SlideShare a Scribd company logo
Digital Systems and Binary Numbers
 1.1 Digital Systems
 1.2 Binary Numbers
 1.3 Number-base Conversions
 1.4 Octal and Hexadecimal Numbers
 1.5 Complements
 1.6 Signed Binary Numbers
 1.7 Binary Codes
 1.8 Binary Storage and Registers
 1.9 Binary Logic
Digital Systems and Binary Numbers
 Digital age and information age
 Digital computers
 General purposes
 Many scientific, industrial and commercial applications
 Digital systems
 Telephone switching exchanges
 Digital camera
 Electronic calculators, PDA's
 Digital TV
 Discrete information-processing systems
 Manipulate discrete elements of information
 For example, {1, 2, 3, …} and {A, B, C, …}…
Analog and Digital Signal
 Analog system
 The physical quantities or signals may vary continuously over a specified
range.
 Digital system
 The physical quantities or signals can assume only discrete values.
 Greater accuracy
t
X(t)
t
X(t)
Analog signal Digital signal
Binary Digital Signal
 An information variable represented by physical quantity.
 For digital systems, the variable takes on discrete values.
 Two level, or binary values are the most prevalent values.
 Binary values are represented abstractly by:
 Digits 0 and 1
 Words (symbols) False (F) and True (T)
 Words (symbols) Low (L) and High (H)
 And words On and Off
 Binary values are represented by values
or ranges of values of physical quantities.
t
V(t)
Binary digital signal
Logic 1
Logic 0
undefine
Decimal Number System
 Base (also called radix) = 10
 10 digits { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 }
 Digit Position
 Integer & fraction
 Digit Weight
 Weight = (Base) Position
 Magnitude
 Sum of “Digit x Weight”
 Formal Notation
1 0 -1
2 -2
5 1 2 7 4
10 1 0.1
100 0.01
500 10 2 0.7 0.04
d2*B2
+d1*B1
+d0*B0
+d-1*B-1
+d-2*B-2
(512.74)10
Octal Number System
 Base = 8
 8 digits { 0, 1, 2, 3, 4, 5, 6, 7 }
 Weights
 Weight = (Base) Position
 Magnitude
 Sum of “Digit x Weight”
 Formal Notation
1 0 -1
2 -2
8 1 1/8
64 1/64
5 1 2 7 4
5 *82
+1 *81
+2 *80
+7 *8-1
+4 *8-2
=(330.9375)10
(512.74)8
Binary Number System
 Base = 2
 2 digits { 0, 1 }, called binary digits or “bits”
 Weights
 Weight = (Base) Position
 Magnitude
 Sum of “Bit x Weight”
 Formal Notation
 Groups of bits 4 bits = Nibble
8 bits = Byte
1 0 -1
2 -2
2 1 1/2
4 1/4
1 0 1 0 1
1 *22
+0 *21
+1 *20
+0 *2-1
+1 *2-2
=(5.25)10
(101.01)2
1 0 1 1
1 1 0 0 0 1 0 1
Hexadecimal Number System
 Base = 16
 16 digits { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F }
 Weights
 Weight = (Base) Position
 Magnitude
 Sum of “Digit x Weight”
 Formal Notation
1 0 -1
2 -2
16 1 1/16
256 1/256
1 E 5 7 A
1 *162
+14 *161
+5 *160
+7 *16-1
+10 *16-2
=(485.4765625)10
(1E5.7A)16
The Power of 2
n 2n
0 20
=1
1 21
=2
2 22
=4
3 23
=8
4 24
=16
5 25
=32
6 26
=64
7 27
=128
n 2n
8 28
=256
9 29
=512
10 210
=1024
11 211
=2048
12 212
=4096
20 220
=1M
30 230
=1G
40 240
=1T
Mega
Giga
Tera
Kilo
Addition
 Decimal Addition
5 5
5
5
+
0
1
1
1
1 Carry
Binary Addition
 Column Addition
1 0 1
1
1
1
1
1
1
1 0
+
0
0
0
0 1 1
1
1
1
1
1
1
1
= 61
= 23
= 84
Binary Subtraction
 Borrow a “Base” when needed
0 0 1
1
1
0
1
1
1
1 0
−
0
1
0
1 1 1
0
= (10)2
2
2
2 2
1
0
0
0
1
= 77
= 23
= 54
Binary Multiplication
 Bit by bit
0
1 1 1 1
0
1 1 0
0
0 0 0 0
0
1 1 1 1
0
1 1 1 1
0 0 0
0
0
0
1
1
0
1
1
1 0
x
Number_System and Boolean Algebra in Digital System Design
Number Base Conversions
Decimal
(Base 10)
Octal
(Base 8)
Binary
(Base 2)
Hexadecimal
(Base 16)
Evaluate
Magnitude
Evaluate
Magnitude
Evaluate
Magnitude
Decimal (Integer) to Binary Conversion
 Divide the number by the ‘Base’ (=2)
 Take the remainder (either 0 or 1) as a coefficient
 Take the quotient and repeat the division
Example: (13)10
Quotient Remainder Coefficient
Answer: (13)10 = (a3 a2 a1 a0)2 = (1101)2
MSB LSB
MSB LSB
13/ 2 = 6 1 a0 = 1
6 / 2 = 3 0 a1 = 0
3 / 2 = 1 1 a2 = 1
1 / 2 = 0 1 a3 = 1
Decimal (Fraction) to Binary Conversion
 Multiply the number by the ‘Base’ (=2)
 Take the integer (either 0 or 1) as a coefficient
 Take the resultant fraction and repeat the division
Example: (0.625)10
Integer Fraction Coefficient
Answer: (0.625)10 = (0.a-1 a-2 a-3)2 = (0.101)2
MSB LSB
MSB LSB
0.625 * 2 = 1 . 25
0.25 * 2 = 0 . 5 a-2 = 0
0.5 * 2 = 1 . 0 a-3 = 1
a-1 = 1
Decimal to Octal Conversion
Example: (175)10
Quotient Remainder Coefficient
Answer: (175)10 = (a2 a1 a0)8 = (257)8
175 / 8 = 21 7 a0 = 7
21 / 8 = 2 5 a1 = 5
2 / 8 = 0 2 a2 = 2
Example: (0.3125)10
Integer Fraction Coefficient
Answer: (0.3125)10 = (0.a-1 a-2 a-3)8 = (0.24)8
0.3125 * 8 = 2 . 5
0.5 * 8 = 4 . 0 a-2 = 4
a-1 = 2
Binary − Octal Conversion
 8 = 23
 Each group of 3 bits represents an octal
digit
Octal Binary
0 0 0 0
1 0 0 1
2 0 1 0
3 0 1 1
4 1 0 0
5 1 0 1
6 1 1 0
7 1 1 1
Example:
( 1 0 1 1 0 . 0 1 )2
( 2 6 . 2 )8
Assume Zeros
Works both ways (Binary to Octal & Octal to Binary)
Binary − Hexadecimal Conversion
 16 = 24
 Each group of 4 bits represents a
hexadecimal digit
Hex Binary
0 0 0 0 0
1 0 0 0 1
2 0 0 1 0
3 0 0 1 1
4 0 1 0 0
5 0 1 0 1
6 0 1 1 0
7 0 1 1 1
8 1 0 0 0
9 1 0 0 1
A 1 0 1 0
B 1 0 1 1
C 1 1 0 0
D 1 1 0 1
E 1 1 1 0
F 1 1 1 1
Example:
( 1 0 1 1 0 . 0 1 )2
( 1 6 . 4 )16
Assume Zeros
Works both ways (Binary to Hex & Hex to Binary)
Octal − Hexadecimal Conversion
 Convert to Binary as an intermediate step
Example:
( 0 1 0 1 1 0 . 0 1 0 )2
( 1 6 . 4 )16
Assume Zeros
Works both ways (Octal to Hex & Hex to Octal)
( 2 6 . 2 )8
Assume Zeros
Decimal, Binary, Octal and Hexadecimal
Decimal Binary Octal Hex
00 0000 00 0
01 0001 01 1
02 0010 02 2
03 0011 03 3
04 0100 04 4
05 0101 05 5
06 0110 06 6
07 0111 07 7
08 1000 10 8
09 1001 11 9
10 1010 12 A
11 1011 13 B
12 1100 14 C
13 1101 15 D
14 1110 16 E
15 1111 17 F
1.5 Complements
 There are two types of complements for each base-r system: the radix complement and
diminished radix complement.
 Diminished Radix Complement - (r-1)’s Complement
 Given a number N in base r having n digits, the (r–1)’s complement of N is defined
as:
(rn
–1) – N
 Example for 6-digit decimal numbers:
 9’s complement is (rn
– 1)–N = (106
–1)–N = 999999–N
 9’s complement of 546700 is 999999–546700 = 453299
 Example for 7-digit binary numbers:
 1’s complement is (rn
– 1) – N = (27
–1)–N = 1111111–N
 1’s complement of 1011000 is 1111111–1011000 = 0100111
 Observation:
 Subtraction from (rn
– 1) will never require a borrow
 Diminished radix complement can be computed digit-by-digit
 For binary: 1 – 0 = 1 and 1 – 1 = 0
Complements
 1’s Complement (Diminished Radix Complement)
 All ‘0’s become ‘1’s
 All ‘1’s become ‘0’s
Example (10110000)2
 (01001111)2
If you add a number and its 1’s complement …
1 0 1 1 0 0 0 0
+ 0 1 0 0 1 1 1 1
1 1 1 1 1 1 1 1
Complements
 Radix Complement
 Example: Base-10
 Example: Base-2
The r's complement of an n-digit number N in base r is defined as
rn
– N for N ≠ 0 and as 0 for N = 0. Comparing with the (r  1) 's
complement, we note that the r's complement is obtained by adding 1
to the (r  1) 's complement, since rn
– N = [(rn
 1) – N] + 1.
The 10's complement of 012398 is 987602
The 10's complement of 246700 is 753300
The 2's complement of 1101100 is 0010100
The 2's complement of 0110111 is 1001001
Complements
 2’s Complement (Radix Complement)
 Take 1’s complement then add 1
 Toggle all bits to the left of the first ‘1’ from the right
Example:
Number:
1’s Comp.:
0 1 0 1 0 0 0 0
1 0 1 1 0 0 0 0
0 1 0 0 1 1 1 1
+ 1
OR
1 0 1 1 0 0 0 0
0
0
0
0
1
0
1
0
Complements
 Subtraction with Complements
 The subtraction of two n-digit unsigned numbers M – N in base r can be
done as follows:
Complements
 Example 1.5
 Using 10's complement, subtract 72532 – 3250.
 Example 1.6
 Using 10's complement, subtract 3250 – 72532.
There is no end
carry.
Therefore, the answer is – (10's complement of 30718) =  69282.
Complements
 Example 1.7
 Given the two binary numbers X = 1010100 and Y = 1000011, perform the
subtraction (a) X – Y ; and (b) Y  X, by using 2's complement.
There is no end carry.
Therefore, the answer is Y
– X =  (2's complement of
1101111) =  0010001.
Complements
 Subtraction of unsigned numbers can also be done by means of the (r  1)'s
complement. Remember that the (r  1) 's complement is one less then the r's
complement.
 Example 1.8
 Repeat Example 1.7, but this time using 1's complement.
There is no end carry,
Therefore, the answer is Y –
X =  (1's complement of
1101110) =  0010001.
Number_System and Boolean Algebra in Digital System Design
1.9 Binary Logic
 Definition of Binary Logic
 Binary logic consists of binary variables and a set of logical operations.
 The variables are designated by letters of the alphabet, such as A, B, C, x, y, z, etc, with each variable having two and
only two distinct possible values: 1 and 0,
 Three basic logical operations: AND, OR, and NOT.
Binary Logic
 Truth Tables, Boolean Expressions, and Logic Gates
x
y z
x y z
0 0 0
0 1 0
1 0 0
1 1 1
x y z
0 0 0
0 1 1
1 0 1
1 1 1
x z
0 1
1 0
AND OR NOT
x
y z
z = x • y = x y z = x + y z = x = x’
x z
Switching Circuits
AND OR
Binary Logic
 Logic gates
 Example of binary signals
0
1
2
3
Logic 1
Logic 0
Un-define
Figure 1.3 Example of binary signals
Binary Logic
 Logic gates
 Graphic Symbols and Input-Output Signals for Logic gates:
Fig. 1.4 Symbols for digital logic circuits
Fig. 1.5 Input-Output signals for gates
Binary Logic
 Logic gates
 Graphic Symbols and Input-Output Signals for Logic gates:
Fig. 1.6 Gates with multiple inputs
DeMorgan’s Theory
• DeMorgan’s Theorems are basically two sets of rules or laws developed
from the Boolean expressions for AND, OR and NOT using two input
variables, A and B.
• These two rules or theorems allow the input variables to be negated
and converted from one form of a Boolean function into an opposite
form.
DeMorgan’s First Theorem
Number_System and Boolean Algebra in Digital System Design
DeMorgan’s second theorem
Number_System and Boolean Algebra in Digital System Design
Number_System and Boolean Algebra in Digital System Design
Number_System and Boolean Algebra in Digital System Design
Few more logic gates
The NAND gate and NOR gate can be called the universal gates
since the combination of these gates can be used to accomplish
any of the basic operations. Hence, NAND gate and NOR gate
combination can produce an inverter, an OR gate or an AND gate.
What is a NAND gate?
The NAND gate or “NotAND” gate is the combination of two basic logic gates, the AND
gate and the NOT gate connected in series.
Number_System and Boolean Algebra in Digital System Design
What is a NOR Gate?
• NOR gate is the inverse of an OR gate, and its circuit is produced by
connecting an OR gate to a NOT gate. Just like an OR gate, a NOR gate
may have any number of input probes but only one output probe.
Number_System and Boolean Algebra in Digital System Design
Number_System and Boolean Algebra in Digital System Design
Number_System and Boolean Algebra in Digital System Design
• A NOT gate is made by joining the inputs of a NAND gate
together. Since a NAND gate is equivalent to an AND gate
followed by a NOT gate, joining the inputs of a NAND gate
leaves only the NOT gate.
•
XOR gate
• is a digital logic gate that gives a true (1 or HIGH) output when
the number of true inputs is odd.
XNOR gate
• A high output (1) results if both of the inputs to the gate are the
same. If one but not both inputs are high (1), a low output (0)
results. Hence the gate is sometimes called an "equivalence
gate”
The algebraic notation used to represent the XNOR operation
is
•
Number_System and Boolean Algebra in Digital System Design
Number_System and Boolean Algebra in Digital System Design
Number_System and Boolean Algebra in Digital System Design

More Related Content

PDF
Chapter 1 digital systems and binary numbers
PPTX
chapter1digitalsystemsandbinarynumbers-151021072016-lva1-app6891.pptx
PPT
Basic Digital_Systems_and_Binary_Numbers Sample.ppt
PPT
Chapter 1 Digital Systems and Binary Numbers.ppt
PDF
Module 1 Digital Logic Design .pptx.pdf
PPT
Number Systems.ppt
PPT
Digital logic design part1
PDF
Digital and Logic Design Chapter 1 binary_systems
Chapter 1 digital systems and binary numbers
chapter1digitalsystemsandbinarynumbers-151021072016-lva1-app6891.pptx
Basic Digital_Systems_and_Binary_Numbers Sample.ppt
Chapter 1 Digital Systems and Binary Numbers.ppt
Module 1 Digital Logic Design .pptx.pdf
Number Systems.ppt
Digital logic design part1
Digital and Logic Design Chapter 1 binary_systems

Similar to Number_System and Boolean Algebra in Digital System Design (20)

PPTX
Unit 1 PDF.pptx
PPT
45196656565656565656565656565656565656566.ppt
PPTX
Eln PPT module on electrical and electronics
PPTX
Switching Theory and Logic Circuits-LEC.pptx
PPT
Module 4
PPTX
Chapter 1 digital design.pptx
PPT
ch3a-binary-numbers.ppt
PPTX
digital-electronics.pptx
PDF
Digital Logic
PPT
ch3a-binary-numbers.ppt ch3a-binary-numbers.ppt ch3a-binary-numbers.ppt
PPT
ch3a-binary-numbers.ppt
PPT
Review on Number Systems: Decimal, Binary, and Hexadecimal
PPT
binary-numbers.ppt
PPT
ch3a-binary-numbers.ppt
PPT
mmmmmmmmmmmmmmmmmmmmmmbinary-numbers.ppt
PPT
ch3a-binary-numbers.ppt
PPT
Basic Digital_Systems_and_Binary_Numbers Sample.ppt
PPT
Basic Digital_Systems_and_Binary_Numbers Sample.ppt
PPT
number system.ppt
PDF
digital-electronics (1)_watermark.pdfhindi
Unit 1 PDF.pptx
45196656565656565656565656565656565656566.ppt
Eln PPT module on electrical and electronics
Switching Theory and Logic Circuits-LEC.pptx
Module 4
Chapter 1 digital design.pptx
ch3a-binary-numbers.ppt
digital-electronics.pptx
Digital Logic
ch3a-binary-numbers.ppt ch3a-binary-numbers.ppt ch3a-binary-numbers.ppt
ch3a-binary-numbers.ppt
Review on Number Systems: Decimal, Binary, and Hexadecimal
binary-numbers.ppt
ch3a-binary-numbers.ppt
mmmmmmmmmmmmmmmmmmmmmmbinary-numbers.ppt
ch3a-binary-numbers.ppt
Basic Digital_Systems_and_Binary_Numbers Sample.ppt
Basic Digital_Systems_and_Binary_Numbers Sample.ppt
number system.ppt
digital-electronics (1)_watermark.pdfhindi
Ad

Recently uploaded (20)

PPTX
CARTOGRAPHY AND GEOINFORMATION VISUALIZATION chapter1 NPTE (2).pptx
PPTX
FINAL REVIEW FOR COPD DIANOSIS FOR PULMONARY DISEASE.pptx
PPTX
Welding lecture in detail for understanding
PPTX
Foundation to blockchain - A guide to Blockchain Tech
PPTX
CH1 Production IntroductoryConcepts.pptx
PDF
TFEC-4-2020-Design-Guide-for-Timber-Roof-Trusses.pdf
PDF
keyrequirementskkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
PPTX
MET 305 2019 SCHEME MODULE 2 COMPLETE.pptx
PDF
July 2025 - Top 10 Read Articles in International Journal of Software Enginee...
PPTX
UNIT 4 Total Quality Management .pptx
PPTX
CYBER-CRIMES AND SECURITY A guide to understanding
PPTX
Internet of Things (IOT) - A guide to understanding
PPTX
Lecture Notes Electrical Wiring System Components
PPT
Mechanical Engineering MATERIALS Selection
PPTX
KTU 2019 -S7-MCN 401 MODULE 2-VINAY.pptx
PDF
Automation-in-Manufacturing-Chapter-Introduction.pdf
PDF
PRIZ Academy - 9 Windows Thinking Where to Invest Today to Win Tomorrow.pdf
PPTX
IOT PPTs Week 10 Lecture Material.pptx of NPTEL Smart Cities contd
PDF
PPT on Performance Review to get promotions
PPT
Project quality management in manufacturing
CARTOGRAPHY AND GEOINFORMATION VISUALIZATION chapter1 NPTE (2).pptx
FINAL REVIEW FOR COPD DIANOSIS FOR PULMONARY DISEASE.pptx
Welding lecture in detail for understanding
Foundation to blockchain - A guide to Blockchain Tech
CH1 Production IntroductoryConcepts.pptx
TFEC-4-2020-Design-Guide-for-Timber-Roof-Trusses.pdf
keyrequirementskkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
MET 305 2019 SCHEME MODULE 2 COMPLETE.pptx
July 2025 - Top 10 Read Articles in International Journal of Software Enginee...
UNIT 4 Total Quality Management .pptx
CYBER-CRIMES AND SECURITY A guide to understanding
Internet of Things (IOT) - A guide to understanding
Lecture Notes Electrical Wiring System Components
Mechanical Engineering MATERIALS Selection
KTU 2019 -S7-MCN 401 MODULE 2-VINAY.pptx
Automation-in-Manufacturing-Chapter-Introduction.pdf
PRIZ Academy - 9 Windows Thinking Where to Invest Today to Win Tomorrow.pdf
IOT PPTs Week 10 Lecture Material.pptx of NPTEL Smart Cities contd
PPT on Performance Review to get promotions
Project quality management in manufacturing
Ad

Number_System and Boolean Algebra in Digital System Design

  • 1. Digital Systems and Binary Numbers
  • 2.  1.1 Digital Systems  1.2 Binary Numbers  1.3 Number-base Conversions  1.4 Octal and Hexadecimal Numbers  1.5 Complements  1.6 Signed Binary Numbers  1.7 Binary Codes  1.8 Binary Storage and Registers  1.9 Binary Logic
  • 3. Digital Systems and Binary Numbers  Digital age and information age  Digital computers  General purposes  Many scientific, industrial and commercial applications  Digital systems  Telephone switching exchanges  Digital camera  Electronic calculators, PDA's  Digital TV  Discrete information-processing systems  Manipulate discrete elements of information  For example, {1, 2, 3, …} and {A, B, C, …}…
  • 4. Analog and Digital Signal  Analog system  The physical quantities or signals may vary continuously over a specified range.  Digital system  The physical quantities or signals can assume only discrete values.  Greater accuracy t X(t) t X(t) Analog signal Digital signal
  • 5. Binary Digital Signal  An information variable represented by physical quantity.  For digital systems, the variable takes on discrete values.  Two level, or binary values are the most prevalent values.  Binary values are represented abstractly by:  Digits 0 and 1  Words (symbols) False (F) and True (T)  Words (symbols) Low (L) and High (H)  And words On and Off  Binary values are represented by values or ranges of values of physical quantities. t V(t) Binary digital signal Logic 1 Logic 0 undefine
  • 6. Decimal Number System  Base (also called radix) = 10  10 digits { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 }  Digit Position  Integer & fraction  Digit Weight  Weight = (Base) Position  Magnitude  Sum of “Digit x Weight”  Formal Notation 1 0 -1 2 -2 5 1 2 7 4 10 1 0.1 100 0.01 500 10 2 0.7 0.04 d2*B2 +d1*B1 +d0*B0 +d-1*B-1 +d-2*B-2 (512.74)10
  • 7. Octal Number System  Base = 8  8 digits { 0, 1, 2, 3, 4, 5, 6, 7 }  Weights  Weight = (Base) Position  Magnitude  Sum of “Digit x Weight”  Formal Notation 1 0 -1 2 -2 8 1 1/8 64 1/64 5 1 2 7 4 5 *82 +1 *81 +2 *80 +7 *8-1 +4 *8-2 =(330.9375)10 (512.74)8
  • 8. Binary Number System  Base = 2  2 digits { 0, 1 }, called binary digits or “bits”  Weights  Weight = (Base) Position  Magnitude  Sum of “Bit x Weight”  Formal Notation  Groups of bits 4 bits = Nibble 8 bits = Byte 1 0 -1 2 -2 2 1 1/2 4 1/4 1 0 1 0 1 1 *22 +0 *21 +1 *20 +0 *2-1 +1 *2-2 =(5.25)10 (101.01)2 1 0 1 1 1 1 0 0 0 1 0 1
  • 9. Hexadecimal Number System  Base = 16  16 digits { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F }  Weights  Weight = (Base) Position  Magnitude  Sum of “Digit x Weight”  Formal Notation 1 0 -1 2 -2 16 1 1/16 256 1/256 1 E 5 7 A 1 *162 +14 *161 +5 *160 +7 *16-1 +10 *16-2 =(485.4765625)10 (1E5.7A)16
  • 10. The Power of 2 n 2n 0 20 =1 1 21 =2 2 22 =4 3 23 =8 4 24 =16 5 25 =32 6 26 =64 7 27 =128 n 2n 8 28 =256 9 29 =512 10 210 =1024 11 211 =2048 12 212 =4096 20 220 =1M 30 230 =1G 40 240 =1T Mega Giga Tera Kilo
  • 11. Addition  Decimal Addition 5 5 5 5 + 0 1 1 1 1 Carry
  • 12. Binary Addition  Column Addition 1 0 1 1 1 1 1 1 1 1 0 + 0 0 0 0 1 1 1 1 1 1 1 1 1 = 61 = 23 = 84
  • 13. Binary Subtraction  Borrow a “Base” when needed 0 0 1 1 1 0 1 1 1 1 0 − 0 1 0 1 1 1 0 = (10)2 2 2 2 2 1 0 0 0 1 = 77 = 23 = 54
  • 14. Binary Multiplication  Bit by bit 0 1 1 1 1 0 1 1 0 0 0 0 0 0 0 1 1 1 1 0 1 1 1 1 0 0 0 0 0 0 1 1 0 1 1 1 0 x
  • 16. Number Base Conversions Decimal (Base 10) Octal (Base 8) Binary (Base 2) Hexadecimal (Base 16) Evaluate Magnitude Evaluate Magnitude Evaluate Magnitude
  • 17. Decimal (Integer) to Binary Conversion  Divide the number by the ‘Base’ (=2)  Take the remainder (either 0 or 1) as a coefficient  Take the quotient and repeat the division Example: (13)10 Quotient Remainder Coefficient Answer: (13)10 = (a3 a2 a1 a0)2 = (1101)2 MSB LSB MSB LSB 13/ 2 = 6 1 a0 = 1 6 / 2 = 3 0 a1 = 0 3 / 2 = 1 1 a2 = 1 1 / 2 = 0 1 a3 = 1
  • 18. Decimal (Fraction) to Binary Conversion  Multiply the number by the ‘Base’ (=2)  Take the integer (either 0 or 1) as a coefficient  Take the resultant fraction and repeat the division Example: (0.625)10 Integer Fraction Coefficient Answer: (0.625)10 = (0.a-1 a-2 a-3)2 = (0.101)2 MSB LSB MSB LSB 0.625 * 2 = 1 . 25 0.25 * 2 = 0 . 5 a-2 = 0 0.5 * 2 = 1 . 0 a-3 = 1 a-1 = 1
  • 19. Decimal to Octal Conversion Example: (175)10 Quotient Remainder Coefficient Answer: (175)10 = (a2 a1 a0)8 = (257)8 175 / 8 = 21 7 a0 = 7 21 / 8 = 2 5 a1 = 5 2 / 8 = 0 2 a2 = 2 Example: (0.3125)10 Integer Fraction Coefficient Answer: (0.3125)10 = (0.a-1 a-2 a-3)8 = (0.24)8 0.3125 * 8 = 2 . 5 0.5 * 8 = 4 . 0 a-2 = 4 a-1 = 2
  • 20. Binary − Octal Conversion  8 = 23  Each group of 3 bits represents an octal digit Octal Binary 0 0 0 0 1 0 0 1 2 0 1 0 3 0 1 1 4 1 0 0 5 1 0 1 6 1 1 0 7 1 1 1 Example: ( 1 0 1 1 0 . 0 1 )2 ( 2 6 . 2 )8 Assume Zeros Works both ways (Binary to Octal & Octal to Binary)
  • 21. Binary − Hexadecimal Conversion  16 = 24  Each group of 4 bits represents a hexadecimal digit Hex Binary 0 0 0 0 0 1 0 0 0 1 2 0 0 1 0 3 0 0 1 1 4 0 1 0 0 5 0 1 0 1 6 0 1 1 0 7 0 1 1 1 8 1 0 0 0 9 1 0 0 1 A 1 0 1 0 B 1 0 1 1 C 1 1 0 0 D 1 1 0 1 E 1 1 1 0 F 1 1 1 1 Example: ( 1 0 1 1 0 . 0 1 )2 ( 1 6 . 4 )16 Assume Zeros Works both ways (Binary to Hex & Hex to Binary)
  • 22. Octal − Hexadecimal Conversion  Convert to Binary as an intermediate step Example: ( 0 1 0 1 1 0 . 0 1 0 )2 ( 1 6 . 4 )16 Assume Zeros Works both ways (Octal to Hex & Hex to Octal) ( 2 6 . 2 )8 Assume Zeros
  • 23. Decimal, Binary, Octal and Hexadecimal Decimal Binary Octal Hex 00 0000 00 0 01 0001 01 1 02 0010 02 2 03 0011 03 3 04 0100 04 4 05 0101 05 5 06 0110 06 6 07 0111 07 7 08 1000 10 8 09 1001 11 9 10 1010 12 A 11 1011 13 B 12 1100 14 C 13 1101 15 D 14 1110 16 E 15 1111 17 F
  • 24. 1.5 Complements  There are two types of complements for each base-r system: the radix complement and diminished radix complement.  Diminished Radix Complement - (r-1)’s Complement  Given a number N in base r having n digits, the (r–1)’s complement of N is defined as: (rn –1) – N  Example for 6-digit decimal numbers:  9’s complement is (rn – 1)–N = (106 –1)–N = 999999–N  9’s complement of 546700 is 999999–546700 = 453299  Example for 7-digit binary numbers:  1’s complement is (rn – 1) – N = (27 –1)–N = 1111111–N  1’s complement of 1011000 is 1111111–1011000 = 0100111  Observation:  Subtraction from (rn – 1) will never require a borrow  Diminished radix complement can be computed digit-by-digit  For binary: 1 – 0 = 1 and 1 – 1 = 0
  • 25. Complements  1’s Complement (Diminished Radix Complement)  All ‘0’s become ‘1’s  All ‘1’s become ‘0’s Example (10110000)2  (01001111)2 If you add a number and its 1’s complement … 1 0 1 1 0 0 0 0 + 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1
  • 26. Complements  Radix Complement  Example: Base-10  Example: Base-2 The r's complement of an n-digit number N in base r is defined as rn – N for N ≠ 0 and as 0 for N = 0. Comparing with the (r  1) 's complement, we note that the r's complement is obtained by adding 1 to the (r  1) 's complement, since rn – N = [(rn  1) – N] + 1. The 10's complement of 012398 is 987602 The 10's complement of 246700 is 753300 The 2's complement of 1101100 is 0010100 The 2's complement of 0110111 is 1001001
  • 27. Complements  2’s Complement (Radix Complement)  Take 1’s complement then add 1  Toggle all bits to the left of the first ‘1’ from the right Example: Number: 1’s Comp.: 0 1 0 1 0 0 0 0 1 0 1 1 0 0 0 0 0 1 0 0 1 1 1 1 + 1 OR 1 0 1 1 0 0 0 0 0 0 0 0 1 0 1 0
  • 28. Complements  Subtraction with Complements  The subtraction of two n-digit unsigned numbers M – N in base r can be done as follows:
  • 29. Complements  Example 1.5  Using 10's complement, subtract 72532 – 3250.  Example 1.6  Using 10's complement, subtract 3250 – 72532. There is no end carry. Therefore, the answer is – (10's complement of 30718) =  69282.
  • 30. Complements  Example 1.7  Given the two binary numbers X = 1010100 and Y = 1000011, perform the subtraction (a) X – Y ; and (b) Y  X, by using 2's complement. There is no end carry. Therefore, the answer is Y – X =  (2's complement of 1101111) =  0010001.
  • 31. Complements  Subtraction of unsigned numbers can also be done by means of the (r  1)'s complement. Remember that the (r  1) 's complement is one less then the r's complement.  Example 1.8  Repeat Example 1.7, but this time using 1's complement. There is no end carry, Therefore, the answer is Y – X =  (1's complement of 1101110) =  0010001.
  • 33. 1.9 Binary Logic  Definition of Binary Logic  Binary logic consists of binary variables and a set of logical operations.  The variables are designated by letters of the alphabet, such as A, B, C, x, y, z, etc, with each variable having two and only two distinct possible values: 1 and 0,  Three basic logical operations: AND, OR, and NOT.
  • 34. Binary Logic  Truth Tables, Boolean Expressions, and Logic Gates x y z x y z 0 0 0 0 1 0 1 0 0 1 1 1 x y z 0 0 0 0 1 1 1 0 1 1 1 1 x z 0 1 1 0 AND OR NOT x y z z = x • y = x y z = x + y z = x = x’ x z
  • 36. Binary Logic  Logic gates  Example of binary signals 0 1 2 3 Logic 1 Logic 0 Un-define Figure 1.3 Example of binary signals
  • 37. Binary Logic  Logic gates  Graphic Symbols and Input-Output Signals for Logic gates: Fig. 1.4 Symbols for digital logic circuits Fig. 1.5 Input-Output signals for gates
  • 38. Binary Logic  Logic gates  Graphic Symbols and Input-Output Signals for Logic gates: Fig. 1.6 Gates with multiple inputs
  • 39. DeMorgan’s Theory • DeMorgan’s Theorems are basically two sets of rules or laws developed from the Boolean expressions for AND, OR and NOT using two input variables, A and B. • These two rules or theorems allow the input variables to be negated and converted from one form of a Boolean function into an opposite form.
  • 46. Few more logic gates The NAND gate and NOR gate can be called the universal gates since the combination of these gates can be used to accomplish any of the basic operations. Hence, NAND gate and NOR gate combination can produce an inverter, an OR gate or an AND gate. What is a NAND gate? The NAND gate or “NotAND” gate is the combination of two basic logic gates, the AND gate and the NOT gate connected in series.
  • 48. What is a NOR Gate? • NOR gate is the inverse of an OR gate, and its circuit is produced by connecting an OR gate to a NOT gate. Just like an OR gate, a NOR gate may have any number of input probes but only one output probe.
  • 52. • A NOT gate is made by joining the inputs of a NAND gate together. Since a NAND gate is equivalent to an AND gate followed by a NOT gate, joining the inputs of a NAND gate leaves only the NOT gate. •
  • 53. XOR gate • is a digital logic gate that gives a true (1 or HIGH) output when the number of true inputs is odd.
  • 54. XNOR gate • A high output (1) results if both of the inputs to the gate are the same. If one but not both inputs are high (1), a low output (0) results. Hence the gate is sometimes called an "equivalence gate” The algebraic notation used to represent the XNOR operation is •