SlideShare a Scribd company logo
Chapter 2 - Chemistry of Life
Chapter 2 - Chemistry of Life
•
•
•
•
•
•
•
•
•
•
•

Biosphere
Ecosystem
Community
Population
Organism
Organ system
Organ
Tissue
Cell
Molecule
Atom
• Everything in the universe is made of matter.
• Matter is anything that occupies space and has
mass and is made of atoms!
• Mass is the measurement of the amount of
matter in an object.

Matter in our galaxy
• Elements are pure substances that
cannot be broken down chemically into
simpler kinds of matter.
(some things don’t count, for example:
protons, electrons, etc.)

• Many elements will be very familiar to you. For
example…
• Others will not be familiar.
1.Helium
• For example… Einsteinium, Americium, Nobelium
2.Oxygen
3.Gold
4.Platinum
5.Aluminum
• Over 100 elements have been identified
• 30 are important to living things
• 90% of the mass of living things are
composed of 4 elements
1. Oxygen (O)
2. Carbon (C)
3. Hydrogen (H)
4. Nitrogen (N)
• Elements have chemical
symbols
• Composed of one or two
letters
• Usually taken from letters
in the common name.
• Sometimes taken from
Latin or Greek name
• Aurum (Au) for gold
• Natrium (Na) for
sodium
• Elements are also identified
by their atomic number.
• Elements are arranged in
the Periodic Table.
Chapter 2 - Chemistry of Life
• The atom is the simplest particle of an
element that retains all of the properties
of that element.
• In other words, an atom is one single
“piece” of an element.
• For example, the smallest amount of
carbon = 1 atom of carbon
• Atoms are too small to be observed by
conventional means
• Scientists show in model form
– Models do not show exactly what an
atom looks like.
– Used to predict how they will act
•

The atom is broken down into 2
major components
1. Nucleus - contains protons
and neutrons
2. Electron cloud - contains
electrons
Chapter 2 - Chemistry of Life
• The nucleus has 99.999% of the mass of an atom
but little volume
• Contains protons and neutrons
• Protons are positively (+) charged particles
• Neutrons are particles with no charge (0)
• All atoms of the SAME element have the SAME
number of protons.
• Atomic number = number of protons in the atom
• Mass Number = total number of protons and
neutrons in the atom
Atomic Number

6

C
Carbon
12

Chemical Symbol
Chemical Name
Atomic Mass or Mass Number
• Electrons have a negative charge (-)
• Very low mass, but high energy
• Electrons are NOT in the nucleus, but in the electron cloud
• The net electrical charge of an atom is zero (not positive or
negative) because the atom has an equal number of
electrons (-) and protons (+). The equal but opposite charges
cancel each other out.
• Number of Electrons = Number of Protons = Atomic
Number
• Atoms can gain or lose electrons in chemical reactions and
become ions (more on this later)
• Isotopes are atoms of the same element
that have a different number of neutrons.
• The Average atomic mass of an element
takes into account the relative amounts of
each isotope in the element.
• Electron cloud
• We do not really know exactly where
the electrons are at any time in the
atom. We only know where they
might be.
• Fortunately, for most chemistry it
doesn't really matter where the
electron actually is, we only care
about how much energy it has.
• It’s convenient to think that electrons
move around the nucleus in orbits,
like the planets in the solar system.
• Orbitals may be misleading about
where an electron is, but they tell us
how much energy it has. We call this
the Energy Level of the electron.
• Bigger Orbit = Bigger Energy Level = Higher
Energy
• Energy levels can hold different numbers of
electrons
Level 1: 2 electrons
Level 2: 8 electrons
• The number of electrons in the outer energy level
determines the characteristics of the element.
• Energy Levels are usually not filled (except noble
gases)
• Goal: have outer energy level full
• Very few elements exist by themselves naturally, instead,
they are usually combined with other elements.
• Compounds are made up of atoms of two or more
elements in fixed proportions
– Chemical formula shows the kinds and proportions of
atoms of each element that forms a particular
compound (Ex: H20)
• Compounds are usually very different from the
elements they form from
– Sodium – a reactive, soft , silvery metal
– Chlorine – a reactive, poisonous green gas
– Sodium chloride (or table salt) – stable,
colorless crystals

+
Chapter 2 - Chemistry of Life
• Most atoms are not stable in their natural state, so they
tend to react with other atoms in different ways to form
compounds and become more stable.
– Remember, the goal to stability is having a full outer energy level.
This is accomplished when atoms bond together to form
compounds.

• Chemical bonds are the attractive forces that hold atoms
together
• Electrons from the outermost energy level of the atoms
are SHARED or TRANSFERRED whenever a bond is
made.
• Covalent bonds are formed from atoms sharing
electrons.
– Share 2 electrons (1 pair) = Single Covalent Bond
– Share 4 electrons (2 pairs) = Double Covalent Bond
– Share 6 electrons (3 pairs) = Triple Covalent Bond

• Usually occurs between two non-metal elements.
Nonmetals
Metals

The animation above shows what happens in the formation of a covalent bond. The
individual atoms are atoms of chlorine with only their outer level of electrons shown.
Note that each chlorine atom has only seven outer electrons, but really wants eight.
• Ionic bonds involve the transfer of electrons
between atoms.
• When an atom gains or loses an electron it is
called and ion.
• Usually occurs between a metal and a nonmetal.
Nonmetals
Metals
• Transferring electrons causes charges ( + or -) to
develop
• Opposites attract and compounds are formed!
Chapter 2 - Chemistry of Life
• Energy is defined as the ability to do
work and to cause change.
• There are many different forms of
energy:
1. Chemical Energy- stored in the bonds
of atoms and molecules. The food we
eat, natural gas, etc.
2. Thermal Energy- heat.
3. Electrical Energy- movement of
electrical charges, lightening, light.
4. Mechanical Energy- movement of
objects and substances from one
place to another.
• Energy is never created or destroyed, but it can
change form.
• A car engine burns gasoline, converting the chemical
energy in gasoline into mechanical energy and
thermal energy.
• Scientists try to understand this FLOW of energy in
living systems and the universe.
• Living things depend on
energy
• Chemical- food
• Thermal-your body
regulates your body
temperature
• Electrical- nerves use
electrical impulses to
communicate information
to your brain
• Mechanical- moving your
muscles
• Atoms in all states of matter are constantly
moving. The RATE of this motion determines
the STATE of matter.
1. Solid:
 Least energetic, definite volume
and shape
 Particles closely packed together,
vibrate, and have high attraction to
each other
2. Liquid:
 Definite volume, variable shape
(takes shape of container)
 Has ability to flow, particles have
freedom to move
3. Gas:
 High Energy
 Takes volume and shape of container
 Ability to flow, low attraction to each
other
4. Plasma:
 Most energetic
 Forms when a gas' temperature is raised to over
10,000°
 Its molecules collide so violently that the electrons are
knocked off the atoms.
 Plasma is different from a gas because it is VERY hot
and is influenced by electric and magnetic fields.
 Exists above the earth’s atmosphere
The influence of
magnetic fields on the
behavior of plasmas is
shown here by loop of
plasma on the sun
Gelatin is made of protein. Proteins are solids at most temperatures. When you mix
the Jell-O powder into the hot water, the protein dissolves in the water. As the
solution cools down, the protein comes out of solution and turns back into a solid.
But it doesn’t just form a solid that settles onto the bottom, the protein molecules
stick to each other forming a giant mixed-up jungle gym of protein molecules all
sticking together.
So, Jell-O is basically a solid suspended in a liquid. The scientific word for this is a
’colloid’. If you heat it up enough, the solid will become dissolved again, and it will
become a liquid all through. But, if you cool it down enough, the liquid water will
freeze, and it will become a solid all through.
• Energy needs to be added or
removed from system to change the
state of matter
Add
Energy

Remove
Energy
• http://www.harcourtschool.com/activity/stat
es_of_matter/
• Chemical Reaction – one or more
substances change to produce one or
more different substances
– Energy is absorbed or released when
chemical bonds are broken and new ones are
formed
• Living things perform thousands of chemical reactions
during life processes
• We write the reactions in equations
CH4 + 2 O2

CO2 + 2 H2O
yields

• Broken down into two parts
1. Reactants – substances or molecules that
participate in a chemical reaction; found on left
side of an equation
2. Products – substances that form in a chemical
reaction; found on right side of an equation
• Atoms on each side of an equation have to equal in
number and type
• Your body is fueled by carbohydrates (sugar and starch),
proteins and fats!
• Body breaks them down into carbon dioxide and water in
a process called cellular respiration. This process
releases energy for your body to use.
Cellular Respiration: 6O2 + C6H12O6 --> 6H2O + 6CO2 + energy
• Plants absorb energy from the sun and combine it with
carbon dioxide and water to produce sugars and oxygen
(photosynthesis)
Photosynthesis: 6CO2 + 6H2O + energy --> 6O2 + C6H12O6
• Metabolism - all of the chemical reactions that occur in an
organism
Chapter 2 - Chemistry of Life
• Activation Energy – the amount of
energy needed to start a chemical
reaction
• Catalysts – chemical substances that
reduce the amount of activation energy
that is needed for a reaction to begin
• Basically, by reducing the activation energy, catalysts
speed up reactions and cause reactions to occur.
Without them, reactions are very slow or never occur at
all!!
• Catalysts in living things are called enzymes
• Enzymes bind temporarily to one or more of the
reactants of the reaction. This lowers the amount of
activation energy needed and speeds up the reaction.
• Enzymes are VERY specific (a different enzyme for
every reaction!)
– Ex. Sucrase catalyzes the breakdown of sucrose into glucose
and fructose

• Enzymes – speed up reactions without being
permanently changed or destroyed
Chapter 2 - Chemistry of Life
• Living things are mostly water
• Most reactions in living things occur in water solutions
• Water has several unique properties that make it one
of the most important compounds found in living things
• A solution is a mixture in which one or more
substances are dissolved in another
• Solvents and solutes make up solutions
1. Solute: part of a solution that is dissolved
(Splenda)
2. Solvent: part of the solution that material is
dissolved in (coffee)
• Liquids, Solids, and Gases can
all be used in solutions.
 Solutions can be solids
dissolved in liquids
Ex. Salt water
 Solutions can be gases
dissolved in liquids
Ex. carbonated beverages
 Solutions can be made from
two solids
Ex. Brass is a solution
containing copper and zinc
.
• Solutions can have varying amount of solute
dissolved in varying amounts of solvent
 Concentration - A measurement of the
amount of solute dissolved in a fixed
amount of solvent
 2% salt solution = 2g of salt in 100mL of
water
 12% salt solution = 12g of salt in 100mL of
water
 The more solute dissolved in solution, the
higher the concentration
 Saturated solution - A solution where no
more solute can be dissolved in the solvent
• Aqueous solutions are solutions that have water as the
solvent…(aq)
• Aqueous solutions are universally important to living
things.
• Fish depend on oxygen dissolved in water to survive.
• Most nutrients plants need are in aqueous solutions in
moist soil.
• Body cells exist in an aqueous solution and are filled with
aqueous solution.
• Water is made of 2 hydrogen atoms and 1 oxygen atom (H20)
• They are covalently bonded so they share electrons.
• The oxygen is “greedy” and pulls the electrons closer to it.
 The oxygen is therefore a little bit negative, and the
hydrogens are a little bit positive.
 Because of this uneven distribution of charge, water is
called a polar molecule.
• The polar nature of water allows
it to dissolve polar substances,
such as sugars, ionic
compounds, and some proteins.
• Water does not dissolve
nonpolar substances, such as
fats like oil.
Chapter 2 - Chemistry of Life
• The polar nature of water
causes water molecules to
be attracted to one another.
• Opposites attract: the
oxygen of one molecule is
attracted to a hydrogen of
another. This attraction
results in a hydrogen bond.
• Hydrogen bonds in water exert an attractive force strong enough that water
“sticks” to itself and other substances!
 Cohesion - An attractive force that holds molecules of a single
substance together.
- Ex: water molecules stick to each other
 Cohesion causes “surface tension” or a thin “skin” on the surface of
water.
 Adhesion - An attractive force between two particles of different
substances.
- Ex: water molecules stick to glass molecules
 Adhesion causes capillarity, which results in the rise of the surface of a
liquid when in contact with a solid.
• Because of its hydrogen bonds, water has a high
heat capacity, which means that water can absorb
or release large amounts of energy in the form of
heat with only a slight change in its temperature.
• During a hot day, water can absorb heat (hydrogen
bonds break) and cool the air. At night, the water
cools (hydrogen bonds reform) and releases heat
into the air.
• Earth’s oceans stabilize global temperatures enough
for life to exist.
• Water’s high heat capacity allows your cells to keep
an even temperature despite changes in the
environment.
• Solid water is less
dense than liquid
water.
– This is opposite of all
other substances

• Hydrogen bonding
causes ice crystals to
have large amounts
of open space.
• When bodies of water freeze, they freeze
from the top down and not the bottom up.
• Ice insulates the water below from the cold
air, which allows fish and other aquatic
animals to survive under the icy surface.
• The alkalinity or acidity of a solution can determine
the survival or death of organisms!

• What do we mean when we say acidic and alkaline
(basic)?
• Water molecules bump into each other and can actually break
each other apart! This results in a hydroxide and hydrogen ion.
• An ion is any atom(s) that have a positive or negative charge
– Hydroxide ion is the OH– Hydrogen ion is the H+
• The hydrogen ion (H+) can become attracted to the oxygen in
another water molecule resulting in a hydronium ion.

– Hydronium ion is the H3O+
• This process is called the ionization of water
Chapter 2 - Chemistry of Life
• The relative concentrations of hydronium (H 3O+)
and hydroxide (OH-) ions in a solution
determines if it is an acid or a base.
• Pure water contains an equal number of both, so
it is a NEUTRAL solution.
• Some compounds, when they dissolve in water will
separate and form H+ ions. These compounds are called
acids.
• H+ will react with H20 to form H30+
– When HCl gas dissolves in water, it breaks up into H+
and Cl– H+ reacts with H20 to form H3O+. There is now more
H3O+ ions than OH- ions.
• There are always more H3O+ than OH- in acidic solutions.
Some common examples:
Hydrochloric Acid = HCl
Sulfuric Acid = H2SO4
Nitric Acid = HNO3
Acetic Acid = HCH3OO
Phosphoric Acid = H3PO4
• Called acidic
• Acids tend to taste sour
• Concentrated acids are very
corrosive
– HCl in your stomach helps to
breakdown and digest proteins
• Examples: Orange juice, vinegar,
soda
• Drinking acidic drinks over a long
period of time can erode the tooth
enamel!
• Some compounds, when they dissolve in water and
separate will form OH- ions. These compounds are called
Bases.
• When the solid NaOH dissolves in water, it
breaks up into Na+ and OH• There are now more OH- than H3O+ ions.
• There are always more OH- than H3O+ in basic
solutions.
Some common examples:
Barium Hydroxide = Ba(OH)2
Sodium Hydroxide = NaOH
Potassium Hydroxide = KOH
Calcium Hydroxide =
Ca(OH)2
• Called alkaline
• Slippery sensation when touched
– Bases react with oils in skin to form soap
• Bases have a bitter taste
• Examples: Soap, antacids (Magnesium hydroxide
and Aluminum hydroxide), ammonia
• Scientists have developed a
scale for comparing hydronium
and hydroxide ions in solution.
• pH scale
– Measures from 0 to 14
– Below 7 is acidic
– Above 7 is basic
– 7 is neutral
– Logarithmic scale (tenfold
change per number)
– pH of 4 is 100 times more
acidic (H3O+) than a pH of 6
•

How much more acidic is
vinegar compared to urine?

•

Difference of 3 pH levels =
10 x 10 x 10 = 1000 times
more acidic!
Acid + Base = A Neutral Solution (water and a salt)
Acid

Base

HCl

+ NaOH

HBr

+

KOH

Water
H2O +
H2O

+

Salt
NaCl
KBr
• Living systems are very sensitive to
pH because enzymes can only
function in very specific pH ranges.

Uh oh, I think
we’re gonna be in
pH 4 soon!

But how will we
function? That is not
acidic enough, Help!
• Living things use buffers to prevent pH from
changing too much.
• Buffers are chemical substances that
neutralize small amounts of acids or bases in a
solution.
• Complex buffering systems keep you body’s
pH values at the right level.
• pH varies by body system
 The pH of the human stomach is usually
between 2 and 3.
 Ideally, the pH of the blood should be
maintained at 7.4. If the pH drops below 6.8
or rises above 7.8, death may occur.
Chapter 2 - Chemistry of Life

More Related Content

PPT
Biology - Chp 2 - The Chemistry Of Life - PowerPoint
PPT
The Chemistry of Life
PPT
Biology Unit 7 Notes: Evolution & Natural Selection
PDF
The Chemical Basis of Life
PPTX
Living System
PPTX
Basic Chemistry of Life PPT
PPTX
Biology : Chapter 1 : The Science of Life
PPT
The Periodic Table & Chemical Bonds
Biology - Chp 2 - The Chemistry Of Life - PowerPoint
The Chemistry of Life
Biology Unit 7 Notes: Evolution & Natural Selection
The Chemical Basis of Life
Living System
Basic Chemistry of Life PPT
Biology : Chapter 1 : The Science of Life
The Periodic Table & Chemical Bonds

What's hot (20)

PPT
Biology - Chp 2 - The Chemistry Of Life - PowerPoint
PPTX
Mr Exham IGCSE Biology - Cells
PPT
03 water and life
PPT
Chemistry - Chp 1 - Introduction To Chemistry - PowerPoint
PPTX
Homeostasis
PDF
Chapter 2 : Cell Structure and Functions
PPTX
IGCSE Biology - Sexual and Asexual Reproduction
PPTX
Chemistry of life
PPTX
Inorganic chem presentation
PPTX
Energy and respiration
PPTX
AS Level Biology - 1) Biological Molecules
PPT
Elements, Compounds, Mixtures
PPTX
Cell tissues and organs
PPTX
IB Biology 1.1 Slides: Introduction to Cells
PDF
FORMATION OF COVALENT BOND
PPT
Cellular Respiration PowerPoint
PPTX
Characteristics and classification of living organisms igcse o level 0610
PPT
Cell Biology Notes
PPT
Valence Electron
PPT
2.1.3.1 octet rule
Biology - Chp 2 - The Chemistry Of Life - PowerPoint
Mr Exham IGCSE Biology - Cells
03 water and life
Chemistry - Chp 1 - Introduction To Chemistry - PowerPoint
Homeostasis
Chapter 2 : Cell Structure and Functions
IGCSE Biology - Sexual and Asexual Reproduction
Chemistry of life
Inorganic chem presentation
Energy and respiration
AS Level Biology - 1) Biological Molecules
Elements, Compounds, Mixtures
Cell tissues and organs
IB Biology 1.1 Slides: Introduction to Cells
FORMATION OF COVALENT BOND
Cellular Respiration PowerPoint
Characteristics and classification of living organisms igcse o level 0610
Cell Biology Notes
Valence Electron
2.1.3.1 octet rule
Ad

Viewers also liked (7)

PPTX
Zoology CHEMISTRY OF LIFE
PPT
Introduction to Zoology Lecture 1
PPTX
Review organic evolution
PPTX
Advances in vitamin & mineral nutrition in livestock
PPT
Zoology introduction
PDF
Theory of Evolution
PPTX
Introduction to Genetics
 
Zoology CHEMISTRY OF LIFE
Introduction to Zoology Lecture 1
Review organic evolution
Advances in vitamin & mineral nutrition in livestock
Zoology introduction
Theory of Evolution
Introduction to Genetics
 
Ad

Similar to Chapter 2 - Chemistry of Life (20)

PPT
Honors Biology Chapter 2 PowerPoint (Sections 2-1 & 2-2)
PPTX
CHEMISTRY: SLIDES FOR MIDDLE SCHOOL TEACHERS.pptx
PPT
Chapter 2 Notes
PDF
Solution Manual for Human Anatomy and Physiology 9th Edition Marieb Hoehn 032...
PPTX
chapter_2 powerpoint for high school AP.
PPTX
Basic Chemistry
PPTX
general chemistry in Science Subject, subject matter
PPT
INTRODUCTION TO CHEMISTRY
PPTX
Biology 101_Chemistry of Life
PPT
Chem 11 Unit 2 FINAL.ppt
PPTX
General chemistry.pptxffgggffdfvvvgfgggh
PPT
Chapter 2-matter
PPTX
Chemistry of life
PPTX
Chapter-2-The-Chemical-Basis-of-Life.pptx
PPT
Classifying Matter
PPT
Physico chemical basis of life
PPT
Pwpt chemistrycin
PPT
Pwpt chemistrycin
PPTX
NOTES OF ELEMENTS COMPOUNDS AND MIXTURES GRADE 5.pptx
PDF
02 lecture_presentation_pc
Honors Biology Chapter 2 PowerPoint (Sections 2-1 & 2-2)
CHEMISTRY: SLIDES FOR MIDDLE SCHOOL TEACHERS.pptx
Chapter 2 Notes
Solution Manual for Human Anatomy and Physiology 9th Edition Marieb Hoehn 032...
chapter_2 powerpoint for high school AP.
Basic Chemistry
general chemistry in Science Subject, subject matter
INTRODUCTION TO CHEMISTRY
Biology 101_Chemistry of Life
Chem 11 Unit 2 FINAL.ppt
General chemistry.pptxffgggffdfvvvgfgggh
Chapter 2-matter
Chemistry of life
Chapter-2-The-Chemical-Basis-of-Life.pptx
Classifying Matter
Physico chemical basis of life
Pwpt chemistrycin
Pwpt chemistrycin
NOTES OF ELEMENTS COMPOUNDS AND MIXTURES GRADE 5.pptx
02 lecture_presentation_pc

More from cavalierem (19)

PPT
Chapter 1 Jeopardy Review
PPT
Biogenesis vs. Spontaneous Generation
PPT
Strawberry DNA Extraction
PDF
Midterm Class Review PowerPoint
PPT
Cell Transport Jeopardy Review
PPT
Chapter 2 Jeopardy Review 2013
PPT
Cellular Respiration Jeopardy
PPT
Chapter 7 - Cellular Respiration
PPT
Chapter 6 - Photosynthesis
PPT
Chapter 5 - Cell Transport
PPT
Confusing Science Terms
PPTX
Chapter 2 - Basic Chemistry
PPT
Chapter 3 - Section 2 - Molecules of Life
PPT
Chapter 3 - Section 1 - Carbon Compounds
PPT
Nutritional Analysis
PPT
Chapter 2 - Mapping
PPT
Chapter 3 - Minerals
PPT
Chapter 4 - Cells
PPT
Chapter 4 - Rocks
Chapter 1 Jeopardy Review
Biogenesis vs. Spontaneous Generation
Strawberry DNA Extraction
Midterm Class Review PowerPoint
Cell Transport Jeopardy Review
Chapter 2 Jeopardy Review 2013
Cellular Respiration Jeopardy
Chapter 7 - Cellular Respiration
Chapter 6 - Photosynthesis
Chapter 5 - Cell Transport
Confusing Science Terms
Chapter 2 - Basic Chemistry
Chapter 3 - Section 2 - Molecules of Life
Chapter 3 - Section 1 - Carbon Compounds
Nutritional Analysis
Chapter 2 - Mapping
Chapter 3 - Minerals
Chapter 4 - Cells
Chapter 4 - Rocks

Recently uploaded (20)

PPTX
TLE Review Electricity (Electricity).pptx
PPTX
Programs and apps: productivity, graphics, security and other tools
PPTX
O2C Customer Invoices to Receipt V15A.pptx
PDF
Architecture types and enterprise applications.pdf
PDF
ENT215_Completing-a-large-scale-migration-and-modernization-with-AWS.pdf
PDF
project resource management chapter-09.pdf
PDF
Microsoft Solutions Partner Drive Digital Transformation with D365.pdf
PDF
Zenith AI: Advanced Artificial Intelligence
PDF
Developing a website for English-speaking practice to English as a foreign la...
PPTX
MicrosoftCybserSecurityReferenceArchitecture-April-2025.pptx
PDF
Profit Center Accounting in SAP S/4HANA, S4F28 Col11
PPTX
Chapter 5: Probability Theory and Statistics
PDF
Video forgery: An extensive analysis of inter-and intra-frame manipulation al...
PPTX
Final SEM Unit 1 for mit wpu at pune .pptx
PPTX
Tartificialntelligence_presentation.pptx
PDF
STKI Israel Market Study 2025 version august
PDF
How ambidextrous entrepreneurial leaders react to the artificial intelligence...
PDF
A comparative study of natural language inference in Swahili using monolingua...
PDF
From MVP to Full-Scale Product A Startup’s Software Journey.pdf
PDF
DP Operators-handbook-extract for the Mautical Institute
TLE Review Electricity (Electricity).pptx
Programs and apps: productivity, graphics, security and other tools
O2C Customer Invoices to Receipt V15A.pptx
Architecture types and enterprise applications.pdf
ENT215_Completing-a-large-scale-migration-and-modernization-with-AWS.pdf
project resource management chapter-09.pdf
Microsoft Solutions Partner Drive Digital Transformation with D365.pdf
Zenith AI: Advanced Artificial Intelligence
Developing a website for English-speaking practice to English as a foreign la...
MicrosoftCybserSecurityReferenceArchitecture-April-2025.pptx
Profit Center Accounting in SAP S/4HANA, S4F28 Col11
Chapter 5: Probability Theory and Statistics
Video forgery: An extensive analysis of inter-and intra-frame manipulation al...
Final SEM Unit 1 for mit wpu at pune .pptx
Tartificialntelligence_presentation.pptx
STKI Israel Market Study 2025 version august
How ambidextrous entrepreneurial leaders react to the artificial intelligence...
A comparative study of natural language inference in Swahili using monolingua...
From MVP to Full-Scale Product A Startup’s Software Journey.pdf
DP Operators-handbook-extract for the Mautical Institute

Chapter 2 - Chemistry of Life

  • 4. • Everything in the universe is made of matter. • Matter is anything that occupies space and has mass and is made of atoms! • Mass is the measurement of the amount of matter in an object. Matter in our galaxy
  • 5. • Elements are pure substances that cannot be broken down chemically into simpler kinds of matter. (some things don’t count, for example: protons, electrons, etc.) • Many elements will be very familiar to you. For example… • Others will not be familiar. 1.Helium • For example… Einsteinium, Americium, Nobelium 2.Oxygen 3.Gold 4.Platinum 5.Aluminum
  • 6. • Over 100 elements have been identified • 30 are important to living things • 90% of the mass of living things are composed of 4 elements 1. Oxygen (O) 2. Carbon (C) 3. Hydrogen (H) 4. Nitrogen (N)
  • 7. • Elements have chemical symbols • Composed of one or two letters • Usually taken from letters in the common name. • Sometimes taken from Latin or Greek name • Aurum (Au) for gold • Natrium (Na) for sodium • Elements are also identified by their atomic number. • Elements are arranged in the Periodic Table.
  • 9. • The atom is the simplest particle of an element that retains all of the properties of that element. • In other words, an atom is one single “piece” of an element. • For example, the smallest amount of carbon = 1 atom of carbon • Atoms are too small to be observed by conventional means • Scientists show in model form – Models do not show exactly what an atom looks like. – Used to predict how they will act
  • 10. • The atom is broken down into 2 major components 1. Nucleus - contains protons and neutrons 2. Electron cloud - contains electrons
  • 12. • The nucleus has 99.999% of the mass of an atom but little volume • Contains protons and neutrons • Protons are positively (+) charged particles • Neutrons are particles with no charge (0) • All atoms of the SAME element have the SAME number of protons. • Atomic number = number of protons in the atom • Mass Number = total number of protons and neutrons in the atom Atomic Number 6 C Carbon 12 Chemical Symbol Chemical Name Atomic Mass or Mass Number
  • 13. • Electrons have a negative charge (-) • Very low mass, but high energy • Electrons are NOT in the nucleus, but in the electron cloud • The net electrical charge of an atom is zero (not positive or negative) because the atom has an equal number of electrons (-) and protons (+). The equal but opposite charges cancel each other out. • Number of Electrons = Number of Protons = Atomic Number • Atoms can gain or lose electrons in chemical reactions and become ions (more on this later)
  • 14. • Isotopes are atoms of the same element that have a different number of neutrons. • The Average atomic mass of an element takes into account the relative amounts of each isotope in the element.
  • 15. • Electron cloud • We do not really know exactly where the electrons are at any time in the atom. We only know where they might be. • Fortunately, for most chemistry it doesn't really matter where the electron actually is, we only care about how much energy it has. • It’s convenient to think that electrons move around the nucleus in orbits, like the planets in the solar system. • Orbitals may be misleading about where an electron is, but they tell us how much energy it has. We call this the Energy Level of the electron.
  • 16. • Bigger Orbit = Bigger Energy Level = Higher Energy • Energy levels can hold different numbers of electrons Level 1: 2 electrons Level 2: 8 electrons • The number of electrons in the outer energy level determines the characteristics of the element. • Energy Levels are usually not filled (except noble gases) • Goal: have outer energy level full
  • 17. • Very few elements exist by themselves naturally, instead, they are usually combined with other elements. • Compounds are made up of atoms of two or more elements in fixed proportions – Chemical formula shows the kinds and proportions of atoms of each element that forms a particular compound (Ex: H20)
  • 18. • Compounds are usually very different from the elements they form from – Sodium – a reactive, soft , silvery metal – Chlorine – a reactive, poisonous green gas – Sodium chloride (or table salt) – stable, colorless crystals +
  • 20. • Most atoms are not stable in their natural state, so they tend to react with other atoms in different ways to form compounds and become more stable. – Remember, the goal to stability is having a full outer energy level. This is accomplished when atoms bond together to form compounds. • Chemical bonds are the attractive forces that hold atoms together • Electrons from the outermost energy level of the atoms are SHARED or TRANSFERRED whenever a bond is made.
  • 21. • Covalent bonds are formed from atoms sharing electrons. – Share 2 electrons (1 pair) = Single Covalent Bond – Share 4 electrons (2 pairs) = Double Covalent Bond – Share 6 electrons (3 pairs) = Triple Covalent Bond • Usually occurs between two non-metal elements. Nonmetals Metals The animation above shows what happens in the formation of a covalent bond. The individual atoms are atoms of chlorine with only their outer level of electrons shown. Note that each chlorine atom has only seven outer electrons, but really wants eight.
  • 22. • Ionic bonds involve the transfer of electrons between atoms. • When an atom gains or loses an electron it is called and ion. • Usually occurs between a metal and a nonmetal. Nonmetals Metals
  • 23. • Transferring electrons causes charges ( + or -) to develop • Opposites attract and compounds are formed!
  • 25. • Energy is defined as the ability to do work and to cause change. • There are many different forms of energy: 1. Chemical Energy- stored in the bonds of atoms and molecules. The food we eat, natural gas, etc. 2. Thermal Energy- heat. 3. Electrical Energy- movement of electrical charges, lightening, light. 4. Mechanical Energy- movement of objects and substances from one place to another.
  • 26. • Energy is never created or destroyed, but it can change form. • A car engine burns gasoline, converting the chemical energy in gasoline into mechanical energy and thermal energy. • Scientists try to understand this FLOW of energy in living systems and the universe.
  • 27. • Living things depend on energy • Chemical- food • Thermal-your body regulates your body temperature • Electrical- nerves use electrical impulses to communicate information to your brain • Mechanical- moving your muscles
  • 28. • Atoms in all states of matter are constantly moving. The RATE of this motion determines the STATE of matter. 1. Solid:  Least energetic, definite volume and shape  Particles closely packed together, vibrate, and have high attraction to each other
  • 29. 2. Liquid:  Definite volume, variable shape (takes shape of container)  Has ability to flow, particles have freedom to move
  • 30. 3. Gas:  High Energy  Takes volume and shape of container  Ability to flow, low attraction to each other
  • 31. 4. Plasma:  Most energetic  Forms when a gas' temperature is raised to over 10,000°  Its molecules collide so violently that the electrons are knocked off the atoms.  Plasma is different from a gas because it is VERY hot and is influenced by electric and magnetic fields.  Exists above the earth’s atmosphere The influence of magnetic fields on the behavior of plasmas is shown here by loop of plasma on the sun
  • 32. Gelatin is made of protein. Proteins are solids at most temperatures. When you mix the Jell-O powder into the hot water, the protein dissolves in the water. As the solution cools down, the protein comes out of solution and turns back into a solid. But it doesn’t just form a solid that settles onto the bottom, the protein molecules stick to each other forming a giant mixed-up jungle gym of protein molecules all sticking together. So, Jell-O is basically a solid suspended in a liquid. The scientific word for this is a ’colloid’. If you heat it up enough, the solid will become dissolved again, and it will become a liquid all through. But, if you cool it down enough, the liquid water will freeze, and it will become a solid all through.
  • 33. • Energy needs to be added or removed from system to change the state of matter Add Energy Remove Energy
  • 35. • Chemical Reaction – one or more substances change to produce one or more different substances – Energy is absorbed or released when chemical bonds are broken and new ones are formed
  • 36. • Living things perform thousands of chemical reactions during life processes • We write the reactions in equations CH4 + 2 O2 CO2 + 2 H2O yields • Broken down into two parts 1. Reactants – substances or molecules that participate in a chemical reaction; found on left side of an equation 2. Products – substances that form in a chemical reaction; found on right side of an equation • Atoms on each side of an equation have to equal in number and type
  • 37. • Your body is fueled by carbohydrates (sugar and starch), proteins and fats! • Body breaks them down into carbon dioxide and water in a process called cellular respiration. This process releases energy for your body to use. Cellular Respiration: 6O2 + C6H12O6 --> 6H2O + 6CO2 + energy • Plants absorb energy from the sun and combine it with carbon dioxide and water to produce sugars and oxygen (photosynthesis) Photosynthesis: 6CO2 + 6H2O + energy --> 6O2 + C6H12O6 • Metabolism - all of the chemical reactions that occur in an organism
  • 39. • Activation Energy – the amount of energy needed to start a chemical reaction • Catalysts – chemical substances that reduce the amount of activation energy that is needed for a reaction to begin
  • 40. • Basically, by reducing the activation energy, catalysts speed up reactions and cause reactions to occur. Without them, reactions are very slow or never occur at all!!
  • 41. • Catalysts in living things are called enzymes • Enzymes bind temporarily to one or more of the reactants of the reaction. This lowers the amount of activation energy needed and speeds up the reaction. • Enzymes are VERY specific (a different enzyme for every reaction!) – Ex. Sucrase catalyzes the breakdown of sucrose into glucose and fructose • Enzymes – speed up reactions without being permanently changed or destroyed
  • 43. • Living things are mostly water • Most reactions in living things occur in water solutions • Water has several unique properties that make it one of the most important compounds found in living things • A solution is a mixture in which one or more substances are dissolved in another • Solvents and solutes make up solutions 1. Solute: part of a solution that is dissolved (Splenda) 2. Solvent: part of the solution that material is dissolved in (coffee)
  • 44. • Liquids, Solids, and Gases can all be used in solutions.  Solutions can be solids dissolved in liquids Ex. Salt water  Solutions can be gases dissolved in liquids Ex. carbonated beverages  Solutions can be made from two solids Ex. Brass is a solution containing copper and zinc .
  • 45. • Solutions can have varying amount of solute dissolved in varying amounts of solvent  Concentration - A measurement of the amount of solute dissolved in a fixed amount of solvent  2% salt solution = 2g of salt in 100mL of water  12% salt solution = 12g of salt in 100mL of water  The more solute dissolved in solution, the higher the concentration  Saturated solution - A solution where no more solute can be dissolved in the solvent
  • 46. • Aqueous solutions are solutions that have water as the solvent…(aq) • Aqueous solutions are universally important to living things. • Fish depend on oxygen dissolved in water to survive. • Most nutrients plants need are in aqueous solutions in moist soil. • Body cells exist in an aqueous solution and are filled with aqueous solution.
  • 47. • Water is made of 2 hydrogen atoms and 1 oxygen atom (H20) • They are covalently bonded so they share electrons. • The oxygen is “greedy” and pulls the electrons closer to it.  The oxygen is therefore a little bit negative, and the hydrogens are a little bit positive.  Because of this uneven distribution of charge, water is called a polar molecule.
  • 48. • The polar nature of water allows it to dissolve polar substances, such as sugars, ionic compounds, and some proteins. • Water does not dissolve nonpolar substances, such as fats like oil.
  • 50. • The polar nature of water causes water molecules to be attracted to one another. • Opposites attract: the oxygen of one molecule is attracted to a hydrogen of another. This attraction results in a hydrogen bond.
  • 51. • Hydrogen bonds in water exert an attractive force strong enough that water “sticks” to itself and other substances!  Cohesion - An attractive force that holds molecules of a single substance together. - Ex: water molecules stick to each other  Cohesion causes “surface tension” or a thin “skin” on the surface of water.  Adhesion - An attractive force between two particles of different substances. - Ex: water molecules stick to glass molecules  Adhesion causes capillarity, which results in the rise of the surface of a liquid when in contact with a solid.
  • 52. • Because of its hydrogen bonds, water has a high heat capacity, which means that water can absorb or release large amounts of energy in the form of heat with only a slight change in its temperature. • During a hot day, water can absorb heat (hydrogen bonds break) and cool the air. At night, the water cools (hydrogen bonds reform) and releases heat into the air. • Earth’s oceans stabilize global temperatures enough for life to exist. • Water’s high heat capacity allows your cells to keep an even temperature despite changes in the environment.
  • 53. • Solid water is less dense than liquid water. – This is opposite of all other substances • Hydrogen bonding causes ice crystals to have large amounts of open space.
  • 54. • When bodies of water freeze, they freeze from the top down and not the bottom up. • Ice insulates the water below from the cold air, which allows fish and other aquatic animals to survive under the icy surface.
  • 55. • The alkalinity or acidity of a solution can determine the survival or death of organisms! • What do we mean when we say acidic and alkaline (basic)?
  • 56. • Water molecules bump into each other and can actually break each other apart! This results in a hydroxide and hydrogen ion. • An ion is any atom(s) that have a positive or negative charge – Hydroxide ion is the OH– Hydrogen ion is the H+ • The hydrogen ion (H+) can become attracted to the oxygen in another water molecule resulting in a hydronium ion. – Hydronium ion is the H3O+ • This process is called the ionization of water
  • 58. • The relative concentrations of hydronium (H 3O+) and hydroxide (OH-) ions in a solution determines if it is an acid or a base. • Pure water contains an equal number of both, so it is a NEUTRAL solution.
  • 59. • Some compounds, when they dissolve in water will separate and form H+ ions. These compounds are called acids. • H+ will react with H20 to form H30+ – When HCl gas dissolves in water, it breaks up into H+ and Cl– H+ reacts with H20 to form H3O+. There is now more H3O+ ions than OH- ions. • There are always more H3O+ than OH- in acidic solutions. Some common examples: Hydrochloric Acid = HCl Sulfuric Acid = H2SO4 Nitric Acid = HNO3 Acetic Acid = HCH3OO Phosphoric Acid = H3PO4
  • 60. • Called acidic • Acids tend to taste sour • Concentrated acids are very corrosive – HCl in your stomach helps to breakdown and digest proteins • Examples: Orange juice, vinegar, soda • Drinking acidic drinks over a long period of time can erode the tooth enamel!
  • 61. • Some compounds, when they dissolve in water and separate will form OH- ions. These compounds are called Bases. • When the solid NaOH dissolves in water, it breaks up into Na+ and OH• There are now more OH- than H3O+ ions. • There are always more OH- than H3O+ in basic solutions. Some common examples: Barium Hydroxide = Ba(OH)2 Sodium Hydroxide = NaOH Potassium Hydroxide = KOH Calcium Hydroxide = Ca(OH)2
  • 62. • Called alkaline • Slippery sensation when touched – Bases react with oils in skin to form soap • Bases have a bitter taste • Examples: Soap, antacids (Magnesium hydroxide and Aluminum hydroxide), ammonia
  • 63. • Scientists have developed a scale for comparing hydronium and hydroxide ions in solution. • pH scale – Measures from 0 to 14 – Below 7 is acidic – Above 7 is basic – 7 is neutral – Logarithmic scale (tenfold change per number) – pH of 4 is 100 times more acidic (H3O+) than a pH of 6
  • 64. • How much more acidic is vinegar compared to urine? • Difference of 3 pH levels = 10 x 10 x 10 = 1000 times more acidic!
  • 65. Acid + Base = A Neutral Solution (water and a salt) Acid Base HCl + NaOH HBr + KOH Water H2O + H2O + Salt NaCl KBr
  • 66. • Living systems are very sensitive to pH because enzymes can only function in very specific pH ranges. Uh oh, I think we’re gonna be in pH 4 soon! But how will we function? That is not acidic enough, Help!
  • 67. • Living things use buffers to prevent pH from changing too much. • Buffers are chemical substances that neutralize small amounts of acids or bases in a solution. • Complex buffering systems keep you body’s pH values at the right level. • pH varies by body system  The pH of the human stomach is usually between 2 and 3.  Ideally, the pH of the blood should be maintained at 7.4. If the pH drops below 6.8 or rises above 7.8, death may occur.