SlideShare a Scribd company logo
CHAPTER 4
Transmission Line
BEF 23803 – Polyphase Circuit Analysis
BEF 23803 – Polyphase Circuit Analysis – Chapter 4
2
Module Outline
 Introduction
 Types of Power Lines
 Short Line
 Medium Line
 Long Line
BEF 23803 – Polyphase Circuit Analysis – Chapter 4
3
Introduction
Distribution System
Transmission System
Generation System
BEF 23803 – Polyphase Circuit Analysis – Chapter 4
4
Introduction – Transmission Line
 The equivalent model is on a “per-phase” basis,
i.e. VL-N, and Ip.
 Two port networks theory is used to express the
voltage and current relations.
 Short, medium, and long line models are
considered as well as the regulation and losses.
BEF 23803 – Polyphase Circuit Analysis – Chapter 4
5
Type of Power Lines
Transmission Line Model
Short
Line
≤80km
Medium
Line
≤250km
Long
Line
≥250km
BEF 23803 – Polyphase Circuit Analysis – Chapter 4
6
Short Line
 Definition: ≤ 80 km or ≤ 69 kV.
 Multiplying series impedance per unit length
(r + jL) by the line length (ℓ).
Z = (r + jL)ℓ = R + jX
Z = R + jX
SR
VS
+
-
+
-
VR
IS IR
BEF 23803 – Polyphase Circuit Analysis – Chapter 4
7
Short Line
 Consider a 3Ф load with apparent power SR(3Ф)
is connected at the end of the transmission line,
the receiving end current is obtained by
 The sending end voltage is
VS = VR + ZIR
 Since the shunt capacitance is neglected, we
have
IS = IR
*
R
)
(3
*
R
R
3V
S
I

 * means conjugate, says S=(2+j3),
thus S* becomes (2-j3)
BEF 23803 – Polyphase Circuit Analysis – Chapter 4
8
Short Line
 Two port network (ABCD) representation:
VS = AVR + BIR
IS = CVR + DIR
or in matrix form
ABCD
+
-
+
-
VS VR
IR
IS



















R
R
S
S
I
V
D
C
B
A
I
V



















R
R
S
S
I
V
1
0
Z
1
I
V
BEF 23803 – Polyphase Circuit Analysis – Chapter 4
9
Short Line
 It is obvious that for short line,
A=1 B=Z C=0 D=1
 Voltage regulation is defined as the % change in
voltage at the receiving end in going from no-
load to full-load:
 At no-load, IR=0, thus,
100%
X
V
V
V
VR
%
R(FL)
R(FL)
R(NL) 

A
V
V S
R(NL) 
BEF 23803 – Polyphase Circuit Analysis – Chapter 4
10
Short Line
 For short line, A=1 and VR(NL)=VS.
 Voltage regulation is measure of line voltage
drop and depends on the power factor (cos θ).
 Voltage regulation is poorer at low lagging
power factor loads (inductive).
 Voltage regulation become negative with leading
power factor loads (capacitive).
 VR(FL)
RIR
jXIR
VS
IR
Lagging pf
VR=+ve
BEF 23803 – Polyphase Circuit Analysis – Chapter 4
11
Short Line
 Sending-end power,
 The total line loss is given by
SL(3Ф)=SS(3Ф) – SR(3Ф)
 Transmission line efficiency is given by
*
S
S
)
S(3 I
3V
S 

)
S(3
)
R(3
P
P


 
VR(FL)
RIR
jXIR
VS
IR
Leading pf
VR=-ve
BEF 23803 – Polyphase Circuit Analysis – Chapter 4
12
Short Line
Example 4.1
A 220-kV, three-phase transmission line is 40 km long.
The resistance per phase is 0.15  per km and the
inductance per phase is 1.3263 mH per km. The shunt
capacitance is negligible. Use the short line model to find
the voltage and power at the sending end and the
voltage regulation and the efficiency when the line is
supplying a three-phase load of
a. 381 MVA at 0.8 power factor lagging at 220 kV.
b. 381 MVA at 0.8 power factor leading at 220 kV.
BEF 23803 – Polyphase Circuit Analysis – Chapter 4
13
Short Line
Solution
a. The series impedance per phase is (f = 60 Hz)
Z=(r+jL)ℓ =(0.15+j2x60x1.3263x10-3)40
=6+j20 
The receiving end voltage per phase is
The apparent power is
SR(3Ф)= 381cos-10.8
= 381 36.87° = 304.8+j228.6 MVA
kV
0
127
3
0
220
VR(LN) 





BEF 23803 – Polyphase Circuit Analysis – Chapter 4
14
Short Line
The current per phase is
The sending end voltage is
The sending end line-to-line voltage magnitude
A
36.87
1000
0
127
x
3
x10
36.87
381
3V
S
I
3
*
R(LN)
*
)
R(3
)
R(1 












kV
4.93
144.33
)
)(10
36.87
-
j20)(1000
(6
0
127
ZI
V
V -3
)
R(1
R(LN)
S(LN)











 
kV
250
V
3
V S(LN)
L)
-
S(L 

BEF 23803 – Polyphase Circuit Analysis – Chapter 4
15
Short Line
The sending end power is
Voltage regulation is
Transmission line efficiency is
MVA
41.8
433
Mvar
j288.6
MW
322.8
10
x
36.87
1000
x
4.93
144.33
x
3
I
3V
S -3
*
)
S(1
S(LN)
)
S(3









 

13.6%
100%
x
220
220
-
250
R
V
% 

94.4%
100%
x
8
.
322
8
.
304
P
P
)
S(3
)
R(3






BEF 23803 – Polyphase Circuit Analysis – Chapter 4
16
Short Line
b. The current for 381 MVA with 0.8 leading pf is
The sending end voltage is
The sending end line-to-line voltage magnitude
A
36.87
1000
0
127
x
3
x10
36.87
381
3V
S
I
3
*
R(LN)
*
)
R(3
R(p) 









kV
9.29
121.39
)
)(10
36.87
j20)(1000
(6
0
127
ZI
V
V -3
)
R(1
R(LN)
S(LN)











 
kV
210.26
V
3
V S(LN)
L)
-
S(L 

BEF 23803 – Polyphase Circuit Analysis – Chapter 4
17
Short Line
The sending end power is
Voltage regulation is
Transmission line efficiency is
MVA
58
.
27
-
364.18
Mvar
j168.6
MW
322.8
10
x
36.87
1000
x
29
.
9
121.39
x
3
I
3V
S -3
*
)
S(1
S(LN)
)
S(3










 

4.43%
-
100%
x
220
220
-
210.26
R
V
% 

94.4%
100%
x
8
.
322
8
.
304
P
P
)
S(3
)
R(3






BEF 23803 – Polyphase Circuit Analysis – Chapter 4
18
Medium Line
 Definition: 80 km ≤ length ≤ 250 km.
 Shunt capacitance of the line is included and is
divided into two equal parts placed at the
sending and receiving ends of the line to form
the so-called nominal  model.
Z = R + jX
VS
+
-
+
-
VR
IS IR
IL
2
Y
2
Y
BEF 23803 – Polyphase Circuit Analysis – Chapter 4
19
Medium Line
 Total shunt admittance
Y = (g +jC)ℓ
 The shunt conductance per unit length, g is
negligible, C = line to neutral capacitance per km,
and ℓ = line length.
R
R
L V
2
Y
I
I 

L
R
S ZI
V
V 
 R
R
S ZI
V
2
ZY
1
V 








S
L
S V
2
Y
I
I 
 R
R
S I
2
ZY
1
V
4
ZY
1
Y
I 















BEF 23803 – Polyphase Circuit Analysis – Chapter 4
20
Medium Line
 Representing into the two-port network:
 A and D are dimensionless and equal each
other if the line is the same when viewed from
either end.
 The dimensions of B and C are ohms and mhos,
respectively. The determinant of the line matrix
is unity, i.e.,
AD – BC = 1








2
ZY
1
A Z
B  







4
ZY
1
Y
C 







2
ZY
1
D
BEF 23803 – Polyphase Circuit Analysis – Chapter 4
21
Medium Line
 We can find VR and IR if VS and IS are known.
 In matrix form (inverse matrix),
BC
AD
BI
DV
V S
S
R



BC
AD
CV
AI
I S
S
R



S
S
R BI
DV
V 

S
S
R CV
AI
I 






















S
S
R
R
I
V
A
C
B
D
I
V
BEF 23803 – Polyphase Circuit Analysis – Chapter 4
22
Medium Line
 At no-load, i.e. IR is zero and thus A is the ratio
VS/VR.
 If the receiving end is short-circuited, i.e. VR is
zero and thus B is the ratio VS/IR.
 The constant A is useful in computing voltage
regulation. If VR(FL) is the receiving end voltage
at full load for a sending end voltage of VS,
100%
X
V
V
A
V
VR
%
R(FL)
R(FL)
S 

BEF 23803 – Polyphase Circuit Analysis – Chapter 4
23
Medium Line
Example 4.2
A 345 kV, three-phase transmission line is 130
km long. The resistance per phase is 0.036 
per km and the inductance per phase is 0.8 mH
per km. The shunt capacitance is 0.0112 F per
km. The receiving end load is 270 MVA with 0.8
power factor lagging at 325 kV. Use the medium
line model to find the voltage and power at the
sending end and the voltage regulation.
BEF 23803 – Polyphase Circuit Analysis – Chapter 4
24
Medium Line
Solution
The series impedance per phase is (assume f = 60 Hz)
Z=(0.036+j2x60x0.8x10-3)130=4.68+j39.207 
Y=(0+j2x60x0.0112x10-6)130
=j0.000548899 siemens
Z = R + jX
VS
+
-
+
-
VR
IS IR
IL
2
Y
2
Y Load
270MVA
325 kV
0.8 lagging
BEF 23803 – Polyphase Circuit Analysis – Chapter 4
25
Medium Line
0012844
.
0
j
98924
.
0
2
ZY
1
D
A 










j39.207
4.68
Z
B 


5
j0.0005459
3.5251x10
4
ZY
1
Y
C 7










 
kV
0
187.64
3
0
325
V (LN)
R 





MVA
j162
216
MVA
36.87
270
0.8
cos
270
S -1
)
R(3 







BEF 23803 – Polyphase Circuit Analysis – Chapter 4
26
Medium Line
A
36.87
479.64
0
187.64
x
3
x10
36.87
270
3V
S
I
3
*
R(LN)
*
)
R(3
)
1
R( 












)
R(1
R(LN)
)
S(1 DI
CV
I 
 





 012
.
4
19
.
199
BI
AV
V )
R(1
R(LN)
S(LN) 





 36.79
474.42
j284.0929
379.9522



 012
.
4
01
.
345
3
x
V
V S(LN)
S(LL)
0.7570
)]
angle(I
-
)
V
cos[angle(
factor
power )
S(1
S(LN) 
 
BEF 23803 – Polyphase Circuit Analysis – Chapter 4
27
Medium Line





 36.79
x0.47442
4.012
3x199.19
xI
3xV
S *
)
S(1
S(LN)
)
S(3 

Mvar
j185.25
MW
214.6
40.802
283.5 




0,
I
load,
-
no
During R 
0
V
2
ZY
1
V R(LL)
S(LL) 









kV
76
.
348
98924
.
0
01
.
345
A
V
V
S(LL)
R(LL) 


7.3108%
x100%
325
325
-
348.76
R
V
% 


BEF 23803 – Polyphase Circuit Analysis – Chapter 4
28
Long Line
 Definition: length  250 km.
Zx
VS
+
-
+
-
VR
IS
IR
I(x)
IS(x+x)
+
-
+
-
V(x+ x) V(x)
yx yx
x x
l
BEF 23803 – Polyphase Circuit Analysis – Chapter 4
29
Long Line
)
(
)
(
,
0
x
zI
dx
x
dV
x
zI(x)
Δx
Δx)-V(x)
V(x
xI(x)
z
V(x)
Δx)
V(x









)
(
)
(
,
0
)
(
)
(
)
(
)
(
)
(
)
(
x
yV
dx
x
dI
x
x
x
yV
x
x
I
x
x
I
x
x
xV
y
x
I
x
x
I

















)
(
)
(
)
(
2
2
x
zyV
dx
x
dI
z
dx
x
V
d


BEF 23803 – Polyphase Circuit Analysis – Chapter 4
30
Long Line
0
)
(
)
(
)
(
)
(
2
2
2
2
2
2
2





x
V
dx
x
V
d
x
V
dx
x
V
d
zy



If we take Second order differential equation:
x
x
e
A
e
A
x
V 
 

 2
1
)
(
where
length)
unit
per
(radian
constant
phase
constant,
n
attenuatio
)
)(
(
zy
constant
n
propagatio

















C
j
g
L
j
r
j
BEF 23803 – Polyphase Circuit Analysis – Chapter 4
31
Long Line
 
   
 
y
z
z
e
A
e
A
z
x
I
or
e
A
e
A
z
y
e
A
e
A
z
x
I
e
A
e
A
z
dx
x
dV
z
x
I
c
x
x
c
x
x
x
x
x
x















impedance
stic
characteri
1
)
(
)
(
1
)
(
1
)
(
2
1
2
1
2
1
2
1











BEF 23803 – Polyphase Circuit Analysis – Chapter 4
32
Long Line
R
R
I
x
I
V
x
V
x



)
(
,
)
(
,
0
when
2
2
2
)
(
1
)
(
1
1
2
2
2
2
2
1
2
1
R
c
R
R
c
R
c
R
R
c
c
R
R
I
z
V
A
I
z
V
A
z
A
V
A
A
V
z
A
A
z
I
A
A
V













To find the constant A1 and A2
BEF 23803 – Polyphase Circuit Analysis – Chapter 4
33
Long Line
x
R
c
R
x
R
c
R
x
R
c
R
x
R
c
R
c
x
R
c
R
x
R
c
R
e
I
z
V
e
I
z
V
x
I
e
I
z
V
e
I
z
V
z
x
I
e
I
z
V
e
I
z
V
x
V


















 







2
2
)
(
2
2
1
)
(
2
2
)
(
BEF 23803 – Polyphase Circuit Analysis – Chapter 4
34
Long Line
R
x
x
c
R
x
x
x
R
c
x
R
c
x
R
x
R
I
e
e
Z
V
e
e
x
V
e
I
Z
e
I
Z
e
V
e
V
x
V







 








 









2
2
)
(
2
2
2
2
)
(








Re-arrange the equations we have,
R
x
x
R
x
x
c
x
R
x
c
R
x
R
x
c
R
I
e
e
V
e
e
Z
x
I
e
I
e
Z
V
e
I
e
Z
V
x
I







 








 









2
2
1
)
(
2
2
2
2
)
(








BEF 23803 – Polyphase Circuit Analysis – Chapter 4
35
Long Line
Hyperbolic function,
R
R
c
R
c
R
xI
xV
Z
x
I
xI
Z
xV
x
V




cosh
sinh
1
)
(
sinh
cosh
)
(




Setting x=l, V(l)=Vs, I(l)=Is
R
R
c
s
R
c
R
s
I
V
Z
I
I
Z
V
V








cosh
sinh
1
sinh
cosh






cosh

 D
A


sinh
c
Z
B 


sinh
1
c
Z
C 
1

 BC
AD
BEF 23803 – Polyphase Circuit Analysis – Chapter 4
36
Long Line
R
R
s I
Z
V
Y
Z
V '
2
'
'
1 








R
R
s I
Y
Z
V
Y
Z
Y
I 















2
'
'
1
4
'
'
1
'
Comparing B constant with hyperbolic function,











sinh
sinh
sinh
sinh
' Z
z
z
y
z
Z
Z c 



Nominal  representation for long line,
Method 2
BEF 23803 – Polyphase Circuit Analysis – Chapter 4
37
Long Line
2
tanh
2
'
sinh
1
cosh
2
tanh
,
sinh
1
cosh
2
'
1
cosh
2
'
sinh
cosh
2
'
'
1


































ZY
where
ZY
Y
Z
Y
Z
To obtain the Y’/2, compare the A constant,
BEF 23803 – Polyphase Circuit Analysis – Chapter 4
38
Long Line
2
tanh
2
' 
 

Z
Y

2
tanh
2
tanh






z
y
z
zy


2
tanh
1
2
' 

c
Z
Y

2
tanh
2
tanh






y
y
y


BEF 23803 – Polyphase Circuit Analysis – Chapter 4
39
Long Line
2
tanh
2
' 



Y
Y

2
2
tanh
2 



Y

VS
+
-
+
-
VR
IS IR
IL
2
2
tanh
2
2
Y'




Y

2
Y'




sinh
' Z
Z 
Equivalent  model for
long length line:
BEF 23803 – Polyphase Circuit Analysis – Chapter 4
40
Long Line
Example 4.3:
250 km, 500 kV transmission line has per
phase,
z = (0.045 + j0.4) /km
y = j4. 0 S/km
Find ABCD for a  model of the long
transmission line.
BEF 23803 – Polyphase Circuit Analysis – Chapter 4
41
Long Line
Solution:
76
.
17
7
.
316
10
4
4
.
0
045
.
0
6
j
j
j
y
z
Zc 




 
001267
.
0
10
104
.
7
)
10
4
)(
4
.
0
045
.
0
( 5
6
j
j
j
zy 





 


36
.
98
88
.
10
)
sinh(
' j
Z
Z c 

 

001
.
0
2
2
tanh
1
' j
Z
Y
c

















BEF 23803 – Polyphase Circuit Analysis – Chapter 4
42
Long Line
0055
.
0
j
9504
.
0
2
Y'
Z'
1
D
A 










36
.
98
88
.
10
Z'
B j



j0.00098
4
Y'
Z'
1
Y'
C 









More Related Content

PPT
PDF
Thevenin's theorem for ac network
PPT
Per unit systems in power systems
PPTX
Multi phase Star Rectifier
PDF
Load flow studies
PPT
Control chap6
PPTX
Gauss Siedel method of Load Flow
PDF
Circuit Analysis – DC Circuits
Thevenin's theorem for ac network
Per unit systems in power systems
Multi phase Star Rectifier
Load flow studies
Control chap6
Gauss Siedel method of Load Flow
Circuit Analysis – DC Circuits

What's hot (20)

PPT
Lecture 10
DOCX
Exp 4 (1)4. Gauss Siedal Load flow analysis using Matlab Software.
PPTX
power-electronics
PPT
Electric network theorems
PDF
Examen de electrónica
PPT
Induction Machines.ppt
PDF
Per unit calculation
PPTX
HVE UNIT IV MEASUREMENT OF HIGH VOLTAGES AND HIGH CURRENTS.pptx
PPTX
Selection Of Circuit Breaker
PPTX
INVERTERS PRESENTATION
PDF
Report on Thevenin's theorem
PPTX
Electromechanical energy conversion
PDF
Power system calculations
PPTX
Thevenin's and Nortan's Theorems
PPT
CT design aspects - Nageswar-6
PPTX
Switchgear and protection 3
PPTX
State estimation
PPTX
West bengal state electricity distribution limited vocational traning
DOCX
PDF
POWER SYSTEM ANALYSIS_254ppt.pdf
Lecture 10
Exp 4 (1)4. Gauss Siedal Load flow analysis using Matlab Software.
power-electronics
Electric network theorems
Examen de electrónica
Induction Machines.ppt
Per unit calculation
HVE UNIT IV MEASUREMENT OF HIGH VOLTAGES AND HIGH CURRENTS.pptx
Selection Of Circuit Breaker
INVERTERS PRESENTATION
Report on Thevenin's theorem
Electromechanical energy conversion
Power system calculations
Thevenin's and Nortan's Theorems
CT design aspects - Nageswar-6
Switchgear and protection 3
State estimation
West bengal state electricity distribution limited vocational traning
POWER SYSTEM ANALYSIS_254ppt.pdf
Ad

Similar to Chapter 4 Transmission.ppt (20)

PDF
Lecture_5_Transmission_Line_Performance_and_Mechanical_design.pdf
PDF
PERFORMANCE OF TRANSMISSION LINES:
PPTX
Electrical transmission line
PDF
Lesson-1-3-phase-Systemh-WYE-or-Star.pdf
PPTX
TRANSMISSION LINES and capacity.pptx
PPTX
153010010 mohammad babor
PDF
Polyphase circuit electrical maintenace
PPTX
PPTX
Chapter 3 transmission line performance
PPTX
week-6-lecture2.pptx
PPTX
unit-1-Three phase circuits and power systems.pptx
PPTX
Module-2 Short Line and Problems (1) - Copy.pptx
PDF
Polyphase circuit vbr
PPTX
Line modeling-and-performance
PDF
print
PPTX
Power system analysis in load flow analysis.pptx
PPT
Unit4 -Power supplies on electronics.ppt
PPTX
short transmission line
PDF
BEF43303 - 201620171 W1 Power System Analysis and Protection.pdf
PPT
Unit 1
Lecture_5_Transmission_Line_Performance_and_Mechanical_design.pdf
PERFORMANCE OF TRANSMISSION LINES:
Electrical transmission line
Lesson-1-3-phase-Systemh-WYE-or-Star.pdf
TRANSMISSION LINES and capacity.pptx
153010010 mohammad babor
Polyphase circuit electrical maintenace
Chapter 3 transmission line performance
week-6-lecture2.pptx
unit-1-Three phase circuits and power systems.pptx
Module-2 Short Line and Problems (1) - Copy.pptx
Polyphase circuit vbr
Line modeling-and-performance
print
Power system analysis in load flow analysis.pptx
Unit4 -Power supplies on electronics.ppt
short transmission line
BEF43303 - 201620171 W1 Power System Analysis and Protection.pdf
Unit 1
Ad

More from LiewChiaPing (20)

PPT
chapter4 DC to AC Converter.ppt
PPTX
chapter_2 AC to DC Converter.pptx
PPT
chapter_1 Intro. to electonic Devices.ppt
PDF
Chapter 7 Application of Electronic Converters.pdf
PDF
Chapter 6 AC-AC Converters.pdf
PDF
Chapter 5 DC-DC Converters.pdf
PDF
Chapter 4 Inverters.pdf
PDF
Chapter 3 Controlled Rectifier.pdf
PDF
Chapter 2 Uncontrolled Rectifiers.pdf
PDF
Chapter 1 Introduction to power Electronic Devices.pdf
PDF
BEF43303_-_201620171_W13 Overcurrent Protection.pdf
PDF
BEF43303_-_201620171_W12 Overcurrent Protection.pdf
PDF
BEF43303_-_201620171_W11 Distance Protection.pdf
PDF
BEF43303_-_201620171_W10.pdf
PDF
BEF43303_-_201620171_W8 Power System Stability.pdf
PDF
BEF43303_-_201620171_W7 Power System Stability.pdf
PDF
BEF43303_-_201620171_W6 Analysis of Fault.pdf
PDF
BEF43303_-_201620171_W5 Analysis of fault.pdf
PDF
BEF43303_-_201620171_W4 Analysis of Balance and Unbalance Fault.pdf
PDF
BEF43303 - 201620171 W3 Power Flow Analysis.pdf
chapter4 DC to AC Converter.ppt
chapter_2 AC to DC Converter.pptx
chapter_1 Intro. to electonic Devices.ppt
Chapter 7 Application of Electronic Converters.pdf
Chapter 6 AC-AC Converters.pdf
Chapter 5 DC-DC Converters.pdf
Chapter 4 Inverters.pdf
Chapter 3 Controlled Rectifier.pdf
Chapter 2 Uncontrolled Rectifiers.pdf
Chapter 1 Introduction to power Electronic Devices.pdf
BEF43303_-_201620171_W13 Overcurrent Protection.pdf
BEF43303_-_201620171_W12 Overcurrent Protection.pdf
BEF43303_-_201620171_W11 Distance Protection.pdf
BEF43303_-_201620171_W10.pdf
BEF43303_-_201620171_W8 Power System Stability.pdf
BEF43303_-_201620171_W7 Power System Stability.pdf
BEF43303_-_201620171_W6 Analysis of Fault.pdf
BEF43303_-_201620171_W5 Analysis of fault.pdf
BEF43303_-_201620171_W4 Analysis of Balance and Unbalance Fault.pdf
BEF43303 - 201620171 W3 Power Flow Analysis.pdf

Recently uploaded (20)

PPTX
202450812 BayCHI UCSC-SV 20250812 v17.pptx
PDF
VCE English Exam - Section C Student Revision Booklet
PPTX
Tissue processing ( HISTOPATHOLOGICAL TECHNIQUE
PPTX
Final Presentation General Medicine 03-08-2024.pptx
PDF
Complications of Minimal Access Surgery at WLH
PDF
Saundersa Comprehensive Review for the NCLEX-RN Examination.pdf
PPTX
1st Inaugural Professorial Lecture held on 19th February 2020 (Governance and...
PDF
ANTIBIOTICS.pptx.pdf………………… xxxxxxxxxxxxx
PDF
O7-L3 Supply Chain Operations - ICLT Program
PDF
102 student loan defaulters named and shamed – Is someone you know on the list?
PDF
3rd Neelam Sanjeevareddy Memorial Lecture.pdf
PPTX
GDM (1) (1).pptx small presentation for students
PDF
grade 11-chemistry_fetena_net_5883.pdf teacher guide for all student
PDF
Black Hat USA 2025 - Micro ICS Summit - ICS/OT Threat Landscape
PDF
RMMM.pdf make it easy to upload and study
PPTX
Microbial diseases, their pathogenesis and prophylaxis
PDF
Abdominal Access Techniques with Prof. Dr. R K Mishra
PPTX
Final Presentation General Medicine 03-08-2024.pptx
PDF
OBE - B.A.(HON'S) IN INTERIOR ARCHITECTURE -Ar.MOHIUDDIN.pdf
PDF
The Lost Whites of Pakistan by Jahanzaib Mughal.pdf
202450812 BayCHI UCSC-SV 20250812 v17.pptx
VCE English Exam - Section C Student Revision Booklet
Tissue processing ( HISTOPATHOLOGICAL TECHNIQUE
Final Presentation General Medicine 03-08-2024.pptx
Complications of Minimal Access Surgery at WLH
Saundersa Comprehensive Review for the NCLEX-RN Examination.pdf
1st Inaugural Professorial Lecture held on 19th February 2020 (Governance and...
ANTIBIOTICS.pptx.pdf………………… xxxxxxxxxxxxx
O7-L3 Supply Chain Operations - ICLT Program
102 student loan defaulters named and shamed – Is someone you know on the list?
3rd Neelam Sanjeevareddy Memorial Lecture.pdf
GDM (1) (1).pptx small presentation for students
grade 11-chemistry_fetena_net_5883.pdf teacher guide for all student
Black Hat USA 2025 - Micro ICS Summit - ICS/OT Threat Landscape
RMMM.pdf make it easy to upload and study
Microbial diseases, their pathogenesis and prophylaxis
Abdominal Access Techniques with Prof. Dr. R K Mishra
Final Presentation General Medicine 03-08-2024.pptx
OBE - B.A.(HON'S) IN INTERIOR ARCHITECTURE -Ar.MOHIUDDIN.pdf
The Lost Whites of Pakistan by Jahanzaib Mughal.pdf

Chapter 4 Transmission.ppt

  • 1. CHAPTER 4 Transmission Line BEF 23803 – Polyphase Circuit Analysis
  • 2. BEF 23803 – Polyphase Circuit Analysis – Chapter 4 2 Module Outline  Introduction  Types of Power Lines  Short Line  Medium Line  Long Line
  • 3. BEF 23803 – Polyphase Circuit Analysis – Chapter 4 3 Introduction Distribution System Transmission System Generation System
  • 4. BEF 23803 – Polyphase Circuit Analysis – Chapter 4 4 Introduction – Transmission Line  The equivalent model is on a “per-phase” basis, i.e. VL-N, and Ip.  Two port networks theory is used to express the voltage and current relations.  Short, medium, and long line models are considered as well as the regulation and losses.
  • 5. BEF 23803 – Polyphase Circuit Analysis – Chapter 4 5 Type of Power Lines Transmission Line Model Short Line ≤80km Medium Line ≤250km Long Line ≥250km
  • 6. BEF 23803 – Polyphase Circuit Analysis – Chapter 4 6 Short Line  Definition: ≤ 80 km or ≤ 69 kV.  Multiplying series impedance per unit length (r + jL) by the line length (ℓ). Z = (r + jL)ℓ = R + jX Z = R + jX SR VS + - + - VR IS IR
  • 7. BEF 23803 – Polyphase Circuit Analysis – Chapter 4 7 Short Line  Consider a 3Ф load with apparent power SR(3Ф) is connected at the end of the transmission line, the receiving end current is obtained by  The sending end voltage is VS = VR + ZIR  Since the shunt capacitance is neglected, we have IS = IR * R ) (3 * R R 3V S I   * means conjugate, says S=(2+j3), thus S* becomes (2-j3)
  • 8. BEF 23803 – Polyphase Circuit Analysis – Chapter 4 8 Short Line  Two port network (ABCD) representation: VS = AVR + BIR IS = CVR + DIR or in matrix form ABCD + - + - VS VR IR IS                    R R S S I V D C B A I V                    R R S S I V 1 0 Z 1 I V
  • 9. BEF 23803 – Polyphase Circuit Analysis – Chapter 4 9 Short Line  It is obvious that for short line, A=1 B=Z C=0 D=1  Voltage regulation is defined as the % change in voltage at the receiving end in going from no- load to full-load:  At no-load, IR=0, thus, 100% X V V V VR % R(FL) R(FL) R(NL)   A V V S R(NL) 
  • 10. BEF 23803 – Polyphase Circuit Analysis – Chapter 4 10 Short Line  For short line, A=1 and VR(NL)=VS.  Voltage regulation is measure of line voltage drop and depends on the power factor (cos θ).  Voltage regulation is poorer at low lagging power factor loads (inductive).  Voltage regulation become negative with leading power factor loads (capacitive).  VR(FL) RIR jXIR VS IR Lagging pf VR=+ve
  • 11. BEF 23803 – Polyphase Circuit Analysis – Chapter 4 11 Short Line  Sending-end power,  The total line loss is given by SL(3Ф)=SS(3Ф) – SR(3Ф)  Transmission line efficiency is given by * S S ) S(3 I 3V S   ) S(3 ) R(3 P P     VR(FL) RIR jXIR VS IR Leading pf VR=-ve
  • 12. BEF 23803 – Polyphase Circuit Analysis – Chapter 4 12 Short Line Example 4.1 A 220-kV, three-phase transmission line is 40 km long. The resistance per phase is 0.15  per km and the inductance per phase is 1.3263 mH per km. The shunt capacitance is negligible. Use the short line model to find the voltage and power at the sending end and the voltage regulation and the efficiency when the line is supplying a three-phase load of a. 381 MVA at 0.8 power factor lagging at 220 kV. b. 381 MVA at 0.8 power factor leading at 220 kV.
  • 13. BEF 23803 – Polyphase Circuit Analysis – Chapter 4 13 Short Line Solution a. The series impedance per phase is (f = 60 Hz) Z=(r+jL)ℓ =(0.15+j2x60x1.3263x10-3)40 =6+j20  The receiving end voltage per phase is The apparent power is SR(3Ф)= 381cos-10.8 = 381 36.87° = 304.8+j228.6 MVA kV 0 127 3 0 220 VR(LN)      
  • 14. BEF 23803 – Polyphase Circuit Analysis – Chapter 4 14 Short Line The current per phase is The sending end voltage is The sending end line-to-line voltage magnitude A 36.87 1000 0 127 x 3 x10 36.87 381 3V S I 3 * R(LN) * ) R(3 ) R(1              kV 4.93 144.33 ) )(10 36.87 - j20)(1000 (6 0 127 ZI V V -3 ) R(1 R(LN) S(LN)              kV 250 V 3 V S(LN) L) - S(L  
  • 15. BEF 23803 – Polyphase Circuit Analysis – Chapter 4 15 Short Line The sending end power is Voltage regulation is Transmission line efficiency is MVA 41.8 433 Mvar j288.6 MW 322.8 10 x 36.87 1000 x 4.93 144.33 x 3 I 3V S -3 * ) S(1 S(LN) ) S(3             13.6% 100% x 220 220 - 250 R V %   94.4% 100% x 8 . 322 8 . 304 P P ) S(3 ) R(3      
  • 16. BEF 23803 – Polyphase Circuit Analysis – Chapter 4 16 Short Line b. The current for 381 MVA with 0.8 leading pf is The sending end voltage is The sending end line-to-line voltage magnitude A 36.87 1000 0 127 x 3 x10 36.87 381 3V S I 3 * R(LN) * ) R(3 R(p)           kV 9.29 121.39 ) )(10 36.87 j20)(1000 (6 0 127 ZI V V -3 ) R(1 R(LN) S(LN)              kV 210.26 V 3 V S(LN) L) - S(L  
  • 17. BEF 23803 – Polyphase Circuit Analysis – Chapter 4 17 Short Line The sending end power is Voltage regulation is Transmission line efficiency is MVA 58 . 27 - 364.18 Mvar j168.6 MW 322.8 10 x 36.87 1000 x 29 . 9 121.39 x 3 I 3V S -3 * ) S(1 S(LN) ) S(3              4.43% - 100% x 220 220 - 210.26 R V %   94.4% 100% x 8 . 322 8 . 304 P P ) S(3 ) R(3      
  • 18. BEF 23803 – Polyphase Circuit Analysis – Chapter 4 18 Medium Line  Definition: 80 km ≤ length ≤ 250 km.  Shunt capacitance of the line is included and is divided into two equal parts placed at the sending and receiving ends of the line to form the so-called nominal  model. Z = R + jX VS + - + - VR IS IR IL 2 Y 2 Y
  • 19. BEF 23803 – Polyphase Circuit Analysis – Chapter 4 19 Medium Line  Total shunt admittance Y = (g +jC)ℓ  The shunt conductance per unit length, g is negligible, C = line to neutral capacitance per km, and ℓ = line length. R R L V 2 Y I I   L R S ZI V V   R R S ZI V 2 ZY 1 V          S L S V 2 Y I I   R R S I 2 ZY 1 V 4 ZY 1 Y I                
  • 20. BEF 23803 – Polyphase Circuit Analysis – Chapter 4 20 Medium Line  Representing into the two-port network:  A and D are dimensionless and equal each other if the line is the same when viewed from either end.  The dimensions of B and C are ohms and mhos, respectively. The determinant of the line matrix is unity, i.e., AD – BC = 1         2 ZY 1 A Z B          4 ZY 1 Y C         2 ZY 1 D
  • 21. BEF 23803 – Polyphase Circuit Analysis – Chapter 4 21 Medium Line  We can find VR and IR if VS and IS are known.  In matrix form (inverse matrix), BC AD BI DV V S S R    BC AD CV AI I S S R    S S R BI DV V   S S R CV AI I                        S S R R I V A C B D I V
  • 22. BEF 23803 – Polyphase Circuit Analysis – Chapter 4 22 Medium Line  At no-load, i.e. IR is zero and thus A is the ratio VS/VR.  If the receiving end is short-circuited, i.e. VR is zero and thus B is the ratio VS/IR.  The constant A is useful in computing voltage regulation. If VR(FL) is the receiving end voltage at full load for a sending end voltage of VS, 100% X V V A V VR % R(FL) R(FL) S  
  • 23. BEF 23803 – Polyphase Circuit Analysis – Chapter 4 23 Medium Line Example 4.2 A 345 kV, three-phase transmission line is 130 km long. The resistance per phase is 0.036  per km and the inductance per phase is 0.8 mH per km. The shunt capacitance is 0.0112 F per km. The receiving end load is 270 MVA with 0.8 power factor lagging at 325 kV. Use the medium line model to find the voltage and power at the sending end and the voltage regulation.
  • 24. BEF 23803 – Polyphase Circuit Analysis – Chapter 4 24 Medium Line Solution The series impedance per phase is (assume f = 60 Hz) Z=(0.036+j2x60x0.8x10-3)130=4.68+j39.207  Y=(0+j2x60x0.0112x10-6)130 =j0.000548899 siemens Z = R + jX VS + - + - VR IS IR IL 2 Y 2 Y Load 270MVA 325 kV 0.8 lagging
  • 25. BEF 23803 – Polyphase Circuit Analysis – Chapter 4 25 Medium Line 0012844 . 0 j 98924 . 0 2 ZY 1 D A            j39.207 4.68 Z B    5 j0.0005459 3.5251x10 4 ZY 1 Y C 7             kV 0 187.64 3 0 325 V (LN) R       MVA j162 216 MVA 36.87 270 0.8 cos 270 S -1 ) R(3        
  • 26. BEF 23803 – Polyphase Circuit Analysis – Chapter 4 26 Medium Line A 36.87 479.64 0 187.64 x 3 x10 36.87 270 3V S I 3 * R(LN) * ) R(3 ) 1 R(              ) R(1 R(LN) ) S(1 DI CV I          012 . 4 19 . 199 BI AV V ) R(1 R(LN) S(LN)        36.79 474.42 j284.0929 379.9522     012 . 4 01 . 345 3 x V V S(LN) S(LL) 0.7570 )] angle(I - ) V cos[angle( factor power ) S(1 S(LN)   
  • 27. BEF 23803 – Polyphase Circuit Analysis – Chapter 4 27 Medium Line       36.79 x0.47442 4.012 3x199.19 xI 3xV S * ) S(1 S(LN) ) S(3   Mvar j185.25 MW 214.6 40.802 283.5      0, I load, - no During R  0 V 2 ZY 1 V R(LL) S(LL)           kV 76 . 348 98924 . 0 01 . 345 A V V S(LL) R(LL)    7.3108% x100% 325 325 - 348.76 R V %   
  • 28. BEF 23803 – Polyphase Circuit Analysis – Chapter 4 28 Long Line  Definition: length  250 km. Zx VS + - + - VR IS IR I(x) IS(x+x) + - + - V(x+ x) V(x) yx yx x x l
  • 29. BEF 23803 – Polyphase Circuit Analysis – Chapter 4 29 Long Line ) ( ) ( , 0 x zI dx x dV x zI(x) Δx Δx)-V(x) V(x xI(x) z V(x) Δx) V(x          ) ( ) ( , 0 ) ( ) ( ) ( ) ( ) ( ) ( x yV dx x dI x x x yV x x I x x I x x xV y x I x x I                  ) ( ) ( ) ( 2 2 x zyV dx x dI z dx x V d  
  • 30. BEF 23803 – Polyphase Circuit Analysis – Chapter 4 30 Long Line 0 ) ( ) ( ) ( ) ( 2 2 2 2 2 2 2      x V dx x V d x V dx x V d zy    If we take Second order differential equation: x x e A e A x V      2 1 ) ( where length) unit per (radian constant phase constant, n attenuatio ) )( ( zy constant n propagatio                  C j g L j r j
  • 31. BEF 23803 – Polyphase Circuit Analysis – Chapter 4 31 Long Line         y z z e A e A z x I or e A e A z y e A e A z x I e A e A z dx x dV z x I c x x c x x x x x x                impedance stic characteri 1 ) ( ) ( 1 ) ( 1 ) ( 2 1 2 1 2 1 2 1           
  • 32. BEF 23803 – Polyphase Circuit Analysis – Chapter 4 32 Long Line R R I x I V x V x    ) ( , ) ( , 0 when 2 2 2 ) ( 1 ) ( 1 1 2 2 2 2 2 1 2 1 R c R R c R c R R c c R R I z V A I z V A z A V A A V z A A z I A A V              To find the constant A1 and A2
  • 33. BEF 23803 – Polyphase Circuit Analysis – Chapter 4 33 Long Line x R c R x R c R x R c R x R c R c x R c R x R c R e I z V e I z V x I e I z V e I z V z x I e I z V e I z V x V                            2 2 ) ( 2 2 1 ) ( 2 2 ) (
  • 34. BEF 23803 – Polyphase Circuit Analysis – Chapter 4 34 Long Line R x x c R x x x R c x R c x R x R I e e Z V e e x V e I Z e I Z e V e V x V                             2 2 ) ( 2 2 2 2 ) (         Re-arrange the equations we have, R x x R x x c x R x c R x R x c R I e e V e e Z x I e I e Z V e I e Z V x I                             2 2 1 ) ( 2 2 2 2 ) (        
  • 35. BEF 23803 – Polyphase Circuit Analysis – Chapter 4 35 Long Line Hyperbolic function, R R c R c R xI xV Z x I xI Z xV x V     cosh sinh 1 ) ( sinh cosh ) (     Setting x=l, V(l)=Vs, I(l)=Is R R c s R c R s I V Z I I Z V V         cosh sinh 1 sinh cosh       cosh   D A   sinh c Z B    sinh 1 c Z C  1   BC AD
  • 36. BEF 23803 – Polyphase Circuit Analysis – Chapter 4 36 Long Line R R s I Z V Y Z V ' 2 ' ' 1          R R s I Y Z V Y Z Y I                 2 ' ' 1 4 ' ' 1 ' Comparing B constant with hyperbolic function,            sinh sinh sinh sinh ' Z z z y z Z Z c     Nominal  representation for long line, Method 2
  • 37. BEF 23803 – Polyphase Circuit Analysis – Chapter 4 37 Long Line 2 tanh 2 ' sinh 1 cosh 2 tanh , sinh 1 cosh 2 ' 1 cosh 2 ' sinh cosh 2 ' ' 1                                   ZY where ZY Y Z Y Z To obtain the Y’/2, compare the A constant,
  • 38. BEF 23803 – Polyphase Circuit Analysis – Chapter 4 38 Long Line 2 tanh 2 '     Z Y  2 tanh 2 tanh       z y z zy   2 tanh 1 2 '   c Z Y  2 tanh 2 tanh       y y y  
  • 39. BEF 23803 – Polyphase Circuit Analysis – Chapter 4 39 Long Line 2 tanh 2 '     Y Y  2 2 tanh 2     Y  VS + - + - VR IS IR IL 2 2 tanh 2 2 Y'     Y  2 Y'     sinh ' Z Z  Equivalent  model for long length line:
  • 40. BEF 23803 – Polyphase Circuit Analysis – Chapter 4 40 Long Line Example 4.3: 250 km, 500 kV transmission line has per phase, z = (0.045 + j0.4) /km y = j4. 0 S/km Find ABCD for a  model of the long transmission line.
  • 41. BEF 23803 – Polyphase Circuit Analysis – Chapter 4 41 Long Line Solution: 76 . 17 7 . 316 10 4 4 . 0 045 . 0 6 j j j y z Zc        001267 . 0 10 104 . 7 ) 10 4 )( 4 . 0 045 . 0 ( 5 6 j j j zy           36 . 98 88 . 10 ) sinh( ' j Z Z c      001 . 0 2 2 tanh 1 ' j Z Y c                 
  • 42. BEF 23803 – Polyphase Circuit Analysis – Chapter 4 42 Long Line 0055 . 0 j 9504 . 0 2 Y' Z' 1 D A            36 . 98 88 . 10 Z' B j    j0.00098 4 Y' Z' 1 Y' C         