SlideShare a Scribd company logo
Chapter 1
Digital Systems and Binary Numbers
Digital Logic Design
CSE-221 Lectures: 3 hours/week
Digital Logic Design Credits: 3
Number systems & codes, Digital logic: Boolean algebra, De-Morgan's
Theorems, logic gates and their truth tables, canonical forms,
combinational logic circuits, minimization technique, Arithmetic and
data handling logic circuits, decoders and encoders, multiplexes and de-
multiplexers, Combinational circuit design, Flip-flops, race around
problems; Counters: asynchronous counters, synchronous counters and
their applications; PLA design; Synchronous and asynchronous logic
design; State diagram, Mealy and Moore machines; State
minimization’s and assignments; Pulse mode logic; Fundamental mode
design.
CSE-222 Digital logic Design (Sessional) Contact hour: 3 hours/week
Sessional based on CSE-221 Credits: 1.5
Outline of Chapter 1
 1.1 Digital Systems
 1.2 Binary Numbers
 1.3 Number-base Conversions
 1.4 Octal and Hexadecimal Numbers
 1.5 Complements
 1.6 Signed Binary Numbers
 1.7 Binary Codes
 1.8 Binary Storage and Registers
 1.9 Binary Logic
Digital Systems and Binary Numbers
 Digital age and information age
 Digital computers
 General purposes
 Many scientific, industrial and commercial applications
 Digital systems
 Telephone switching exchanges
 Digital camera
 Electronic calculators,
 Digital TV
 Discrete information-processing systems
 Manipulate discrete elements of information
 For example, {1, 2, 3, …} and {A, B, C, …}…
Analog and Digital Signal
 Analog system
 The physical quantities or signals may vary continuously over a specified
range.
 Digital system
 The physical quantities or signals can assume only discrete values.
 Greater accuracy
t
X(t)
t
X(t)
Analog signal Digital signal
Binary Digital Signal
 An information variable represented by physical quantity.
 For digital systems, the variable takes on discrete values.
 Two level, or binary values are the most prevalent values.
 Binary values are represented abstractly by:
 Digits 0 and 1
 Words (symbols) False (F) and True (T)
 Words (symbols) Low (L) and High (H)
 And words On and Off
 Binary values are represented by values
or ranges of values of physical quantities.
t
V(t)
Binary digital signal
Logic 1
Logic 0
undefine
Decimal Number System
 Base (also called radix) = 10
 10 digits { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 }
 Digit Position
 Integer & fraction
 Digit Weight
 Weight = (Base) Position
 Magnitude
 Sum of “Digit x Weight”
 Formal Notation
1 0 -12 -2
5 1 2 7 4
10 1 0.1100 0.01
500 10 2 0.7 0.04
d2*B2
+d1*B1
+d0*B0
+d-1*B-1
+d-2*B-2
(512.74)10
Octal Number System
 Base = 8
 8 digits { 0, 1, 2, 3, 4, 5, 6, 7 }
 Weights
 Weight = (Base) Position
 Magnitude
 Sum of “Digit x Weight”
 Formal Notation
1 0 -12 -2
8 1 1/864 1/64
5 1 2 7 4
5 *82
+1 *81
+2 *80
+7 *8-1
+4 *8-
2
=(330.9375)10
(512.74)8
Binary Number System
 Base = 2
 2 digits { 0, 1 }, called binary digits or “bits”
 Weights
 Weight = (Base) Position
 Magnitude
 Sum of “Bit x Weight”
 Formal Notation
 Groups of bits 4 bits = Nibble
8 bits = Byte
1 0 -12 -2
2 1 1/24 1/4
1 0 1 0 1
1 *22
+0 *21
+1 *20
+0 *2-1
+1 *2-
2
=(5.25)10
(101.01)2
1 0 1 1
1 1 0 0 0 1 0 1
Hexadecimal Number System
 Base = 16
 16 digits { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F }
 Weights
 Weight = (Base) Position
 Magnitude
 Sum of “Digit x Weight”
 Formal Notation
1 0 -12 -2
16 1 1/16256 1/256
1 E 5 7 A
1 *162
+14 *161
+5 *160
+7 *16-1
+10 *16-2
=(485.4765625)10
(1E5.7A)16
The Power of 2
n 2n
0 20=1
1 21=2
2 22=4
3 23=8
4 24=16
5 25=32
6 26=64
7 27=128
n 2n
8 28=256
9 29=512
10 210=1024
11 211=2048
12 212=4096
20 220=1M
30 230=1G
40 240=1T
Mega
Giga
Tera
Kilo
Addition
 Decimal Addition
5 5
55+
011
= Ten ≥ Base
 Subtract a Base
11 Carry
Binary Addition
 Column Addition
1 0 1111
1111 0+
0000 1 11
≥ (2)10
111111
= 61
= 23
= 84
Binary Subtraction
 Borrow a “Base” when needed
0 0 1110
1111 0−
0101 1 10
= (10)2
2
2
2 2
1
000
1
= 77
= 23
= 54
Binary Multiplication
 Bit by bit
01 1 1 1
01 1 0
00 0 0 0
01 1 1 1
01 1 1 1
0 0 000
0110111 0
x
Number Base Conversions
Decimal
(Base 10)
Octal
(Base 8)
Binary
(Base 2)
Hexadecimal
(Base 16)
Evaluate
Magnitude
Evaluate
Magnitude
Evaluate
Magnitude
Decimal (Integer) to Binary Conversion
 Divide the number by the ‘Base’ (=2)
 Take the remainder (either 0 or 1) as a coefficient
 Take the quotient and repeat the division
Example: (13)10
Quotient Remainder Coefficient
Answer: (13)10 = (a3 a2 a1 a0)2 = (1101)2
MSB LSB
13/ 2 = 6 1 a0 = 1
6 / 2 = 3 0 a1 = 0
3 / 2 = 1 1 a2 = 1
1 / 2 = 0 1 a3 = 1
Decimal (Fraction) to Binary Conversion
 Multiply the number by the ‘Base’ (=2)
 Take the integer (either 0 or 1) as a coefficient
 Take the resultant fraction and repeat the division
Example: (0.625)10
Integer Fraction Coefficient
Answer: (0.625)10 = (0.a-1 a-2 a-3)2 = (0.101)2
MSB LSB
0.625 * 2 = 1 . 25
0.25 * 2 = 0 . 5 a-2 = 0
0.5 * 2 = 1 . 0 a-3 = 1
a-1 = 1
Decimal to Octal Conversion
Example: (175)10
Quotient Remainder Coefficient
Answer: (175)10 = (a2 a1 a0)8 = (257)8
175 / 8 = 21 7 a0 = 7
21 / 8 = 2 5 a1 = 5
2 / 8 = 0 2 a2 = 2
Example: (0.3125)10
Integer Fraction Coefficient
Answer: (0.3125)10 = (0.a-1 a-2 a-3)8 = (0.24)8
0.3125 * 8 = 2 . 5
0.5 * 8 = 4 . 0 a-2 = 4
a-1 = 2
Binary − Octal Conversion
 8 = 23
 Each group of 3 bits represents an octal
digit
Octal Binary
0 0 0 0
1 0 0 1
2 0 1 0
3 0 1 1
4 1 0 0
5 1 0 1
6 1 1 0
7 1 1 1
Example:
( 1 0 1 1 0 . 0 1 )2
( 2 6 . 2 )8
Assume Zeros
Works both ways (Binary to Octal & Octal to Binary)
Binary − Hexadecimal Conversion
 16 = 24
 Each group of 4 bits represents a
hexadecimal digit
Hex Binary
0 0 0 0 0
1 0 0 0 1
2 0 0 1 0
3 0 0 1 1
4 0 1 0 0
5 0 1 0 1
6 0 1 1 0
7 0 1 1 1
8 1 0 0 0
9 1 0 0 1
A 1 0 1 0
B 1 0 1 1
C 1 1 0 0
D 1 1 0 1
E 1 1 1 0
F 1 1 1 1
Example:
( 1 0 1 1 0 . 0 1 )2
( 1 6 . 4 )16
Assume Zeros
Works both ways (Binary to Hex & Hex to Binary)
Octal − Hexadecimal Conversion
 Convert to Binary as an intermediate step
Example:
( 0 1 0 1 1 0 . 0 1 0 )2
( 1 6 . 4 )16
Assume Zeros
Works both ways (Octal to Hex & Hex to Octal)
( 2 6 . 2 )8
Assume Zeros
Decimal, Binary, Octal and Hexadecimal
Decimal Binary Octal Hex
00 0000 00 0
01 0001 01 1
02 0010 02 2
03 0011 03 3
04 0100 04 4
05 0101 05 5
06 0110 06 6
07 0111 07 7
08 1000 10 8
09 1001 11 9
10 1010 12 A
11 1011 13 B
12 1100 14 C
13 1101 15 D
14 1110 16 E
15 1111 17 F
1.5 Complements
 There are two types of complements for each base-r system: the radix complement and
diminished radix complement.
 Diminished Radix Complement - (r-1)’s Complement
 Given a number N in base r having n digits, the (r–1)’s complement of N is
defined as:
(rn –1) – N
 Example for 6-digit decimal numbers:
 9’s complement is (rn – 1)–N = (106–1)–N = 999999–N
 9’s complement of 546700 is 999999–546700 = 453299
 Example for 7-digit binary numbers:
 1’s complement is (rn – 1) – N = (27–1)–N = 1111111–N
 1’s complement of 1011000 is 1111111–1011000 = 0100111
 Observation:
 Subtraction from (rn – 1) will never require a borrow
 Diminished radix complement can be computed digit-by-digit
 For binary: 1 – 0 = 1 and 1 – 1 = 0
Complements
 1’s Complement (Diminished Radix Complement)
 All ‘0’s become ‘1’s
 All ‘1’s become ‘0’s
Example (10110000)2
 (01001111)2
If you add a number and its 1’s complement …
1 0 1 1 0 0 0 0
+ 0 1 0 0 1 1 1 1
1 1 1 1 1 1 1 1
Complements
 Radix Complement
 Example: Base-10
 Example: Base-2
The r's complement of an n-digit number N in base r is defined as
rn – N for N ≠ 0 and as 0 for N = 0. Comparing with the (r  1) 's
complement, we note that the r's complement is obtained by adding 1
to the (r  1) 's complement, since rn – N = [(rn  1) – N] + 1.
The 10's complement of 012398 is 987602
The 10's complement of 246700 is 753300
The 2's complement of 1101100 is 0010100
The 2's complement of 0110111 is 1001001
Complements
 2’s Complement (Radix Complement)
 Take 1’s complement then add 1
 Toggle all bits to the left of the first ‘1’ from the right
Example:
Number:
1’s Comp.:
0 1 0 1 0 0 0 0
1 0 1 1 0 0 0 0
0 1 0 0 1 1 1 1
+ 1
OR
1 0 1 1 0 0 0 0
00001010
Complements
 Subtraction with Complements
 The subtraction of two n-digit unsigned numbers M – N in base r can be
done as follows:
Complements
 Example 1.5
 Using 10's complement, subtract 72532 – 3250.
 Example 1.6
 Using 10's complement, subtract 3250 – 72532.
There is no end carry.
Therefore, the answer is – (10's complement of 30718) =  69282.
Complements
 Example 1.7
 Given the two binary numbers X = 1010100 and Y = 1000011, perform the
subtraction (a) X – Y ; and (b) Y  X, by using 2's complement.
There is no end carry.
Therefore, the answer is
Y – X =  (2's complement
of 1101111) =  0010001.
Complements
 Subtraction of unsigned numbers can also be done by means of the (r  1)'s
complement. Remember that the (r  1) 's complement is one less then the r's
complement.
 Example 1.8
 Repeat Example 1.7, but this time using 1's complement.
There is no end carry,
Therefore, the answer is Y –
X =  (1's complement of
1101110) =  0010001.
1.6 Signed Binary Numbers
To represent negative integers, we need a notation for negative
values.
It is customary to represent the sign with a bit placed in the
leftmost position of the number since binary digits.
The convention is to make the sign bit 0 for positive and 1 for
negative.
Example:
Table 1.3 lists all possible four-bit signed binary numbers in the
three representations.
Signed Binary Numbers
Signed Binary Numbers
 Arithmetic addition
 The addition of two numbers in the signed-magnitude system follows the rules of
ordinary arithmetic. If the signs are the same, we add the two magnitudes and
give the sum the common sign. If the signs are different, we subtract the smaller
magnitude from the larger and give the difference the sign if the larger magnitude.
 The addition of two signed binary numbers with negative numbers represented in
signed-2's-complement form is obtained from the addition of the two numbers,
including their sign bits.
 A carry out of the sign-bit position is discarded.
 Example:
Signed Binary Numbers
 Arithmetic Subtraction
 In 2’s-complement form:
 Example:
1. Take the 2’s complement of the subtrahend (including the sign bit)
and add it to the minuend (including sign bit).
2. A carry out of sign-bit position is discarded.
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
A B A B
A B A B
      
      
( 6)  ( 13) (11111010  11110011)
(11111010 + 00001101)
00000111 (+ 7)
1.7 Binary Codes
 BCD Code
 A number with k decimal digits will
require 4k bits in BCD.
 Decimal 396 is represented in BCD
with 12bits as 0011 1001 0110, with
each group of 4 bits representing one
decimal digit.
 A decimal number in BCD is the
same as its equivalent binary number
only when the number is between 0
and 9.
 The binary combinations 1010
through 1111 are not used and have
no meaning in BCD.
Binary Code
 Example:
 Consider decimal 185 and its corresponding value in BCD and binary:
 BCD addition
Binary Code
 Example:
 Consider the addition of 184 + 576 = 760 in BCD:
 Decimal Arithmetic: (+375) + (-240) = +135
Hint 6: using 10’s of BCD
Binary Codes
 Other Decimal Codes
Binary Codes)
 Gray Code
 The advantage is that only bit in the
code group changes in going from
one number to the next.
» Error detection.
» Representation of analog data.
» Low power design.
000 001
010
100
110 111
101
011
1-1 and onto!!
Binary Codes
 American Standard Code for Information Interchange (ASCII) Character Code
Binary Codes
 ASCII Character Code
ASCII Character Codes
 American Standard Code for Information Interchange (Refer to
Table 1.7)
 A popular code used to represent information sent as character-
based data.
 It uses 7-bits to represent:
 94 Graphic printing characters.
 34 Non-printing characters.
 Some non-printing characters are used for text format (e.g. BS =
Backspace, CR = carriage return).
 Other non-printing characters are used for record marking and
flow control (e.g. STX and ETX start and end text areas).
ASCII Properties
 ASCII has some interesting properties:
 Digits 0 to 9 span Hexadecimal values 3016 to 3916
 Upper case A-Z span 4116 to 5A16
 Lower case a-z span 6116 to 7A16
» Lower to upper case translation (and vice versa) occurs by flipping bit 6.
Binary Codes
 Error-Detecting Code
 To detect errors in data communication and processing, an eighth bit is
sometimes added to the ASCII character to indicate its parity.
 A parity bit is an extra bit included with a message to make the total
number of 1's either even or odd.
 Example:
 Consider the following two characters and their even and odd parity:
Binary Codes
 Error-Detecting Code
 Redundancy (e.g. extra information), in the form of extra bits, can be
incorporated into binary code words to detect and correct errors.
 A simple form of redundancy is parity, an extra bit appended onto the code
word to make the number of 1’s odd or even. Parity can detect all single-
bit errors and some multiple-bit errors.
 A code word has even parity if the number of 1’s in the code word is even.
 A code word has odd parity if the number of 1’s in the code word is odd.
 Example:
10001001
10001001
1
0 (odd parity)Message B:
Message A: (even parity)
1.8 Binary Storage and Registers
 Registers
 A binary cell is a device that possesses two stable states and is capable of storing
one of the two states.
 A register is a group of binary cells. A register with n cells can store any discrete
quantity of information that contains n bits.
 A binary cell
 Two stable state
 Store one bit of information
 Examples: flip-flop circuits, ferrite cores, capacitor
 A register
 A group of binary cells
 AX in x86 CPU
 Register Transfer
 A transfer of the information stored in one register to another.
 One of the major operations in digital system.
 An example in next slides.
n cells 2n possible states
A Digital Computer Example
Synchronous or
Asynchronous?
Inputs: Keyboard,
mouse, modem,
microphone
Outputs: CRT,
LCD, modem,
speakers
Memory
Control
unit Datapath
Input/Output
CPU
Transfer of information
Figure 1.1 Transfer of information among register
Transfer of information
 The other major component
of a digital system
 Circuit elements to
manipulate individual bits of
information
 Load-store machine
LD R1;
LD R2;
ADD R2, R1;
SD R3;
Figure 1.2 Example of binary information processing
1.9 Binary Logic
 Definition of Binary Logic
 Binary logic consists of binary variables and a set of logical operations.
 The variables are designated by letters of the alphabet, such as A, B, C, x, y, z, etc,
with each variable having two and only two distinct possible values: 1 and 0,
 Three basic logical operations: AND, OR, and NOT.
Binary Logic
 Truth Tables, Boolean Expressions, and Logic Gates
x y z
0 0 0
0 1 0
1 0 0
1 1 1
x y z
0 0 0
0 1 1
1 0 1
1 1 1
x z
0 1
1 0
AND OR NOT
x
y z x
y z
z = x • y = x y z = x + y z = x = x’
x z
Switching Circuits
AND OR
Binary Logic
 Logic gates
 Example of binary signals
0
1
2
3
Logic 1
Logic 0
Un-define
Figure 1.3 Example of binary signals
Binary Logic
 Logic gates
 Graphic Symbols and Input-Output Signals for Logic gates:
Fig. 1.4 Symbols for digital logic circuits
Fig. 1.5 Input-Output signals for gates
Binary Logic
 Logic gates
 Graphic Symbols and Input-Output Signals for Logic gates:
Fig. 1.6 Gates with multiple inputs

More Related Content

PPTX
Complement in DLD
DOCX
Digital Electronics Notes
PPT
digital logic design number system
PPTX
PPT
BOOLEAN ALGEBRA
PPTX
Digital Logic Design.pptx
PPT
Number system
PDF
Digital and Logic Design Chapter 1 binary_systems
Complement in DLD
Digital Electronics Notes
digital logic design number system
BOOLEAN ALGEBRA
Digital Logic Design.pptx
Number system
Digital and Logic Design Chapter 1 binary_systems

What's hot (20)

PPTX
Number system in Digital Electronics
PPT
Digital Logic Design
PPT
Multiplexers & Demultiplexers
PPTX
BOOLEAN ALGEBRA AND LOGIC GATE
PPTX
Quick tutorial on IEEE 754 FLOATING POINT representation
PPT
adder and subtractor
PPTX
Floating Point Addition.pptx
PPT
Digital logic design part1
PPTX
module1:Introduction to digital electronics
PPTX
1s and 2s complement
PPTX
SOP POS, Minterm and Maxterm
PPTX
IEEE floating point representation
PPT
Arithmetic circuits
PPTX
Basics of digital electronics
PPTX
sequential circuits
PPT
Conversion of number system
PPTX
Multiplexer and DeMultiplexer
PPT
Binary Arithmetic
PPT
Arithmetic Logic Unit (ALU)
PDF
Binary codes
Number system in Digital Electronics
Digital Logic Design
Multiplexers & Demultiplexers
BOOLEAN ALGEBRA AND LOGIC GATE
Quick tutorial on IEEE 754 FLOATING POINT representation
adder and subtractor
Floating Point Addition.pptx
Digital logic design part1
module1:Introduction to digital electronics
1s and 2s complement
SOP POS, Minterm and Maxterm
IEEE floating point representation
Arithmetic circuits
Basics of digital electronics
sequential circuits
Conversion of number system
Multiplexer and DeMultiplexer
Binary Arithmetic
Arithmetic Logic Unit (ALU)
Binary codes
Ad

Viewers also liked (20)

PPT
Bolum1cozumler
PDF
Slide03 Number System and Operations Part 1
PPT
Number system
PPTX
Ch1.number systems
PDF
Number system utm notes
PPT
BINARY NUMBER SYSTEM
PPT
Introduction to the Binary Number System
PPTX
Number system
PPT
Digital logic gates and Boolean algebra
PPT
Number System
PPTX
Logic gates - AND, OR, NOT, NOR, NAND, XOR, XNOR Gates.
PPTX
1 number systems-binary
PDF
Computer organisation nd architecture
PDF
Digital design (3rd ed) morris mano
PPTX
Digital electronics nandhini kusuma
PPTX
PDF
128 Bit Parallel Prefix Tree Structure Comparator
PPTX
Jawdat SDN NFV solutions 2016 v1.1
PPTX
Memory bits and bytes
Bolum1cozumler
Slide03 Number System and Operations Part 1
Number system
Ch1.number systems
Number system utm notes
BINARY NUMBER SYSTEM
Introduction to the Binary Number System
Number system
Digital logic gates and Boolean algebra
Number System
Logic gates - AND, OR, NOT, NOR, NAND, XOR, XNOR Gates.
1 number systems-binary
Computer organisation nd architecture
Digital design (3rd ed) morris mano
Digital electronics nandhini kusuma
128 Bit Parallel Prefix Tree Structure Comparator
Jawdat SDN NFV solutions 2016 v1.1
Memory bits and bytes
Ad

Similar to Chapter 1 digital systems and binary numbers (20)

PPTX
chapter1digitalsystemsandbinarynumbers-151021072016-lva1-app6891.pptx
PDF
Module 1 Digital Logic Design .pptx.pdf
PPT
Basic Digital_Systems_and_Binary_Numbers Sample.ppt
PPT
Number_System and Boolean Algebra in Digital System Design
PPT
Basic Digital_Systems_and_Binary_Numbers Sample.ppt
PPT
Basic Digital_Systems_and_Binary_Numbers Sample.ppt
PPT
Chapter 1 Digital Systems and Binary Numbers.ppt
PPT
45196656565656565656565656565656565656566.ppt
PPT
Number Systems.ppt
PPTX
Switching Theory and Logic Circuits-LEC.pptx
PPTX
digital-electronics.pptx
PPT
chapter 3 000Number_Systems.ppt
PDF
digital-electronics (1)_watermark.pdfhindi
PPT
ch3a-binary-numbers.ppt
PPTX
Chapter 1 digital design.pptx
PDF
Finite word length effects
PPT
ch3a-binary-numbers.ppt ch3a-binary-numbers.ppt ch3a-binary-numbers.ppt
PPT
ch3a-binary-numbers.ppt
PPT
Review on Number Systems: Decimal, Binary, and Hexadecimal
PPT
binary-numbers.ppt
chapter1digitalsystemsandbinarynumbers-151021072016-lva1-app6891.pptx
Module 1 Digital Logic Design .pptx.pdf
Basic Digital_Systems_and_Binary_Numbers Sample.ppt
Number_System and Boolean Algebra in Digital System Design
Basic Digital_Systems_and_Binary_Numbers Sample.ppt
Basic Digital_Systems_and_Binary_Numbers Sample.ppt
Chapter 1 Digital Systems and Binary Numbers.ppt
45196656565656565656565656565656565656566.ppt
Number Systems.ppt
Switching Theory and Logic Circuits-LEC.pptx
digital-electronics.pptx
chapter 3 000Number_Systems.ppt
digital-electronics (1)_watermark.pdfhindi
ch3a-binary-numbers.ppt
Chapter 1 digital design.pptx
Finite word length effects
ch3a-binary-numbers.ppt ch3a-binary-numbers.ppt ch3a-binary-numbers.ppt
ch3a-binary-numbers.ppt
Review on Number Systems: Decimal, Binary, and Hexadecimal
binary-numbers.ppt

Recently uploaded (20)

PDF
SM_6th-Sem__Cse_Internet-of-Things.pdf IOT
PDF
July 2025 - Top 10 Read Articles in International Journal of Software Enginee...
PPTX
Geodesy 1.pptx...............................................
PPTX
CH1 Production IntroductoryConcepts.pptx
PPTX
Sustainable Sites - Green Building Construction
DOCX
ASol_English-Language-Literature-Set-1-27-02-2023-converted.docx
PDF
Mohammad Mahdi Farshadian CV - Prospective PhD Student 2026
DOCX
573137875-Attendance-Management-System-original
PDF
Embodied AI: Ushering in the Next Era of Intelligent Systems
PDF
Automation-in-Manufacturing-Chapter-Introduction.pdf
PDF
Mitigating Risks through Effective Management for Enhancing Organizational Pe...
PPTX
Engineering Ethics, Safety and Environment [Autosaved] (1).pptx
PPTX
MET 305 2019 SCHEME MODULE 2 COMPLETE.pptx
PPT
CRASH COURSE IN ALTERNATIVE PLUMBING CLASS
PPTX
CARTOGRAPHY AND GEOINFORMATION VISUALIZATION chapter1 NPTE (2).pptx
PPTX
MCN 401 KTU-2019-PPE KITS-MODULE 2.pptx
PDF
Enhancing Cyber Defense Against Zero-Day Attacks using Ensemble Neural Networks
PPTX
Construction Project Organization Group 2.pptx
PDF
Operating System & Kernel Study Guide-1 - converted.pdf
PDF
Digital Logic Computer Design lecture notes
SM_6th-Sem__Cse_Internet-of-Things.pdf IOT
July 2025 - Top 10 Read Articles in International Journal of Software Enginee...
Geodesy 1.pptx...............................................
CH1 Production IntroductoryConcepts.pptx
Sustainable Sites - Green Building Construction
ASol_English-Language-Literature-Set-1-27-02-2023-converted.docx
Mohammad Mahdi Farshadian CV - Prospective PhD Student 2026
573137875-Attendance-Management-System-original
Embodied AI: Ushering in the Next Era of Intelligent Systems
Automation-in-Manufacturing-Chapter-Introduction.pdf
Mitigating Risks through Effective Management for Enhancing Organizational Pe...
Engineering Ethics, Safety and Environment [Autosaved] (1).pptx
MET 305 2019 SCHEME MODULE 2 COMPLETE.pptx
CRASH COURSE IN ALTERNATIVE PLUMBING CLASS
CARTOGRAPHY AND GEOINFORMATION VISUALIZATION chapter1 NPTE (2).pptx
MCN 401 KTU-2019-PPE KITS-MODULE 2.pptx
Enhancing Cyber Defense Against Zero-Day Attacks using Ensemble Neural Networks
Construction Project Organization Group 2.pptx
Operating System & Kernel Study Guide-1 - converted.pdf
Digital Logic Computer Design lecture notes

Chapter 1 digital systems and binary numbers

  • 1. Chapter 1 Digital Systems and Binary Numbers Digital Logic Design
  • 2. CSE-221 Lectures: 3 hours/week Digital Logic Design Credits: 3 Number systems & codes, Digital logic: Boolean algebra, De-Morgan's Theorems, logic gates and their truth tables, canonical forms, combinational logic circuits, minimization technique, Arithmetic and data handling logic circuits, decoders and encoders, multiplexes and de- multiplexers, Combinational circuit design, Flip-flops, race around problems; Counters: asynchronous counters, synchronous counters and their applications; PLA design; Synchronous and asynchronous logic design; State diagram, Mealy and Moore machines; State minimization’s and assignments; Pulse mode logic; Fundamental mode design. CSE-222 Digital logic Design (Sessional) Contact hour: 3 hours/week Sessional based on CSE-221 Credits: 1.5
  • 3. Outline of Chapter 1  1.1 Digital Systems  1.2 Binary Numbers  1.3 Number-base Conversions  1.4 Octal and Hexadecimal Numbers  1.5 Complements  1.6 Signed Binary Numbers  1.7 Binary Codes  1.8 Binary Storage and Registers  1.9 Binary Logic
  • 4. Digital Systems and Binary Numbers  Digital age and information age  Digital computers  General purposes  Many scientific, industrial and commercial applications  Digital systems  Telephone switching exchanges  Digital camera  Electronic calculators,  Digital TV  Discrete information-processing systems  Manipulate discrete elements of information  For example, {1, 2, 3, …} and {A, B, C, …}…
  • 5. Analog and Digital Signal  Analog system  The physical quantities or signals may vary continuously over a specified range.  Digital system  The physical quantities or signals can assume only discrete values.  Greater accuracy t X(t) t X(t) Analog signal Digital signal
  • 6. Binary Digital Signal  An information variable represented by physical quantity.  For digital systems, the variable takes on discrete values.  Two level, or binary values are the most prevalent values.  Binary values are represented abstractly by:  Digits 0 and 1  Words (symbols) False (F) and True (T)  Words (symbols) Low (L) and High (H)  And words On and Off  Binary values are represented by values or ranges of values of physical quantities. t V(t) Binary digital signal Logic 1 Logic 0 undefine
  • 7. Decimal Number System  Base (also called radix) = 10  10 digits { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 }  Digit Position  Integer & fraction  Digit Weight  Weight = (Base) Position  Magnitude  Sum of “Digit x Weight”  Formal Notation 1 0 -12 -2 5 1 2 7 4 10 1 0.1100 0.01 500 10 2 0.7 0.04 d2*B2 +d1*B1 +d0*B0 +d-1*B-1 +d-2*B-2 (512.74)10
  • 8. Octal Number System  Base = 8  8 digits { 0, 1, 2, 3, 4, 5, 6, 7 }  Weights  Weight = (Base) Position  Magnitude  Sum of “Digit x Weight”  Formal Notation 1 0 -12 -2 8 1 1/864 1/64 5 1 2 7 4 5 *82 +1 *81 +2 *80 +7 *8-1 +4 *8- 2 =(330.9375)10 (512.74)8
  • 9. Binary Number System  Base = 2  2 digits { 0, 1 }, called binary digits or “bits”  Weights  Weight = (Base) Position  Magnitude  Sum of “Bit x Weight”  Formal Notation  Groups of bits 4 bits = Nibble 8 bits = Byte 1 0 -12 -2 2 1 1/24 1/4 1 0 1 0 1 1 *22 +0 *21 +1 *20 +0 *2-1 +1 *2- 2 =(5.25)10 (101.01)2 1 0 1 1 1 1 0 0 0 1 0 1
  • 10. Hexadecimal Number System  Base = 16  16 digits { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F }  Weights  Weight = (Base) Position  Magnitude  Sum of “Digit x Weight”  Formal Notation 1 0 -12 -2 16 1 1/16256 1/256 1 E 5 7 A 1 *162 +14 *161 +5 *160 +7 *16-1 +10 *16-2 =(485.4765625)10 (1E5.7A)16
  • 11. The Power of 2 n 2n 0 20=1 1 21=2 2 22=4 3 23=8 4 24=16 5 25=32 6 26=64 7 27=128 n 2n 8 28=256 9 29=512 10 210=1024 11 211=2048 12 212=4096 20 220=1M 30 230=1G 40 240=1T Mega Giga Tera Kilo
  • 12. Addition  Decimal Addition 5 5 55+ 011 = Ten ≥ Base  Subtract a Base 11 Carry
  • 13. Binary Addition  Column Addition 1 0 1111 1111 0+ 0000 1 11 ≥ (2)10 111111 = 61 = 23 = 84
  • 14. Binary Subtraction  Borrow a “Base” when needed 0 0 1110 1111 0− 0101 1 10 = (10)2 2 2 2 2 1 000 1 = 77 = 23 = 54
  • 15. Binary Multiplication  Bit by bit 01 1 1 1 01 1 0 00 0 0 0 01 1 1 1 01 1 1 1 0 0 000 0110111 0 x
  • 16. Number Base Conversions Decimal (Base 10) Octal (Base 8) Binary (Base 2) Hexadecimal (Base 16) Evaluate Magnitude Evaluate Magnitude Evaluate Magnitude
  • 17. Decimal (Integer) to Binary Conversion  Divide the number by the ‘Base’ (=2)  Take the remainder (either 0 or 1) as a coefficient  Take the quotient and repeat the division Example: (13)10 Quotient Remainder Coefficient Answer: (13)10 = (a3 a2 a1 a0)2 = (1101)2 MSB LSB 13/ 2 = 6 1 a0 = 1 6 / 2 = 3 0 a1 = 0 3 / 2 = 1 1 a2 = 1 1 / 2 = 0 1 a3 = 1
  • 18. Decimal (Fraction) to Binary Conversion  Multiply the number by the ‘Base’ (=2)  Take the integer (either 0 or 1) as a coefficient  Take the resultant fraction and repeat the division Example: (0.625)10 Integer Fraction Coefficient Answer: (0.625)10 = (0.a-1 a-2 a-3)2 = (0.101)2 MSB LSB 0.625 * 2 = 1 . 25 0.25 * 2 = 0 . 5 a-2 = 0 0.5 * 2 = 1 . 0 a-3 = 1 a-1 = 1
  • 19. Decimal to Octal Conversion Example: (175)10 Quotient Remainder Coefficient Answer: (175)10 = (a2 a1 a0)8 = (257)8 175 / 8 = 21 7 a0 = 7 21 / 8 = 2 5 a1 = 5 2 / 8 = 0 2 a2 = 2 Example: (0.3125)10 Integer Fraction Coefficient Answer: (0.3125)10 = (0.a-1 a-2 a-3)8 = (0.24)8 0.3125 * 8 = 2 . 5 0.5 * 8 = 4 . 0 a-2 = 4 a-1 = 2
  • 20. Binary − Octal Conversion  8 = 23  Each group of 3 bits represents an octal digit Octal Binary 0 0 0 0 1 0 0 1 2 0 1 0 3 0 1 1 4 1 0 0 5 1 0 1 6 1 1 0 7 1 1 1 Example: ( 1 0 1 1 0 . 0 1 )2 ( 2 6 . 2 )8 Assume Zeros Works both ways (Binary to Octal & Octal to Binary)
  • 21. Binary − Hexadecimal Conversion  16 = 24  Each group of 4 bits represents a hexadecimal digit Hex Binary 0 0 0 0 0 1 0 0 0 1 2 0 0 1 0 3 0 0 1 1 4 0 1 0 0 5 0 1 0 1 6 0 1 1 0 7 0 1 1 1 8 1 0 0 0 9 1 0 0 1 A 1 0 1 0 B 1 0 1 1 C 1 1 0 0 D 1 1 0 1 E 1 1 1 0 F 1 1 1 1 Example: ( 1 0 1 1 0 . 0 1 )2 ( 1 6 . 4 )16 Assume Zeros Works both ways (Binary to Hex & Hex to Binary)
  • 22. Octal − Hexadecimal Conversion  Convert to Binary as an intermediate step Example: ( 0 1 0 1 1 0 . 0 1 0 )2 ( 1 6 . 4 )16 Assume Zeros Works both ways (Octal to Hex & Hex to Octal) ( 2 6 . 2 )8 Assume Zeros
  • 23. Decimal, Binary, Octal and Hexadecimal Decimal Binary Octal Hex 00 0000 00 0 01 0001 01 1 02 0010 02 2 03 0011 03 3 04 0100 04 4 05 0101 05 5 06 0110 06 6 07 0111 07 7 08 1000 10 8 09 1001 11 9 10 1010 12 A 11 1011 13 B 12 1100 14 C 13 1101 15 D 14 1110 16 E 15 1111 17 F
  • 24. 1.5 Complements  There are two types of complements for each base-r system: the radix complement and diminished radix complement.  Diminished Radix Complement - (r-1)’s Complement  Given a number N in base r having n digits, the (r–1)’s complement of N is defined as: (rn –1) – N  Example for 6-digit decimal numbers:  9’s complement is (rn – 1)–N = (106–1)–N = 999999–N  9’s complement of 546700 is 999999–546700 = 453299  Example for 7-digit binary numbers:  1’s complement is (rn – 1) – N = (27–1)–N = 1111111–N  1’s complement of 1011000 is 1111111–1011000 = 0100111  Observation:  Subtraction from (rn – 1) will never require a borrow  Diminished radix complement can be computed digit-by-digit  For binary: 1 – 0 = 1 and 1 – 1 = 0
  • 25. Complements  1’s Complement (Diminished Radix Complement)  All ‘0’s become ‘1’s  All ‘1’s become ‘0’s Example (10110000)2  (01001111)2 If you add a number and its 1’s complement … 1 0 1 1 0 0 0 0 + 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1
  • 26. Complements  Radix Complement  Example: Base-10  Example: Base-2 The r's complement of an n-digit number N in base r is defined as rn – N for N ≠ 0 and as 0 for N = 0. Comparing with the (r  1) 's complement, we note that the r's complement is obtained by adding 1 to the (r  1) 's complement, since rn – N = [(rn  1) – N] + 1. The 10's complement of 012398 is 987602 The 10's complement of 246700 is 753300 The 2's complement of 1101100 is 0010100 The 2's complement of 0110111 is 1001001
  • 27. Complements  2’s Complement (Radix Complement)  Take 1’s complement then add 1  Toggle all bits to the left of the first ‘1’ from the right Example: Number: 1’s Comp.: 0 1 0 1 0 0 0 0 1 0 1 1 0 0 0 0 0 1 0 0 1 1 1 1 + 1 OR 1 0 1 1 0 0 0 0 00001010
  • 28. Complements  Subtraction with Complements  The subtraction of two n-digit unsigned numbers M – N in base r can be done as follows:
  • 29. Complements  Example 1.5  Using 10's complement, subtract 72532 – 3250.  Example 1.6  Using 10's complement, subtract 3250 – 72532. There is no end carry. Therefore, the answer is – (10's complement of 30718) =  69282.
  • 30. Complements  Example 1.7  Given the two binary numbers X = 1010100 and Y = 1000011, perform the subtraction (a) X – Y ; and (b) Y  X, by using 2's complement. There is no end carry. Therefore, the answer is Y – X =  (2's complement of 1101111) =  0010001.
  • 31. Complements  Subtraction of unsigned numbers can also be done by means of the (r  1)'s complement. Remember that the (r  1) 's complement is one less then the r's complement.  Example 1.8  Repeat Example 1.7, but this time using 1's complement. There is no end carry, Therefore, the answer is Y – X =  (1's complement of 1101110) =  0010001.
  • 32. 1.6 Signed Binary Numbers To represent negative integers, we need a notation for negative values. It is customary to represent the sign with a bit placed in the leftmost position of the number since binary digits. The convention is to make the sign bit 0 for positive and 1 for negative. Example: Table 1.3 lists all possible four-bit signed binary numbers in the three representations.
  • 34. Signed Binary Numbers  Arithmetic addition  The addition of two numbers in the signed-magnitude system follows the rules of ordinary arithmetic. If the signs are the same, we add the two magnitudes and give the sum the common sign. If the signs are different, we subtract the smaller magnitude from the larger and give the difference the sign if the larger magnitude.  The addition of two signed binary numbers with negative numbers represented in signed-2's-complement form is obtained from the addition of the two numbers, including their sign bits.  A carry out of the sign-bit position is discarded.  Example:
  • 35. Signed Binary Numbers  Arithmetic Subtraction  In 2’s-complement form:  Example: 1. Take the 2’s complement of the subtrahend (including the sign bit) and add it to the minuend (including sign bit). 2. A carry out of sign-bit position is discarded. ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) A B A B A B A B               ( 6)  ( 13) (11111010  11110011) (11111010 + 00001101) 00000111 (+ 7)
  • 36. 1.7 Binary Codes  BCD Code  A number with k decimal digits will require 4k bits in BCD.  Decimal 396 is represented in BCD with 12bits as 0011 1001 0110, with each group of 4 bits representing one decimal digit.  A decimal number in BCD is the same as its equivalent binary number only when the number is between 0 and 9.  The binary combinations 1010 through 1111 are not used and have no meaning in BCD.
  • 37. Binary Code  Example:  Consider decimal 185 and its corresponding value in BCD and binary:  BCD addition
  • 38. Binary Code  Example:  Consider the addition of 184 + 576 = 760 in BCD:  Decimal Arithmetic: (+375) + (-240) = +135 Hint 6: using 10’s of BCD
  • 39. Binary Codes  Other Decimal Codes
  • 40. Binary Codes)  Gray Code  The advantage is that only bit in the code group changes in going from one number to the next. » Error detection. » Representation of analog data. » Low power design. 000 001 010 100 110 111 101 011 1-1 and onto!!
  • 41. Binary Codes  American Standard Code for Information Interchange (ASCII) Character Code
  • 42. Binary Codes  ASCII Character Code
  • 43. ASCII Character Codes  American Standard Code for Information Interchange (Refer to Table 1.7)  A popular code used to represent information sent as character- based data.  It uses 7-bits to represent:  94 Graphic printing characters.  34 Non-printing characters.  Some non-printing characters are used for text format (e.g. BS = Backspace, CR = carriage return).  Other non-printing characters are used for record marking and flow control (e.g. STX and ETX start and end text areas).
  • 44. ASCII Properties  ASCII has some interesting properties:  Digits 0 to 9 span Hexadecimal values 3016 to 3916  Upper case A-Z span 4116 to 5A16  Lower case a-z span 6116 to 7A16 » Lower to upper case translation (and vice versa) occurs by flipping bit 6.
  • 45. Binary Codes  Error-Detecting Code  To detect errors in data communication and processing, an eighth bit is sometimes added to the ASCII character to indicate its parity.  A parity bit is an extra bit included with a message to make the total number of 1's either even or odd.  Example:  Consider the following two characters and their even and odd parity:
  • 46. Binary Codes  Error-Detecting Code  Redundancy (e.g. extra information), in the form of extra bits, can be incorporated into binary code words to detect and correct errors.  A simple form of redundancy is parity, an extra bit appended onto the code word to make the number of 1’s odd or even. Parity can detect all single- bit errors and some multiple-bit errors.  A code word has even parity if the number of 1’s in the code word is even.  A code word has odd parity if the number of 1’s in the code word is odd.  Example: 10001001 10001001 1 0 (odd parity)Message B: Message A: (even parity)
  • 47. 1.8 Binary Storage and Registers  Registers  A binary cell is a device that possesses two stable states and is capable of storing one of the two states.  A register is a group of binary cells. A register with n cells can store any discrete quantity of information that contains n bits.  A binary cell  Two stable state  Store one bit of information  Examples: flip-flop circuits, ferrite cores, capacitor  A register  A group of binary cells  AX in x86 CPU  Register Transfer  A transfer of the information stored in one register to another.  One of the major operations in digital system.  An example in next slides. n cells 2n possible states
  • 48. A Digital Computer Example Synchronous or Asynchronous? Inputs: Keyboard, mouse, modem, microphone Outputs: CRT, LCD, modem, speakers Memory Control unit Datapath Input/Output CPU
  • 49. Transfer of information Figure 1.1 Transfer of information among register
  • 50. Transfer of information  The other major component of a digital system  Circuit elements to manipulate individual bits of information  Load-store machine LD R1; LD R2; ADD R2, R1; SD R3; Figure 1.2 Example of binary information processing
  • 51. 1.9 Binary Logic  Definition of Binary Logic  Binary logic consists of binary variables and a set of logical operations.  The variables are designated by letters of the alphabet, such as A, B, C, x, y, z, etc, with each variable having two and only two distinct possible values: 1 and 0,  Three basic logical operations: AND, OR, and NOT.
  • 52. Binary Logic  Truth Tables, Boolean Expressions, and Logic Gates x y z 0 0 0 0 1 0 1 0 0 1 1 1 x y z 0 0 0 0 1 1 1 0 1 1 1 1 x z 0 1 1 0 AND OR NOT x y z x y z z = x • y = x y z = x + y z = x = x’ x z
  • 54. Binary Logic  Logic gates  Example of binary signals 0 1 2 3 Logic 1 Logic 0 Un-define Figure 1.3 Example of binary signals
  • 55. Binary Logic  Logic gates  Graphic Symbols and Input-Output Signals for Logic gates: Fig. 1.4 Symbols for digital logic circuits Fig. 1.5 Input-Output signals for gates
  • 56. Binary Logic  Logic gates  Graphic Symbols and Input-Output Signals for Logic gates: Fig. 1.6 Gates with multiple inputs