SlideShare a Scribd company logo
SECTION 9-4
Multiply a Polynomial by a Monomial
ESSENTIAL QUESTION


• How   do you multiply polynomials by monomials?



• Where   you’ll see this:

 • Travel, part-time   job, sports, finance, geography
EXAMPLE 1
                       Simplify.
   a. 2x(2x + y)                              2
                                   b. − 5w(−2w + 4w )




         2                          2 2       3    2 2
c. − 2n(3n + 4n − 5)        d. 5x y (2xy + 6y + 3x y )
EXAMPLE 1
                       Simplify.
   a. 2x(2x + y)                              2
                                   b. − 5w(−2w + 4w )




         2                          2 2       3    2 2
c. − 2n(3n + 4n − 5)        d. 5x y (2xy + 6y + 3x y )
EXAMPLE 1
                       Simplify.
   a. 2x(2x + y)                              2
                                   b. − 5w(−2w + 4w )
          2
     4x



              2                     2 2       3    2 2
c. − 2n(3n + 4n − 5)        d. 5x y (2xy + 6y + 3x y )
EXAMPLE 1
                       Simplify.
   a. 2x(2x + y)                              2
                                   b. − 5w(−2w + 4w )
          2
     4x



              2                     2 2       3    2 2
c. − 2n(3n + 4n − 5)        d. 5x y (2xy + 6y + 3x y )
EXAMPLE 1
                       Simplify.
   a. 2x(2x + y)                              2
                                   b. − 5w(−2w + 4w )
        2
     4x +2xy



            2                       2 2       3    2 2
c. − 2n(3n + 4n − 5)        d. 5x y (2xy + 6y + 3x y )
EXAMPLE 1
                       Simplify.
   a. 2x(2x + y)                              2
                                   b. − 5w(−2w + 4w )
        2
     4x +2xy



            2                       2 2       3    2 2
c. − 2n(3n + 4n − 5)        d. 5x y (2xy + 6y + 3x y )
EXAMPLE 1
                       Simplify.
   a. 2x(2x + y)                                    2
                                   b. − 5w(−2w + 4w )
        2                                       3
     4x +2xy                              10w



            2                       2 2             3   2 2
c. − 2n(3n + 4n − 5)        d. 5x y (2xy + 6y + 3x y )
EXAMPLE 1
                       Simplify.
   a. 2x(2x + y)                                    2
                                   b. − 5w(−2w + 4w )
        2                                       3
     4x +2xy                              10w



            2                       2 2             3   2 2
c. − 2n(3n + 4n − 5)        d. 5x y (2xy + 6y + 3x y )
EXAMPLE 1
                       Simplify.
   a. 2x(2x + y)                                 2
                                   b. − 5w(−2w + 4w )
        2                                    3       2
     4x +2xy                              10w −20w



            2                       2 2          3       2 2
c. − 2n(3n + 4n − 5)        d. 5x y (2xy + 6y + 3x y )
EXAMPLE 1
                       Simplify.
   a. 2x(2x + y)                                 2
                                   b. − 5w(−2w + 4w )
        2                                    3       2
     4x +2xy                              10w −20w



            2                       2 2          3       2 2
c. − 2n(3n + 4n − 5)        d. 5x y (2xy + 6y + 3x y )
EXAMPLE 1
                       Simplify.
   a. 2x(2x + y)                                 2
                                   b. − 5w(−2w + 4w )
          2                                  3       2
     4x +2xy                              10w −20w



              2                     2 2          3       2 2
c. − 2n(3n + 4n − 5)        d. 5x y (2xy + 6y + 3x y )
          3
    −6n
EXAMPLE 1
                       Simplify.
   a. 2x(2x + y)                                 2
                                   b. − 5w(−2w + 4w )
          2                                  3       2
     4x +2xy                              10w −20w



              2                     2 2          3       2 2
c. − 2n(3n + 4n − 5)        d. 5x y (2xy + 6y + 3x y )
          3
    −6n
EXAMPLE 1
                       Simplify.
   a. 2x(2x + y)                                 2
                                   b. − 5w(−2w + 4w )
        2                                    3       2
     4x +2xy                              10w −20w



            2                       2 2          3       2 2
c. − 2n(3n + 4n − 5)        d. 5x y (2xy + 6y + 3x y )
        3       2
    −6n −8n
EXAMPLE 1
                       Simplify.
   a. 2x(2x + y)                                 2
                                   b. − 5w(−2w + 4w )
        2                                    3       2
     4x +2xy                              10w −20w



            2                       2 2          3       2 2
c. − 2n(3n + 4n − 5)        d. 5x y (2xy + 6y + 3x y )
        3       2
    −6n −8n
EXAMPLE 1
                       Simplify.
   a. 2x(2x + y)                                 2
                                   b. − 5w(−2w + 4w )
        2                                    3       2
     4x +2xy                              10w −20w



            2                       2 2          3       2 2
c. − 2n(3n + 4n − 5)        d. 5x y (2xy + 6y + 3x y )
        3       2
    −6n −8n +10n
EXAMPLE 1
                       Simplify.
   a. 2x(2x + y)                                 2
                                   b. − 5w(−2w + 4w )
        2                                    3       2
     4x +2xy                              10w −20w



            2                       2 2          3       2 2
c. − 2n(3n + 4n − 5)        d. 5x y (2xy + 6y + 3x y )
        3       2
    −6n −8n +10n
EXAMPLE 1
                       Simplify.
   a. 2x(2x + y)                                   2
                                   b. − 5w(−2w + 4w )
        2                                      3       2
     4x +2xy                                10w −20w



            2                       2 2            3       2 2
c. − 2n(3n + 4n − 5)        d. 5x y (2xy + 6y + 3x y )
                                      3 3
        3
    −6n −8n +10n2
                                   10x y
EXAMPLE 1
                       Simplify.
   a. 2x(2x + y)                                   2
                                   b. − 5w(−2w + 4w )
        2                                      3       2
     4x +2xy                                10w −20w



            2                       2 2            3       2 2
c. − 2n(3n + 4n − 5)        d. 5x y (2xy + 6y + 3x y )
                                      3 3
        3
    −6n −8n +10n2
                                   10x y
EXAMPLE 1
                       Simplify.
   a. 2x(2x + y)                                    2
                                   b. − 5w(−2w + 4w )
        2                                      3         2
     4x +2xy                                10w −20w



            2                       2 2              3       2 2
c. − 2n(3n + 4n − 5)        d. 5x y (2xy + 6y + 3x y )
                                      3 3          2 5
        3
    −6n −8n +10n2
                                   10x y +30x y
EXAMPLE 1
                       Simplify.
   a. 2x(2x + y)                                    2
                                   b. − 5w(−2w + 4w )
        2                                      3         2
     4x +2xy                                10w −20w



            2                       2 2              3       2 2
c. − 2n(3n + 4n − 5)        d. 5x y (2xy + 6y + 3x y )
                                      3 3          2 5
        3
    −6n −8n +10n2
                                   10x y +30x y
EXAMPLE 1
                       Simplify.
   a. 2x(2x + y)                                    2
                                   b. − 5w(−2w + 4w )
        2                                      3         2
     4x +2xy                                10w −20w



            2                       2 2              3       2 2
c. − 2n(3n + 4n − 5)        d. 5x y (2xy + 6y + 3x y )
                                      3 3          2 5       4 4
        3
    −6n −8n +10n2
                                   10x y +30x y +15x y
EXAMPLE 1
                       Simplify.
   a. 2x(2x + y)                                    2
                                   b. − 5w(−2w + 4w )
        2                                      3         2
     4x +2xy                                10w −20w



            2                       2 2              3       2 2
c. − 2n(3n + 4n − 5)        d. 5x y (2xy + 6y + 3x y )
                                      3 3          2 5       4 4
        3
    −6n −8n +10n2
                                   10x y +30x y +15x y
                                     4 4           3 3        2 5
                               15x y +10x y + 30x y
EXAMPLE 2
Write and simplify an expression for the area of each figure.
 a.      4h                  b.
                                       3x2 + 2

               6h + 1                                 2x2
EXAMPLE 2
Write and simplify an expression for the area of each figure.
 a.      4h                  b.
                                       3x2 + 2

               6h + 1                                 2x2



      4h(6h +1)
EXAMPLE 2
Write and simplify an expression for the area of each figure.
 a.      4h                  b.
                                       3x2 + 2

               6h + 1                                 2x2



      4h(6h +1)
EXAMPLE 2
Write and simplify an expression for the area of each figure.
 a.             4h            b.
                                       3x2 + 2

                     6h + 1                           2x2



       4h(6h +1)
            2
      24h
EXAMPLE 2
Write and simplify an expression for the area of each figure.
 a.             4h            b.
                                       3x2 + 2

                     6h + 1                           2x2



       4h(6h +1)
            2
      24h
EXAMPLE 2
Write and simplify an expression for the area of each figure.
 a.        4h                b.
                                       3x2 + 2

                6h + 1                                2x2



        4h(6h +1)
         2
      24h +4h
EXAMPLE 2
Write and simplify an expression for the area of each figure.
 a.        4h                b.
                                       3x2 + 2

                 6h + 1                               2x2



        4h(6h +1)
      24h 2
            +4h units2
EXAMPLE 2
Write and simplify an expression for the area of each figure.
 a.        4h                b.
                                       3x2 + 2

                 6h + 1                               2x2


                                        2    2
        4h(6h +1)                     2x (3x + 2)
      24h 2
            +4h units2
EXAMPLE 2
Write and simplify an expression for the area of each figure.
 a.        4h                b.
                                       3x2 + 2

                 6h + 1                               2x2


                                        2    2
        4h(6h +1)                     2x (3x + 2)
      24h 2
            +4h units2
EXAMPLE 2
Write and simplify an expression for the area of each figure.
 a.        4h                b.
                                       3x2 + 2

                 6h + 1                               2x2


                                              2   2
        4h(6h +1)                     2x (3x + 2)
                                          4
      24h 2
            +4h units2               6x
EXAMPLE 2
Write and simplify an expression for the area of each figure.
 a.        4h                b.
                                       3x2 + 2

                 6h + 1                               2x2


                                              2   2
        4h(6h +1)                     2x (3x + 2)
                                          4
      24h 2
            +4h units2               6x
EXAMPLE 2
Write and simplify an expression for the area of each figure.
 a.        4h                b.
                                       3x2 + 2

                 6h + 1                               2x2


                                           2   2
        4h(6h +1)                     2x (3x + 2)
                                       4       2
      24h 2
            +4h units2               6x +4x
EXAMPLE 2
Write and simplify an expression for the area of each figure.
 a.        4h                b.
                                       3x2 + 2

                 6h + 1                               2x2


                                           2   2
        4h(6h +1)                     2x (3x + 2)
                                       4       2
      24h 2
            +4h units2               6x +4x units2
PROBLEM SET
PROBLEM SET


                p. 392 #1-54 multiples of 3




“A candle loses none of its light by lighting another candle.”
                       - Unknown

More Related Content

PDF
1 to hop
PDF
A Characterization of Twin Prime Pairs
PPTX
AMU - Mathematics - 2007
KEY
Int Math 2 Section 9-1
KEY
Integrated Math 2 Section 9-1
PDF
Bt0063 mathematics fot it
KEY
Module 10 Topic 1 factoring gcf
PDF
calculo vectorial
1 to hop
A Characterization of Twin Prime Pairs
AMU - Mathematics - 2007
Int Math 2 Section 9-1
Integrated Math 2 Section 9-1
Bt0063 mathematics fot it
Module 10 Topic 1 factoring gcf
calculo vectorial

What's hot (18)

PDF
C7 7.6
PDF
MODULE 4- Quadratic Expression and Equations
PDF
Chapter 04
KEY
Week 10 - Trigonometry
PDF
F4 02 Quadratic Expressions And
KEY
1003 ch 10 day 3
PDF
Lesson 15: The Chain Rule
PPT
Factoring pst
PPTX
AMU - Mathematics - 2005
PPT
Factorising for 3um
PPTX
4th quarter long test review
DOC
09 Trial Penang S1
PDF
Chapter 12
PDF
2010 mathematics hsc solutions
DOC
Mathematics
PPT
11X1 T09 03 second derivative
PDF
Class 10 arithmetic_progression_cbse_test_paper-2
PDF
Tut 1
C7 7.6
MODULE 4- Quadratic Expression and Equations
Chapter 04
Week 10 - Trigonometry
F4 02 Quadratic Expressions And
1003 ch 10 day 3
Lesson 15: The Chain Rule
Factoring pst
AMU - Mathematics - 2005
Factorising for 3um
4th quarter long test review
09 Trial Penang S1
Chapter 12
2010 mathematics hsc solutions
Mathematics
11X1 T09 03 second derivative
Class 10 arithmetic_progression_cbse_test_paper-2
Tut 1
Ad

Viewers also liked (6)

PDF
Integrated 2 Comparison ISTE 2011
PDF
Algebra 1B Section 5-3
PPT
Desarollo dental
PDF
Blogs, Wikis and eLearning Week
PDF
25 минут о бесплатной рекламе, которая в 5 раз важнее платной TurPravda
KEY
Integrated Math 2 Section 5-2
Integrated 2 Comparison ISTE 2011
Algebra 1B Section 5-3
Desarollo dental
Blogs, Wikis and eLearning Week
25 минут о бесплатной рекламе, которая в 5 раз важнее платной TurPravda
Integrated Math 2 Section 5-2
Ad

Similar to Int Math 2 Section 9-4 1011 (20)

PDF
Int Math 2 Section 2-4 1011
PDF
Int Math 2 Section 2-5 1011
PDF
Int Math 2 Section 2-6 1011
ZIP
Integrated Math 2 Section 2-5
ZIP
Integrated 2 Section 2-6
ZIP
Integrated 2 Section 2-4
ZIP
AA Section 5-3
KEY
Int Math 2 Section 9-3 1011
KEY
Integrated Math 2 Section 9-3
DOC
Sample fin
PDF
Linear Differential Equations1
PDF
Algebraic Expression
PDF
AA Section 5-3
PDF
6.6 parallel and perpendicular lines
KEY
Notes 12.1 identifying, adding & subtracting polynomials
PDF
Ca8e Ppt 5 6
PPT
2.4 writing linear equations
DOC
Simultaneous eqn2
DOC
MATH: ORDER OF OPERATIONS -QUIZ
PDF
Math 17 midterm exam review jamie
Int Math 2 Section 2-4 1011
Int Math 2 Section 2-5 1011
Int Math 2 Section 2-6 1011
Integrated Math 2 Section 2-5
Integrated 2 Section 2-6
Integrated 2 Section 2-4
AA Section 5-3
Int Math 2 Section 9-3 1011
Integrated Math 2 Section 9-3
Sample fin
Linear Differential Equations1
Algebraic Expression
AA Section 5-3
6.6 parallel and perpendicular lines
Notes 12.1 identifying, adding & subtracting polynomials
Ca8e Ppt 5 6
2.4 writing linear equations
Simultaneous eqn2
MATH: ORDER OF OPERATIONS -QUIZ
Math 17 midterm exam review jamie

More from Jimbo Lamb (20)

PDF
Geometry Section 1-5
PDF
Geometry Section 1-4
PDF
Geometry Section 1-3
PDF
Geometry Section 1-2
PDF
Geometry Section 1-2
PDF
Geometry Section 1-1
PDF
Algebra 2 Section 5-3
PDF
Algebra 2 Section 5-2
PDF
Algebra 2 Section 5-1
PDF
Algebra 2 Section 4-9
PDF
Algebra 2 Section 4-8
PDF
Algebra 2 Section 4-6
PDF
Geometry Section 6-6
PDF
Geometry Section 6-5
PDF
Geometry Section 6-4
PDF
Geometry Section 6-3
PDF
Geometry Section 6-2
PDF
Geometry Section 6-1
PDF
Algebra 2 Section 4-5
PDF
Algebra 2 Section 4-4
Geometry Section 1-5
Geometry Section 1-4
Geometry Section 1-3
Geometry Section 1-2
Geometry Section 1-2
Geometry Section 1-1
Algebra 2 Section 5-3
Algebra 2 Section 5-2
Algebra 2 Section 5-1
Algebra 2 Section 4-9
Algebra 2 Section 4-8
Algebra 2 Section 4-6
Geometry Section 6-6
Geometry Section 6-5
Geometry Section 6-4
Geometry Section 6-3
Geometry Section 6-2
Geometry Section 6-1
Algebra 2 Section 4-5
Algebra 2 Section 4-4

Recently uploaded (20)

PDF
RTP_AR_KS1_Tutor's Guide_English [FOR REPRODUCTION].pdf
PPTX
History, Philosophy and sociology of education (1).pptx
PDF
Complications of Minimal Access Surgery at WLH
PDF
IGGE1 Understanding the Self1234567891011
PDF
OBE - B.A.(HON'S) IN INTERIOR ARCHITECTURE -Ar.MOHIUDDIN.pdf
PPTX
Radiologic_Anatomy_of_the_Brachial_plexus [final].pptx
PDF
Weekly quiz Compilation Jan -July 25.pdf
PDF
Chinmaya Tiranga quiz Grand Finale.pdf
PDF
medical_surgical_nursing_10th_edition_ignatavicius_TEST_BANK_pdf.pdf
PPTX
UNIT III MENTAL HEALTH NURSING ASSESSMENT
PDF
Hazard Identification & Risk Assessment .pdf
PPTX
Introduction to Building Materials
PDF
LDMMIA Reiki Yoga Finals Review Spring Summer
PDF
A GUIDE TO GENETICS FOR UNDERGRADUATE MEDICAL STUDENTS
PPTX
Cell Types and Its function , kingdom of life
PPTX
Introduction-to-Literarature-and-Literary-Studies-week-Prelim-coverage.pptx
PDF
GENETICS IN BIOLOGY IN SECONDARY LEVEL FORM 3
PDF
1_English_Language_Set_2.pdf probationary
PDF
Practical Manual AGRO-233 Principles and Practices of Natural Farming
PDF
Classroom Observation Tools for Teachers
RTP_AR_KS1_Tutor's Guide_English [FOR REPRODUCTION].pdf
History, Philosophy and sociology of education (1).pptx
Complications of Minimal Access Surgery at WLH
IGGE1 Understanding the Self1234567891011
OBE - B.A.(HON'S) IN INTERIOR ARCHITECTURE -Ar.MOHIUDDIN.pdf
Radiologic_Anatomy_of_the_Brachial_plexus [final].pptx
Weekly quiz Compilation Jan -July 25.pdf
Chinmaya Tiranga quiz Grand Finale.pdf
medical_surgical_nursing_10th_edition_ignatavicius_TEST_BANK_pdf.pdf
UNIT III MENTAL HEALTH NURSING ASSESSMENT
Hazard Identification & Risk Assessment .pdf
Introduction to Building Materials
LDMMIA Reiki Yoga Finals Review Spring Summer
A GUIDE TO GENETICS FOR UNDERGRADUATE MEDICAL STUDENTS
Cell Types and Its function , kingdom of life
Introduction-to-Literarature-and-Literary-Studies-week-Prelim-coverage.pptx
GENETICS IN BIOLOGY IN SECONDARY LEVEL FORM 3
1_English_Language_Set_2.pdf probationary
Practical Manual AGRO-233 Principles and Practices of Natural Farming
Classroom Observation Tools for Teachers

Int Math 2 Section 9-4 1011

  • 1. SECTION 9-4 Multiply a Polynomial by a Monomial
  • 2. ESSENTIAL QUESTION • How do you multiply polynomials by monomials? • Where you’ll see this: • Travel, part-time job, sports, finance, geography
  • 3. EXAMPLE 1 Simplify. a. 2x(2x + y) 2 b. − 5w(−2w + 4w ) 2 2 2 3 2 2 c. − 2n(3n + 4n − 5) d. 5x y (2xy + 6y + 3x y )
  • 4. EXAMPLE 1 Simplify. a. 2x(2x + y) 2 b. − 5w(−2w + 4w ) 2 2 2 3 2 2 c. − 2n(3n + 4n − 5) d. 5x y (2xy + 6y + 3x y )
  • 5. EXAMPLE 1 Simplify. a. 2x(2x + y) 2 b. − 5w(−2w + 4w ) 2 4x 2 2 2 3 2 2 c. − 2n(3n + 4n − 5) d. 5x y (2xy + 6y + 3x y )
  • 6. EXAMPLE 1 Simplify. a. 2x(2x + y) 2 b. − 5w(−2w + 4w ) 2 4x 2 2 2 3 2 2 c. − 2n(3n + 4n − 5) d. 5x y (2xy + 6y + 3x y )
  • 7. EXAMPLE 1 Simplify. a. 2x(2x + y) 2 b. − 5w(−2w + 4w ) 2 4x +2xy 2 2 2 3 2 2 c. − 2n(3n + 4n − 5) d. 5x y (2xy + 6y + 3x y )
  • 8. EXAMPLE 1 Simplify. a. 2x(2x + y) 2 b. − 5w(−2w + 4w ) 2 4x +2xy 2 2 2 3 2 2 c. − 2n(3n + 4n − 5) d. 5x y (2xy + 6y + 3x y )
  • 9. EXAMPLE 1 Simplify. a. 2x(2x + y) 2 b. − 5w(−2w + 4w ) 2 3 4x +2xy 10w 2 2 2 3 2 2 c. − 2n(3n + 4n − 5) d. 5x y (2xy + 6y + 3x y )
  • 10. EXAMPLE 1 Simplify. a. 2x(2x + y) 2 b. − 5w(−2w + 4w ) 2 3 4x +2xy 10w 2 2 2 3 2 2 c. − 2n(3n + 4n − 5) d. 5x y (2xy + 6y + 3x y )
  • 11. EXAMPLE 1 Simplify. a. 2x(2x + y) 2 b. − 5w(−2w + 4w ) 2 3 2 4x +2xy 10w −20w 2 2 2 3 2 2 c. − 2n(3n + 4n − 5) d. 5x y (2xy + 6y + 3x y )
  • 12. EXAMPLE 1 Simplify. a. 2x(2x + y) 2 b. − 5w(−2w + 4w ) 2 3 2 4x +2xy 10w −20w 2 2 2 3 2 2 c. − 2n(3n + 4n − 5) d. 5x y (2xy + 6y + 3x y )
  • 13. EXAMPLE 1 Simplify. a. 2x(2x + y) 2 b. − 5w(−2w + 4w ) 2 3 2 4x +2xy 10w −20w 2 2 2 3 2 2 c. − 2n(3n + 4n − 5) d. 5x y (2xy + 6y + 3x y ) 3 −6n
  • 14. EXAMPLE 1 Simplify. a. 2x(2x + y) 2 b. − 5w(−2w + 4w ) 2 3 2 4x +2xy 10w −20w 2 2 2 3 2 2 c. − 2n(3n + 4n − 5) d. 5x y (2xy + 6y + 3x y ) 3 −6n
  • 15. EXAMPLE 1 Simplify. a. 2x(2x + y) 2 b. − 5w(−2w + 4w ) 2 3 2 4x +2xy 10w −20w 2 2 2 3 2 2 c. − 2n(3n + 4n − 5) d. 5x y (2xy + 6y + 3x y ) 3 2 −6n −8n
  • 16. EXAMPLE 1 Simplify. a. 2x(2x + y) 2 b. − 5w(−2w + 4w ) 2 3 2 4x +2xy 10w −20w 2 2 2 3 2 2 c. − 2n(3n + 4n − 5) d. 5x y (2xy + 6y + 3x y ) 3 2 −6n −8n
  • 17. EXAMPLE 1 Simplify. a. 2x(2x + y) 2 b. − 5w(−2w + 4w ) 2 3 2 4x +2xy 10w −20w 2 2 2 3 2 2 c. − 2n(3n + 4n − 5) d. 5x y (2xy + 6y + 3x y ) 3 2 −6n −8n +10n
  • 18. EXAMPLE 1 Simplify. a. 2x(2x + y) 2 b. − 5w(−2w + 4w ) 2 3 2 4x +2xy 10w −20w 2 2 2 3 2 2 c. − 2n(3n + 4n − 5) d. 5x y (2xy + 6y + 3x y ) 3 2 −6n −8n +10n
  • 19. EXAMPLE 1 Simplify. a. 2x(2x + y) 2 b. − 5w(−2w + 4w ) 2 3 2 4x +2xy 10w −20w 2 2 2 3 2 2 c. − 2n(3n + 4n − 5) d. 5x y (2xy + 6y + 3x y ) 3 3 3 −6n −8n +10n2 10x y
  • 20. EXAMPLE 1 Simplify. a. 2x(2x + y) 2 b. − 5w(−2w + 4w ) 2 3 2 4x +2xy 10w −20w 2 2 2 3 2 2 c. − 2n(3n + 4n − 5) d. 5x y (2xy + 6y + 3x y ) 3 3 3 −6n −8n +10n2 10x y
  • 21. EXAMPLE 1 Simplify. a. 2x(2x + y) 2 b. − 5w(−2w + 4w ) 2 3 2 4x +2xy 10w −20w 2 2 2 3 2 2 c. − 2n(3n + 4n − 5) d. 5x y (2xy + 6y + 3x y ) 3 3 2 5 3 −6n −8n +10n2 10x y +30x y
  • 22. EXAMPLE 1 Simplify. a. 2x(2x + y) 2 b. − 5w(−2w + 4w ) 2 3 2 4x +2xy 10w −20w 2 2 2 3 2 2 c. − 2n(3n + 4n − 5) d. 5x y (2xy + 6y + 3x y ) 3 3 2 5 3 −6n −8n +10n2 10x y +30x y
  • 23. EXAMPLE 1 Simplify. a. 2x(2x + y) 2 b. − 5w(−2w + 4w ) 2 3 2 4x +2xy 10w −20w 2 2 2 3 2 2 c. − 2n(3n + 4n − 5) d. 5x y (2xy + 6y + 3x y ) 3 3 2 5 4 4 3 −6n −8n +10n2 10x y +30x y +15x y
  • 24. EXAMPLE 1 Simplify. a. 2x(2x + y) 2 b. − 5w(−2w + 4w ) 2 3 2 4x +2xy 10w −20w 2 2 2 3 2 2 c. − 2n(3n + 4n − 5) d. 5x y (2xy + 6y + 3x y ) 3 3 2 5 4 4 3 −6n −8n +10n2 10x y +30x y +15x y 4 4 3 3 2 5 15x y +10x y + 30x y
  • 25. EXAMPLE 2 Write and simplify an expression for the area of each figure. a. 4h b. 3x2 + 2 6h + 1 2x2
  • 26. EXAMPLE 2 Write and simplify an expression for the area of each figure. a. 4h b. 3x2 + 2 6h + 1 2x2 4h(6h +1)
  • 27. EXAMPLE 2 Write and simplify an expression for the area of each figure. a. 4h b. 3x2 + 2 6h + 1 2x2 4h(6h +1)
  • 28. EXAMPLE 2 Write and simplify an expression for the area of each figure. a. 4h b. 3x2 + 2 6h + 1 2x2 4h(6h +1) 2 24h
  • 29. EXAMPLE 2 Write and simplify an expression for the area of each figure. a. 4h b. 3x2 + 2 6h + 1 2x2 4h(6h +1) 2 24h
  • 30. EXAMPLE 2 Write and simplify an expression for the area of each figure. a. 4h b. 3x2 + 2 6h + 1 2x2 4h(6h +1) 2 24h +4h
  • 31. EXAMPLE 2 Write and simplify an expression for the area of each figure. a. 4h b. 3x2 + 2 6h + 1 2x2 4h(6h +1) 24h 2 +4h units2
  • 32. EXAMPLE 2 Write and simplify an expression for the area of each figure. a. 4h b. 3x2 + 2 6h + 1 2x2 2 2 4h(6h +1) 2x (3x + 2) 24h 2 +4h units2
  • 33. EXAMPLE 2 Write and simplify an expression for the area of each figure. a. 4h b. 3x2 + 2 6h + 1 2x2 2 2 4h(6h +1) 2x (3x + 2) 24h 2 +4h units2
  • 34. EXAMPLE 2 Write and simplify an expression for the area of each figure. a. 4h b. 3x2 + 2 6h + 1 2x2 2 2 4h(6h +1) 2x (3x + 2) 4 24h 2 +4h units2 6x
  • 35. EXAMPLE 2 Write and simplify an expression for the area of each figure. a. 4h b. 3x2 + 2 6h + 1 2x2 2 2 4h(6h +1) 2x (3x + 2) 4 24h 2 +4h units2 6x
  • 36. EXAMPLE 2 Write and simplify an expression for the area of each figure. a. 4h b. 3x2 + 2 6h + 1 2x2 2 2 4h(6h +1) 2x (3x + 2) 4 2 24h 2 +4h units2 6x +4x
  • 37. EXAMPLE 2 Write and simplify an expression for the area of each figure. a. 4h b. 3x2 + 2 6h + 1 2x2 2 2 4h(6h +1) 2x (3x + 2) 4 2 24h 2 +4h units2 6x +4x units2
  • 39. PROBLEM SET p. 392 #1-54 multiples of 3 “A candle loses none of its light by lighting another candle.” - Unknown

Editor's Notes