SlideShare a Scribd company logo
Chapter 9
Polynomials
Section 9-1
Add and Subtract Polynomials
Essential Questions

 How do you write polynomials in standard form?
 How do you add and subtract polynomials?


 Where you’ll see this:
   Part-time jobs, travel, geography, modeling
Vocabulary
1. Monomial:




2. Coefficient:
3. Constant:
4. Polynomial:

5. Term:
Vocabulary
1. Monomial: An expression that has one term (a
    number, variable, or a combination of both a
    number and variables without any addition or
    subtraction)
2. Coefficient:
3. Constant:
4. Polynomial:

5. Term:
Vocabulary
1. Monomial: An expression that has one term (a
    number, variable, or a combination of both a
    number and variables without any addition or
    subtraction)
2. Coefficient: The number that is with the variable
3. Constant:
4. Polynomial:

5. Term:
Vocabulary
1. Monomial: An expression that has one term (a
    number, variable, or a combination of both a
    number and variables without any addition or
    subtraction)
2. Coefficient: The number that is with the variable
3. Constant: A number without a variable
4. Polynomial:

5. Term:
Vocabulary
1. Monomial: An expression that has one term (a
    number, variable, or a combination of both a
    number and variables without any addition or
    subtraction)
2. Coefficient: The number that is with the variable
3. Constant: A number without a variable
4. Polynomial: A collection of terms that are
    combined by addition or subtraction
5. Term:
Vocabulary
1. Monomial: An expression that has one term (a
    number, variable, or a combination of both a
    number and variables without any addition or
    subtraction)
2. Coefficient: The number that is with the variable
3. Constant: A number without a variable
4. Polynomial: A collection of terms that are
    combined by addition or subtraction
5. Term: Each monomial within a polynomial
Vocabulary
6. Binomial:
7. Trinomial:
8. Standard Form:



9. Like Terms:
Vocabulary
6. Binomial: A polynomial with two terms
7. Trinomial:
8. Standard Form:



9. Like Terms:
Vocabulary
6. Binomial: A polynomial with two terms
7. Trinomial: A polynomial with three terms
8. Standard Form:



9. Like Terms:
Vocabulary
6. Binomial: A polynomial with two terms
7. Trinomial: A polynomial with three terms
8. Standard Form: When a polynomial is written from
    highest to lowest degree (highest to lowest
    exponent)
9. Like Terms:
Vocabulary
6. Binomial: A polynomial with two terms
7. Trinomial: A polynomial with three terms
8. Standard Form: When a polynomial is written from
    highest to lowest degree (highest to lowest
    exponent)
9. Like Terms: Terms that have the same variable
    parts (variables and exponents)
Example 1
 Tell the variable for which the polynomial is
          arranged in standard form.
                   3            2
             a. 2a + 3ab − 4b


               3           2
   b. 2(a + b) + 3(a + b) − 4(a + b) + 7
Example 1
 Tell the variable for which the polynomial is
          arranged in standard form.
                   3            2
             a. 2a + 3ab − 4b
                       a

               3           2
   b. 2(a + b) + 3(a + b) − 4(a + b) + 7
Example 1
 Tell the variable for which the polynomial is
          arranged in standard form.
                   3                 2
             a. 2a + 3ab − 4b
                         a

               3                 2
   b. 2(a + b) + 3(a + b) − 4(a + b) + 7
                       (a + b)
Example 2
              Add the polynomials.
          2                           2
    a. (2x − 3x + 7) + (−2x − 8) + ( x − 7x )




          2              2      2            2
    b. (3x − 4 xy ) + (− x + 4 y ) + (2xy − y )
Example 2
              Add the polynomials.
          2                             2
    a. (2x − 3x + 7) + (−2x − 8) + ( x − 7x )
         2                          2
      2x − 3x + 7 − 2x − 8 + x − 7x


             2           2      2            2
    b. (3x − 4 xy ) + (− x + 4 y ) + (2xy − y )
Example 2
              Add the polynomials.
          2                             2
    a. (2x − 3x + 7) + (−2x − 8) + ( x − 7x )
         2                          2
      2x − 3x + 7 − 2x − 8 + x − 7x
                       2
                  3x

             2             2    2            2
    b. (3x − 4 xy ) + (− x + 4 y ) + (2xy − y )
Example 2
              Add the polynomials.
          2                             2
    a. (2x − 3x + 7) + (−2x − 8) + ( x − 7x )
         2                          2
      2x − 3x + 7 − 2x − 8 + x − 7x
                    2
                  3x −12x

             2           2      2            2
    b. (3x − 4 xy ) + (− x + 4 y ) + (2xy − y )
Example 2
              Add the polynomials.
          2                             2
    a. (2x − 3x + 7) + (−2x − 8) + ( x − 7x )
         2                          2
      2x − 3x + 7 − 2x − 8 + x − 7x
                    2
                  3x −12x −1

             2           2      2            2
    b. (3x − 4 xy ) + (− x + 4 y ) + (2xy − y )
Example 2
              Add the polynomials.
          2                                 2
    a. (2x − 3x + 7) + (−2x − 8) + ( x − 7x )
         2                              2
      2x − 3x + 7 − 2x − 8 + x − 7x
                    2
                  3x −12x −1

             2              2       2               2
    b. (3x − 4 xy ) + (− x + 4 y ) + (2xy − y )
             2          2       2               2
       3x − 4 xy − x + 4 y + 2xy − y
Example 2
              Add the polynomials.
          2                                    2
    a. (2x − 3x + 7) + (−2x − 8) + ( x − 7x )
         2                                 2
      2x − 3x + 7 − 2x − 8 + x − 7x
                       2
                  3x −12x −1

             2                 2       2               2
    b. (3x − 4 xy ) + (− x + 4 y ) + (2xy − y )
             2             2       2               2
       3x − 4 xy − x + 4 y + 2xy − y
                   2                   2
                 2x − 2xy + 3y
Example 3
Subtract 4x + y from the sum of x + 3y and 8x - 2y.
Example 3
Subtract 4x + y from the sum of x + 3y and 8x - 2y.

          ( x + 3y ) + (8 x − 2y ) − (4 x + y )
Example 3
Subtract 4x + y from the sum of x + 3y and 8x - 2y.

          ( x + 3y ) + (8 x − 2y ) − (4 x + y )
             x + 3y + 8 x − 2y − 4 x − y
Example 3
Subtract 4x + y from the sum of x + 3y and 8x - 2y.

          ( x + 3y ) + (8 x − 2y ) − (4 x + y )
             x + 3y + 8 x − 2y − 4 x − y
                          5x
Example 4
                     Simplify.
            3   2                3   2
    a. (6 x + 3x − 11x ) + (2x − 9 x − 5 x )




        2        2               2       2
   b. ( x y − 2xy + 8) − (−7x y + 2xy − 4)
Example 4
                            Simplify.
                3       2               3       2
    a. (6 x + 3x − 11x ) + (2x − 9 x − 5 x )
            3       2               3       2
      6 x + 3x − 11x + 2x − 9 x − 5 x


        2               2               2           2
   b. ( x y − 2xy + 8) − (−7x y + 2xy − 4)
Example 4
                            Simplify.
                3       2                3       2
    a. (6 x + 3x − 11x ) + (2x − 9 x − 5 x )
            3       2                3       2
      6 x + 3x − 11x + 2x − 9 x − 5 x
                            3    2
                    8 x − 6 x − 16 x
        2               2                2           2
   b. ( x y − 2xy + 8) − (−7x y + 2xy − 4)
Example 4
                            Simplify.
                3       2                    3       2
    a. (6 x + 3x − 11x ) + (2x − 9 x − 5 x )
            3       2                    3       2
      6 x + 3x − 11x + 2x − 9 x − 5 x
                            3    2
                    8 x − 6 x − 16 x
        2               2                    2           2
   b. ( x y − 2xy + 8) − (−7x y + 2xy − 4)
        2               2            2               2
      x y − 2xy + 8 + 7x y − 2xy + 4
Example 4
                                Simplify.
                3       2                        3       2
    a. (6 x + 3x − 11x ) + (2x − 9 x − 5 x )
            3       2                        3       2
      6 x + 3x − 11x + 2x − 9 x − 5 x
                            3        2
                    8 x − 6 x − 16 x
        2               2                        2           2
   b. ( x y − 2xy + 8) − (−7x y + 2xy − 4)
        2               2                2               2
      x y − 2xy + 8 + 7x y − 2xy + 4
                            2            2
                    8 x y − 4 xy + 12
Example 4
                    Simplify.
        2          2       2          2     2
   c. ( x y + x − xy ) − (− y + y + xy + 4 x y )
Example 4
                    Simplify.
        2          2         2         2       2
   c. ( x y + x − xy ) − (− y + y + xy + 4 x y )
        2          2     2         2       2
      x y + x − xy + y − y − xy − 4 x y
Example 4
                    Simplify.
        2          2         2               2       2
   c. ( x y + x − xy ) − (− y + y + xy + 4 x y )
        2          2     2               2       2
      x y + x − xy + y − y − xy − 4 x y
               2                 2   2
            −3x y + x − 2xy + y − y
Problem Set
Problem Set


               p. 378 #1-39 odd




“Deeds, not stones, are the true monuments of the
             great.” - John L. Motley

More Related Content

PDF
Int Math 2 Section 2-4 1011
PPTX
Multiplying Polynomials
PDF
Integrated exercise a_(book_2_B)_Ans
PDF
Lesson 15: The Chain Rule
PDF
Multiplying polynomials
PPT
Factorising for 3um
DOC
09 Trial Penang S1
PDF
01 derivadas
Int Math 2 Section 2-4 1011
Multiplying Polynomials
Integrated exercise a_(book_2_B)_Ans
Lesson 15: The Chain Rule
Multiplying polynomials
Factorising for 3um
09 Trial Penang S1
01 derivadas

What's hot (19)

PDF
Chapter 04
PPTX
Addition and subtraction in polynomials
KEY
Notes 12.1 multiplying polynomials
PDF
9-9 Notes
PDF
A Characterization of Twin Prime Pairs
KEY
0304 ch 3 day 4
PPT
Factoring notes
PPT
Review of multiplying polynomials
ZIP
Integrated Math 2 Section 2-5
PPT
PPT
PDF
C6 6.5
PDF
Algebra 2 Section 3-4
PPT
Factoring and Box Method
PDF
鳳山高級中學 B1 3 3---ans
PPTX
11.3
PDF
Lesson 11: Implicit Differentiation
PPTX
Algebra 2 benchmark 3 review
ZIP
Ecuaciones
Chapter 04
Addition and subtraction in polynomials
Notes 12.1 multiplying polynomials
9-9 Notes
A Characterization of Twin Prime Pairs
0304 ch 3 day 4
Factoring notes
Review of multiplying polynomials
Integrated Math 2 Section 2-5
C6 6.5
Algebra 2 Section 3-4
Factoring and Box Method
鳳山高級中學 B1 3 3---ans
11.3
Lesson 11: Implicit Differentiation
Algebra 2 benchmark 3 review
Ecuaciones
Ad

Viewers also liked (9)

PDF
Int Math 2 Section 3-4 1011
KEY
Int Math 2 Section 9-5 1011
PDF
Int Math 2 Section 3-3 1011
PDF
Geometry Section 0-6 11-12
PDF
Int Math 2 Section 5-6 1011
PDF
Int Math 2 Section 2-7/2-8 1011
PDF
Geometry Section 4-4 1112
PDF
Geometry Section 5-4 1112
KEY
Int Math 2 Section 8-6 1011
Int Math 2 Section 3-4 1011
Int Math 2 Section 9-5 1011
Int Math 2 Section 3-3 1011
Geometry Section 0-6 11-12
Int Math 2 Section 5-6 1011
Int Math 2 Section 2-7/2-8 1011
Geometry Section 4-4 1112
Geometry Section 5-4 1112
Int Math 2 Section 8-6 1011
Ad

Similar to Int Math 2 Section 9-1 (20)

PPT
Adding Polynomials
PPTX
Operations on Polynomials
DOC
004 Topics
PDF
Int Math 2 Section 2-5 1011
PDF
Int Math 2 Section 2-6 1011
PPTX
Polynomials
PPT
polynomials.ppt new class VIII maths lesson
PPTX
Mat 092 section 12.4 adding and subtracting polynomials
PPTX
09.30.2019 to 10.03.2019 Polynomials Algebra111 I.pptx
PDF
November 26, 2012: Polynomials (SmartBoard Note)
PPT
Adding And Subtracting Polynomials
PPT
Add sub polynomials
PPTX
Introduction to Polynomials.pptx
PPTX
Unit 3 polynomials
PPTX
Adding Polynomials_1.pptx
PPT
10 1 Adding Subtracting Polynomials
PPT
Adding & Subtracting Polynomials
ZIP
Integrated 2 Section 2-6
PDF
6.6 parallel and perpendicular lines
PDF
Review Unit 12 Test Form B
Adding Polynomials
Operations on Polynomials
004 Topics
Int Math 2 Section 2-5 1011
Int Math 2 Section 2-6 1011
Polynomials
polynomials.ppt new class VIII maths lesson
Mat 092 section 12.4 adding and subtracting polynomials
09.30.2019 to 10.03.2019 Polynomials Algebra111 I.pptx
November 26, 2012: Polynomials (SmartBoard Note)
Adding And Subtracting Polynomials
Add sub polynomials
Introduction to Polynomials.pptx
Unit 3 polynomials
Adding Polynomials_1.pptx
10 1 Adding Subtracting Polynomials
Adding & Subtracting Polynomials
Integrated 2 Section 2-6
6.6 parallel and perpendicular lines
Review Unit 12 Test Form B

More from Jimbo Lamb (20)

PDF
Geometry Section 1-5
PDF
Geometry Section 1-4
PDF
Geometry Section 1-3
PDF
Geometry Section 1-2
PDF
Geometry Section 1-2
PDF
Geometry Section 1-1
PDF
Algebra 2 Section 5-3
PDF
Algebra 2 Section 5-2
PDF
Algebra 2 Section 5-1
PDF
Algebra 2 Section 4-9
PDF
Algebra 2 Section 4-8
PDF
Algebra 2 Section 4-6
PDF
Geometry Section 6-6
PDF
Geometry Section 6-5
PDF
Geometry Section 6-4
PDF
Geometry Section 6-3
PDF
Geometry Section 6-2
PDF
Geometry Section 6-1
PDF
Algebra 2 Section 4-5
PDF
Algebra 2 Section 4-4
Geometry Section 1-5
Geometry Section 1-4
Geometry Section 1-3
Geometry Section 1-2
Geometry Section 1-2
Geometry Section 1-1
Algebra 2 Section 5-3
Algebra 2 Section 5-2
Algebra 2 Section 5-1
Algebra 2 Section 4-9
Algebra 2 Section 4-8
Algebra 2 Section 4-6
Geometry Section 6-6
Geometry Section 6-5
Geometry Section 6-4
Geometry Section 6-3
Geometry Section 6-2
Geometry Section 6-1
Algebra 2 Section 4-5
Algebra 2 Section 4-4

Recently uploaded (20)

PDF
Complications of Minimal Access Surgery at WLH
PDF
Physiotherapy_for_Respiratory_and_Cardiac_Problems WEBBER.pdf
PDF
Module 4: Burden of Disease Tutorial Slides S2 2025
PDF
BÀI TẬP BỔ TRỢ 4 KỸ NĂNG TIẾNG ANH 9 GLOBAL SUCCESS - CẢ NĂM - BÁM SÁT FORM Đ...
PDF
O5-L3 Freight Transport Ops (International) V1.pdf
PPTX
Renaissance Architecture: A Journey from Faith to Humanism
PPTX
Institutional Correction lecture only . . .
PDF
ANTIBIOTICS.pptx.pdf………………… xxxxxxxxxxxxx
PPTX
Pharma ospi slides which help in ospi learning
PDF
Saundersa Comprehensive Review for the NCLEX-RN Examination.pdf
PDF
3rd Neelam Sanjeevareddy Memorial Lecture.pdf
PDF
The Lost Whites of Pakistan by Jahanzaib Mughal.pdf
PDF
TR - Agricultural Crops Production NC III.pdf
PPTX
GDM (1) (1).pptx small presentation for students
PDF
01-Introduction-to-Information-Management.pdf
PPTX
Cell Structure & Organelles in detailed.
PDF
RMMM.pdf make it easy to upload and study
PDF
Sports Quiz easy sports quiz sports quiz
PPTX
PPH.pptx obstetrics and gynecology in nursing
PDF
102 student loan defaulters named and shamed – Is someone you know on the list?
Complications of Minimal Access Surgery at WLH
Physiotherapy_for_Respiratory_and_Cardiac_Problems WEBBER.pdf
Module 4: Burden of Disease Tutorial Slides S2 2025
BÀI TẬP BỔ TRỢ 4 KỸ NĂNG TIẾNG ANH 9 GLOBAL SUCCESS - CẢ NĂM - BÁM SÁT FORM Đ...
O5-L3 Freight Transport Ops (International) V1.pdf
Renaissance Architecture: A Journey from Faith to Humanism
Institutional Correction lecture only . . .
ANTIBIOTICS.pptx.pdf………………… xxxxxxxxxxxxx
Pharma ospi slides which help in ospi learning
Saundersa Comprehensive Review for the NCLEX-RN Examination.pdf
3rd Neelam Sanjeevareddy Memorial Lecture.pdf
The Lost Whites of Pakistan by Jahanzaib Mughal.pdf
TR - Agricultural Crops Production NC III.pdf
GDM (1) (1).pptx small presentation for students
01-Introduction-to-Information-Management.pdf
Cell Structure & Organelles in detailed.
RMMM.pdf make it easy to upload and study
Sports Quiz easy sports quiz sports quiz
PPH.pptx obstetrics and gynecology in nursing
102 student loan defaulters named and shamed – Is someone you know on the list?

Int Math 2 Section 9-1

  • 2. Section 9-1 Add and Subtract Polynomials
  • 3. Essential Questions How do you write polynomials in standard form? How do you add and subtract polynomials? Where you’ll see this: Part-time jobs, travel, geography, modeling
  • 4. Vocabulary 1. Monomial: 2. Coefficient: 3. Constant: 4. Polynomial: 5. Term:
  • 5. Vocabulary 1. Monomial: An expression that has one term (a number, variable, or a combination of both a number and variables without any addition or subtraction) 2. Coefficient: 3. Constant: 4. Polynomial: 5. Term:
  • 6. Vocabulary 1. Monomial: An expression that has one term (a number, variable, or a combination of both a number and variables without any addition or subtraction) 2. Coefficient: The number that is with the variable 3. Constant: 4. Polynomial: 5. Term:
  • 7. Vocabulary 1. Monomial: An expression that has one term (a number, variable, or a combination of both a number and variables without any addition or subtraction) 2. Coefficient: The number that is with the variable 3. Constant: A number without a variable 4. Polynomial: 5. Term:
  • 8. Vocabulary 1. Monomial: An expression that has one term (a number, variable, or a combination of both a number and variables without any addition or subtraction) 2. Coefficient: The number that is with the variable 3. Constant: A number without a variable 4. Polynomial: A collection of terms that are combined by addition or subtraction 5. Term:
  • 9. Vocabulary 1. Monomial: An expression that has one term (a number, variable, or a combination of both a number and variables without any addition or subtraction) 2. Coefficient: The number that is with the variable 3. Constant: A number without a variable 4. Polynomial: A collection of terms that are combined by addition or subtraction 5. Term: Each monomial within a polynomial
  • 10. Vocabulary 6. Binomial: 7. Trinomial: 8. Standard Form: 9. Like Terms:
  • 11. Vocabulary 6. Binomial: A polynomial with two terms 7. Trinomial: 8. Standard Form: 9. Like Terms:
  • 12. Vocabulary 6. Binomial: A polynomial with two terms 7. Trinomial: A polynomial with three terms 8. Standard Form: 9. Like Terms:
  • 13. Vocabulary 6. Binomial: A polynomial with two terms 7. Trinomial: A polynomial with three terms 8. Standard Form: When a polynomial is written from highest to lowest degree (highest to lowest exponent) 9. Like Terms:
  • 14. Vocabulary 6. Binomial: A polynomial with two terms 7. Trinomial: A polynomial with three terms 8. Standard Form: When a polynomial is written from highest to lowest degree (highest to lowest exponent) 9. Like Terms: Terms that have the same variable parts (variables and exponents)
  • 15. Example 1 Tell the variable for which the polynomial is arranged in standard form. 3 2 a. 2a + 3ab − 4b 3 2 b. 2(a + b) + 3(a + b) − 4(a + b) + 7
  • 16. Example 1 Tell the variable for which the polynomial is arranged in standard form. 3 2 a. 2a + 3ab − 4b a 3 2 b. 2(a + b) + 3(a + b) − 4(a + b) + 7
  • 17. Example 1 Tell the variable for which the polynomial is arranged in standard form. 3 2 a. 2a + 3ab − 4b a 3 2 b. 2(a + b) + 3(a + b) − 4(a + b) + 7 (a + b)
  • 18. Example 2 Add the polynomials. 2 2 a. (2x − 3x + 7) + (−2x − 8) + ( x − 7x ) 2 2 2 2 b. (3x − 4 xy ) + (− x + 4 y ) + (2xy − y )
  • 19. Example 2 Add the polynomials. 2 2 a. (2x − 3x + 7) + (−2x − 8) + ( x − 7x ) 2 2 2x − 3x + 7 − 2x − 8 + x − 7x 2 2 2 2 b. (3x − 4 xy ) + (− x + 4 y ) + (2xy − y )
  • 20. Example 2 Add the polynomials. 2 2 a. (2x − 3x + 7) + (−2x − 8) + ( x − 7x ) 2 2 2x − 3x + 7 − 2x − 8 + x − 7x 2 3x 2 2 2 2 b. (3x − 4 xy ) + (− x + 4 y ) + (2xy − y )
  • 21. Example 2 Add the polynomials. 2 2 a. (2x − 3x + 7) + (−2x − 8) + ( x − 7x ) 2 2 2x − 3x + 7 − 2x − 8 + x − 7x 2 3x −12x 2 2 2 2 b. (3x − 4 xy ) + (− x + 4 y ) + (2xy − y )
  • 22. Example 2 Add the polynomials. 2 2 a. (2x − 3x + 7) + (−2x − 8) + ( x − 7x ) 2 2 2x − 3x + 7 − 2x − 8 + x − 7x 2 3x −12x −1 2 2 2 2 b. (3x − 4 xy ) + (− x + 4 y ) + (2xy − y )
  • 23. Example 2 Add the polynomials. 2 2 a. (2x − 3x + 7) + (−2x − 8) + ( x − 7x ) 2 2 2x − 3x + 7 − 2x − 8 + x − 7x 2 3x −12x −1 2 2 2 2 b. (3x − 4 xy ) + (− x + 4 y ) + (2xy − y ) 2 2 2 2 3x − 4 xy − x + 4 y + 2xy − y
  • 24. Example 2 Add the polynomials. 2 2 a. (2x − 3x + 7) + (−2x − 8) + ( x − 7x ) 2 2 2x − 3x + 7 − 2x − 8 + x − 7x 2 3x −12x −1 2 2 2 2 b. (3x − 4 xy ) + (− x + 4 y ) + (2xy − y ) 2 2 2 2 3x − 4 xy − x + 4 y + 2xy − y 2 2 2x − 2xy + 3y
  • 25. Example 3 Subtract 4x + y from the sum of x + 3y and 8x - 2y.
  • 26. Example 3 Subtract 4x + y from the sum of x + 3y and 8x - 2y. ( x + 3y ) + (8 x − 2y ) − (4 x + y )
  • 27. Example 3 Subtract 4x + y from the sum of x + 3y and 8x - 2y. ( x + 3y ) + (8 x − 2y ) − (4 x + y ) x + 3y + 8 x − 2y − 4 x − y
  • 28. Example 3 Subtract 4x + y from the sum of x + 3y and 8x - 2y. ( x + 3y ) + (8 x − 2y ) − (4 x + y ) x + 3y + 8 x − 2y − 4 x − y 5x
  • 29. Example 4 Simplify. 3 2 3 2 a. (6 x + 3x − 11x ) + (2x − 9 x − 5 x ) 2 2 2 2 b. ( x y − 2xy + 8) − (−7x y + 2xy − 4)
  • 30. Example 4 Simplify. 3 2 3 2 a. (6 x + 3x − 11x ) + (2x − 9 x − 5 x ) 3 2 3 2 6 x + 3x − 11x + 2x − 9 x − 5 x 2 2 2 2 b. ( x y − 2xy + 8) − (−7x y + 2xy − 4)
  • 31. Example 4 Simplify. 3 2 3 2 a. (6 x + 3x − 11x ) + (2x − 9 x − 5 x ) 3 2 3 2 6 x + 3x − 11x + 2x − 9 x − 5 x 3 2 8 x − 6 x − 16 x 2 2 2 2 b. ( x y − 2xy + 8) − (−7x y + 2xy − 4)
  • 32. Example 4 Simplify. 3 2 3 2 a. (6 x + 3x − 11x ) + (2x − 9 x − 5 x ) 3 2 3 2 6 x + 3x − 11x + 2x − 9 x − 5 x 3 2 8 x − 6 x − 16 x 2 2 2 2 b. ( x y − 2xy + 8) − (−7x y + 2xy − 4) 2 2 2 2 x y − 2xy + 8 + 7x y − 2xy + 4
  • 33. Example 4 Simplify. 3 2 3 2 a. (6 x + 3x − 11x ) + (2x − 9 x − 5 x ) 3 2 3 2 6 x + 3x − 11x + 2x − 9 x − 5 x 3 2 8 x − 6 x − 16 x 2 2 2 2 b. ( x y − 2xy + 8) − (−7x y + 2xy − 4) 2 2 2 2 x y − 2xy + 8 + 7x y − 2xy + 4 2 2 8 x y − 4 xy + 12
  • 34. Example 4 Simplify. 2 2 2 2 2 c. ( x y + x − xy ) − (− y + y + xy + 4 x y )
  • 35. Example 4 Simplify. 2 2 2 2 2 c. ( x y + x − xy ) − (− y + y + xy + 4 x y ) 2 2 2 2 2 x y + x − xy + y − y − xy − 4 x y
  • 36. Example 4 Simplify. 2 2 2 2 2 c. ( x y + x − xy ) − (− y + y + xy + 4 x y ) 2 2 2 2 2 x y + x − xy + y − y − xy − 4 x y 2 2 2 −3x y + x − 2xy + y − y
  • 38. Problem Set p. 378 #1-39 odd “Deeds, not stones, are the true monuments of the great.” - John L. Motley

Editor's Notes