 x + 7y ) −2ab −9ac 8x 2
  • 22. Example 1 Simplify. a. − 2(n − 5) b. .3( x + .7) −2n +10 .3x +.21 c. -(2ab + 9ac) d. 2x(4 x + 7y ) −2ab −9ac 8 x +14 xy 2
  • 24. Dividing Variable Expressions Divide each term in numerator by denominator
  • 25. Dividing Variable Expressions Divide each term in numerator by denominator Rewrite as distribution
  • 26. Dividing Variable Expressions Divide each term in numerator by denominator Rewrite as distribution 3− x 2
  • 27. Dividing Variable Expressions Divide each term in numerator by denominator Rewrite as distribution 3− x 1 3− x i 2 2 1
  • 28. Dividing Variable Expressions Divide each term in numerator by denominator Rewrite as distribution 3− x 1 3− x i 1 2 (3 − x) 2 2 1
  • 29. Dividing Variable Expressions Divide each term in numerator by denominator Rewrite as distribution 3− x 1 3− x i 1 2 (3 − x) 2 2 1 3 2 − x 1 2
  • 30. Dividing Variable Expressions Divide each term in numerator by denominator Rewrite as distribution 3− x 1 3− x i 1 2 (3 − x) 2 2 1 3 2 − x 1 2 − x+ 1 2 3 2
  • 31. Example 2 Simplify. Practice both methods of division to see which one you prefer. 6x + 3 10 y − 5 a. b. 3 2
  • 32. Example 2 Simplify. Practice both methods of division to see which one you prefer. 6x + 3 10 y − 5 a. b. 3 2 6x 3 + 3 3
  • 33. Example 2 Simplify. Practice both methods of division to see which one you prefer. 6x + 3 10 y − 5 a. b. 3 2 6x 3 + 3 3 2x + 1
  • 34. Example 2 Simplify. Practice both methods of division to see which one you prefer. 6x + 3 10 y − 5 a. b. 3 2 6x 3 + 1 2 (10 y − 5) 3 3 2x + 1
  • 35. Example 2 Simplify. Practice both methods of division to see which one you prefer. 6x + 3 10 y − 5 a. b. 3 2 6x 3 + 1 2 (10 y − 5) 3 3 2x + 1 5y − 5 2
  • 36. Example 2 Simplify. Practice both methods of division to see which one you prefer. 1.6 − .8 z 9x + 5y c. d. −8 7
  • 37. Example 2 Simplify. Practice both methods of division to see which one you prefer. 1.6 − .8 z 9x + 5y c. d. −8 7 1.6 .8 z − −8 −8
  • 38. Example 2 Simplify. Practice both methods of division to see which one you prefer. 1.6 − .8 z 9x + 5y c. d. −8 7 1.6 .8 z − −8 −8 −.2 + .1z
  • 39. Example 2 Simplify. Practice both methods of division to see which one you prefer. 1.6 − .8 z 9x + 5y c. d. −8 7 1.6 .8 z − −8 −8 −.2 + .1z .1z − .2
  • 40. Example 2 Simplify. Practice both methods of division to see which one you prefer. 1.6 − .8 z 9x + 5y c. d. −8 7 1.6 .8 z − 1 (9 x + 5 y ) −8 −8 7 −.2 + .1z .1z − .2
  • 41. Example 2 Simplify. Practice both methods of division to see which one you prefer. 1.6 − .8 z 9x + 5y c. d. −8 7 1.6 .8 z − 1 (9 x + 5 y ) −8 −8 7 −.2 + .1z 9 x+ y 5 .1z − .2 7 7
  • 42. Example 3 Evaluate when x = 2 and y = -4. a. − 3( x + 1) 2 b. − 4 6 − y
  • 43. Example 3 Evaluate when x = 2 and y = -4. a. − 3( x + 1) 2 b. − 4 6 − y −3x − 3 2
  • 44. Example 3 Evaluate when x = 2 and y = -4. a. − 3( x + 1) 2 b. − 4 6 − y −3x − 3 2 −3(2) − 3 2
  • 45. Example 3 Evaluate when x = 2 and y = -4. a. − 3( x + 1) 2 b. − 4 6 − y −3x − 3 2 −3(2) − 3 2 −3(4) − 3
  • 46. Example 3 Evaluate when x = 2 and y = -4. a. − 3( x + 1) 2 b. − 4 6 − y −3x − 3 2 −3(2) − 3 2 −3(4) − 3 −12 − 3
  • 47. Example 3 Evaluate when x = 2 and y = -4. a. − 3( x + 1) 2 b. − 4 6 − y −3x − 3 2 −3(2) − 3 2 −3(4) − 3 −12 − 3 −15
  • 48. Example 3 Evaluate when x = 2 and y = -4. a. − 3( x + 1) 2 b. − 4 6 − y −3x − 3 2 −4 6 − (−4) −3(2) − 3 2 −3(4) − 3 −12 − 3 −15
  • 49. Example 3 Evaluate when x = 2 and y = -4. a. − 3( x + 1) 2 b. − 4 6 − y −3x − 3 2 −4 6 − (−4) −3(2) − 3 2 −4 6 + 4 −3(4) − 3 −12 − 3 −15
  • 50. Example 3 Evaluate when x = 2 and y = -4. a. − 3( x + 1) 2 b. − 4 6 − y −3x − 3 2 −4 6 − (−4) −3(2) − 3 2 −4 6 + 4 −3(4) − 3 −4 10 −12 − 3 −15
  • 51. Example 3 Evaluate when x = 2 and y = -4. a. − 3( x + 1) 2 b. − 4 6 − y −3x − 3 2 −4 6 − (−4) −3(2) − 3 2 −4 6 + 4 −3(4) − 3 −4 10 −12 − 3 −4(10) −15
  • 52. Example 3 Evaluate when x = 2 and y = -4. a. − 3( x + 1) 2 b. − 4 6 − y −3x − 3 2 −4 6 − (−4) −3(2) − 3 2 −4 6 + 4 −3(4) − 3 −4 10 −12 − 3 −4(10) −15 −40
  • 53. Example 3 Evaluate when x = 2 and y = -4. y-x c. x-y
  • 54. Example 3 Evaluate when x = 2 and y = -4. y-x c. x-y −4 − 2 2 − (−4)
  • 55. Example 3 Evaluate when x = 2 and y = -4. y-x c. x-y −4 − 2 2 − (−4) −6 6
  • 56. Example 3 Evaluate when x = 2 and y = -4. y-x c. 6 x-y 6 −4 − 2 2 − (−4) −6 6
  • 57. Example 3 Evaluate when x = 2 and y = -4. y-x c. 6 x-y 6 −4 − 2 2 − (−4) 1 −6 6
  • 59. Problem Set p. 74 #1-47 odd “Nobody got anywhere in the world by simply being content.” - Louis L'Amour