SlideShare a Scribd company logo
UNIVERSITY OF
TECHNOLOGY
A thesis submitted By
Khaled Z.Yahya
Characterization of different dopants in TiO2 Structure by   Pulsed Laser Deposition
PLD: Pulsed Laser Deposition
The interaction of the laser beam with
the target resulting in evaporation of the
surface layers.
The interaction of the laser beam with the
evaporation materials causing the formation of
isothermal expanding plasma.
The expansion of the laser induced plasma
with a rapid transfer of thermal energy of the
species in plasma into kinetic energy.
Thin film growth.
Rotating target
Laser
Pulsed
Substrate
heater
Ejected Plume
Deposited
film
Why TiO2 ?
Titanium dioxide (TiO2) is a wide band gap ( ) eV for anatase and 3 eV
for rutile .
Titanium dioxide have high refractive index - up to 2.7 (at wavelength of
600nm)
Titanium dioxide good chemical resistance and high chemical stability.
Titanium dioxide good sensitivity to poison gases.
Titanium dioxide good photocatalysts.
TiO2 structure
Anatase Rutile Brockets
TiO2 gas sensor
• TiO2 based sensor are predominant solid-state
gas sensors for domestic, commercial and
industrial application.
• •Low cost
• •Easy production
• •Rigid construction
• •Compact size
• •Simple measuring electronics
Aim of the work
The aim of this work is to reveal specific properties of TiO2
nanostructure prepared by pulsed laser deposition technique
TiO2 samples have been prepared at different dopant noble
metal such as (Pd ,Pt, Ni, Ag,…) The main objective of this
work are :
• 1. Characteristics of structural , microstructural and
photoluminescence properties of thin films .
• 2. Studying the sensitivity and selectivity of these films doped
with different noble metal deposited by PLD to CO gas.
Characterization of different dopants in TiO2 Structure by   Pulsed Laser Deposition
Prepared TiO2
Picture for TiO2 ceramic
Characterization of different dopants in TiO2 Structure by   Pulsed Laser Deposition
Plasma plume
TiO2 thin film
Characterization Measurements of
prepare films
Films thickness measurement
XRD Study
TCO film Morphology SEM ,AFM
Optical properties
photoluminescence properties
Gas sensor measurement
a)SEM b)AFM c)PL d)Gas sensing
c d
a ba b
Characterization of different dopants in TiO2 Structure by   Pulsed Laser Deposition
•Substrate Temperatures effect (Ts )
c
b
a
2θ (degree)
A :anatase
Figure (1) XRD spectra of TiO2/glass at different temperature
a) 200ºC b) 300ºC, c)400ºC
Intensity
(a.u)
laser fluence 0.8 J/cm2 oxygen
pressure 5 *10-1 Torr
TiO2 /Si
FWHM and Main grain size
0
10
20
30
40
50
250 300 350 400 450 500 550
Temperature °C
Maingrainsize(nm)
0.42
0.43
0.44
0.45
0.46
0.47
0.48
0.49
0.5
0.51
250 300 350 400 450 500 550
Temperature °C
FWHM°
a b
Figure (3) TiO2 A(101) thin films grown
on Si (111) at different substrate temperature for (a) main grain size (b)FWHM
Oxygen pressure effect
Fig (4) XRD patterns of TiO2 films grown on Si
at various oxygen pressures a) 5×10-2 Torr b) 5×10-1 Torr c) 10 Torr
Intens
ity
(a.u)
2θ (degree)
Laser Fluence effect
Fig (5) XRD patterns of TiO2 films grown on Si
at various laser fluence a) 1.2 b) 0.8 c) 1.8 J/cm2
Doping effect of noble metal
(Ag, Pt, Pd and Ni).
X - ray Florescence
Fig (7) X-ray florescence pattern for a) TiO2 pure b) TiO2 3% Ag c) TiO2 3% Pt d) TiO2 3% Pd e) TiO2 3% Ni .
a
b
Characterization of different dopants in TiO2 Structure by   Pulsed Laser Deposition
SEM
Substrate Temperatures effect (Ts )
Figure (8) SEM image of the TiO2/Si thin films deposited at various temperature of
a) 300°C, b) 400°C, c) 500°C, and laser fluence 1.2 J/cm2 ,O2 pressure=
10-1 mbar
Oxygen pressure effect
c
ba
Figure (9) SEM image of the TiO2/Si thin films deposited at various
oxygen pressure a ) 5×10-2 mbar, b) 5×10-1 mbar and c) 10 mbar at
substrate temperature 500 °C
and laser fluence 1.2 J/cm2
Doping effect of noble metal (Ag, Pt, Pd and
Ni).
a
c
b
d
Figure (10) SEM image of the TiO2/Si thin films doping 3% with different noble
metal a) Ag b) Pt c) Pd and d) Ni
SEM of plane grain size (nm)X-ray of plane grain size (nm)sample
2931TiO2 Pure 300°C
3536.3TiO2 Pure 400°C
4041.28TiO2 Pure 500°C
Table (1). The grain size of the TiO2 films
SEM of plane grain size (nm)X-ray of plane grain size (nm)O2 Pressure (mbar)sample
33345×10-2TiO2/Si
39415×10-1TiO2/Si
343610TiO2/Si
SEM of plane grain size (nm)X-ray of plane grain size
(nm)
Dopants atom Radii
(pm)
sample
1515.7126TiO23Ag
1111.6130TiO23Pt
2021.572TiO2Pd 3
181969TiO2Ni 3
Atomic Force Microscopy (AFM)
Substrate
Temperatures effe
(TS)
Figure (11) AFM image of the TiO2/Si thin films deposited at various substrate temperature of
a) 300 C, b) 400 C, c) 500 C, and laser fluence 1.2 J/cm2 ,O2 pressure=10-1 mbar
Oxygen Pressure effect
Figure (12) AFM image of the TiO2/Si thin
films deposited at various oxygen pressure
a ) 5×10-2 mbar, b ) 5×10-1 mbar and c) 10
mbar at substrate temperature 500 °C
and laser fluence 1.2 J/cm2
doping effect of noble metal (Ag ,Pt
,Pd ,and Ni)
b
c
d
a
Figure (13) AFM image of the TiO2/Si thin
films doping 3% with different noble metal a)
Ag b) Pt c) Pd and d) Ni substrate
temperature 500 °C
and laser fluence 1.2 J/cm2 with O2
pressure=10-1 mbar.
Table (2). The RMS and roughness of TiO2 films
from AFM
RMS roughness(nm)AFM of plane grain size (nm)X-ray of plane grain size(nm)sample
2.13031TiO2 Pure 300°C
434.436.3TiO2 Pure 400°C
11.24241.28TiO2 Pure 500°C
RMS
roughness
AFM of plane grain size (nm)X-ray of plane grain size (nm)(O2) Pressure mbarsample
4 (nm)32345×10-2TiO2/Si
6 nm40415×10-1TiO2/Si
16.7nm333610TiO2/Si
RMS roughnessAFM of plane grain size (nm)X-ray of plane grain size (nm)sample
26 nm1615.7TiO2 :3% Ag
28 nm12.411.6TiO2 :3% Pt
23 nm2321.5TiO2 :3% Pd
24 nm20.519TiO2 :3% Ni
Optical Properties
Transmission
0
10
20
30
40
50
60
70
80
90
100
0 200 400 600 800 1000
Wave length (nm)
T(%)
TiO2 400 C
TiO2 300 C
TiO2 200 C
Substrate Temperatures effect (TS)
0
10
20
30
40
50
60
70
80
90
100
0 200 400 600 800 1000
Wave length (nm)
T(%)
10 mbar
10 -2 mbar
10 -1 mbar
Oxygen Pressure effect
0
10
20
30
40
50
60
70
80
90
0 200 400 600 800 1000
Wave length (nm)
T(%)
0.8 J/cm2
1.8 J/cm2
1.2 J/cm2
Laser Fluence effect
0
10
20
30
40
50
60
70
80
90
100
0 200 400 600 800 1000
Wave length (nm)
Transmtance%
TiO2 :3% Ag
TiO2 :3% Pd
TiO2 :3%Ni
TiO2 :3% Pt
TiO2 Pure
Doping effect of noble metal (Ag, Pt, Pd and Ni).
Optical Energy Gap Eg
°
Substrate Temperatures effect (Ts )
doping effect of noble metal (Ag ,Pt ,Pd ,and Ni)
direct Eg
doping effect of noble metal (Ag ,Pt ,Pd ,and Ni)
Indirect Eg
Table (3) Physical and optical measurements for pure
and doped TiO2 films
Optical energy gab E°g (eV)
(indirect)
Optical energy gab E°g (eV)
(direct)
Samples
3.033.4TiO2 Pure at 200 °C
3.13.5TiO2 Pure at 300 °C
3.23.6TiO2 Pure at 400 °C
3.123.42TiO2:1%Ag at 200 °C
3.203.5TiO2 :2%Ag at 200 °C
3.283.67TiO2 :3%Ag at 200 °C
3.113.41TiO2 :1%Pt at 200 °C
3.193.52TiO2 :2%Pt at 200 °C
3.253.58TiO2 :3%Pt at 200 °C
2.933.42TiO2:1%Pd at 200 °C
2.93.37TiO2 :2%Pd at 200 °C
2.883.32TiO2 :3%Pd at 200 °C
2.943.42TiO2:1%Ni at 200 °C
2.93.38TiO2 :2%Ni at 200 °C
2.83.35TiO2 :3%Ni at 200 °C
Refractive index (n)
0
0.5
1
1.5
2
2.5
3
3.5
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
hv (eV)
Refractiveindex(n)
TiO2 400 C
TiO2 300 C
TiO2 200 C
Substrate Temperatures effect (TS)
doping effect of noble metal (Ag ,Pt ,Pd ,and Ni)
0
0.5
1
1.5
2
2.5
3
3.5
0 1 2 3 4 5
hv (eV)
Refractiveindex(n)
TiO2 Pure
TiO2 :1%Ag
TiO2 :2% Ag
TiO2 :3%Ag
0
0.5
1
1.5
2
2.5
3
3.5
0 1 2 3 4 5
hv (eV)
Refractiveindex(n)
TiO2 Pure
TiO2 :1% Pt
TiO2 :2% Pt
TiO2 :3%Pt
0
0.5
1
1.5
2
2.5
3
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
hv (eV)
Refractiveindex(n)
TiO2 Pure
TiO2 :3% Pd
TiO2 :2% Pd
TiO2 :1% Pd
0
0.5
1
1.5
2
2.5
3
3.5
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
hv (eV)
Refractiveindex(n)
TiO2 Pure
TiO2 :3% Ni
TiO2 :2%Ni
TiO2 :1% Ni
0
0.05
0.1
0.15
0.2
0.25
0.3
0 1 2 3 4 5
hv (eV)
extinctioncoefficient(K)
TiO2 :3% Ag
TiO2 :2% Ag
TiO2 :1% Ag
TiO2 Pure
0
0.05
0.1
0.15
0.2
0.25
0.3
0 1 2 3 4 5
hv (eV)extinctioncoefficient(K)
TiO2 :3%Pt
TiO2 :2%Pt
TiO2 :1%Pt
TiO2 pure
0
0.05
0.1
0.15
0.2
0.25
0.3
0 1 2 3 4 5
hv (eV)
extinctioncoefficient(K)
TiO2 Pure
TiO2 :1%Pd
TiO2 :2%Pd
TiO2 :3%Pd
0
0.05
0.1
0.15
0.2
0.25
0.3
0 1 2 3 4 5
hv (eV)
extinctioncoefficient(K)
TiO2 Pure
TiO2 :1%Ni
TiO2 :2%Ni
TiO2 :3%Ni
Extinction Coefficient
0
0.05
0.1
0.15
0.2
0.25
0.3
0 1 2 3 4 5
hv (eV)
extinctioncoefficient(K)
TiO2 200 C
TiO2 300 C
TiO2 400 C
Substrate Temperatures effect (TS)
doping effect of noble metal (Ag ,Pt ,Pd ,and Ni)
Photoluminescence (PL)
Substrate Temperature effect (Ts)
c
a b
Figure (23) Photoluminescence spectrum of pure TiO2/glass thin films deposited at various substrate temperature of
a) 300°C, b) 350 °C, c) 400°C, and laser fluence 1.2 J/cm2 ,O2 pressure=10-1 mbar
The doping effect of noble metals (Ag ,Pt ,Pd ,and Ni)
a b
c d
Figure (24) Photoluminescence spectrum of the TiO2/glass thin films doping 3% with different noble metal a) Ag b) Pt c) Pd
and d) Ni ,at substrate temperature 400 °C
and laser fluence 1.2 J/cm2 with O2 pressure=10-1 mbar.
Table (4) Energy values and Intensity of PL Peaks
Samples Energy of Peak
A (eV)
Intensity (a.u) Energy of Peak B (eV) Intensity (a.u) Optical energy
gap (eV) E°
g
TiO2 at 300°C 3.06 840 2.39 365 3.03
TiO2 at 350°C 3.12 900 2.4 390 3.1
TiO2 at 400°C 3.22 1000 2.43 415 3.2
TiO2 :3% Ag at
400°C
3.24 280 2.45 150 3.28
TiO2 :3% Pt at
400°C
3.25 540 2.5 380 3.25
TiO2 :3% Pd at
400°C
2.93 810 2.33 350 2.88
TiO2 :3% Ni at
400°C
2.85 820 2.3 400 2.8
Sensing properties
Room Temperature
0
0.02
0.04
0.06
0.08
0.1
0.12
0 200 400 600 800 1000
Time (sec)
Sensetivity
TiO2 Pure
TiO2:3%Pt
TiO2:3%Ag
TiO2:3%Pd
TiO2:3%Ni
Figure (24) Sensitivity for TiO2/glass pure and doping with a )Ag b)Pt c) Pd
d) Ni as a function of operation time for CO gas at Room temperature and
laser fluence 1.2 J/cm2 with O2 pressure=10-1 mbar
Operation time Effect on sensing properties
0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
2
0 100 200 300 400 500 600 700 800 900
Time (sec)
Sensitivity
TiO2 Pure
TiO2 :1% Ag
TiO2 :2% Ag
TiO2 :3% Ag
0
0.5
1
1.5
2
2.5
3
3.5
0 100 200 300 400 500 600 700 800 900
Time (sec)
Sensitivity
TiO2 Pure
TiO2 :1% Pt
TiO2 :2% Pt
TiO2 :3% Pt
0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
0 100 200 300 400 500 600 700 800 900
Time (sec)
Sensitivity
TiO2 Pure
TiO2 :1% Pd
TiO2 :2% Pd
TiO2 :3% Pd
0
0.2
0.4
0.6
0.8
1
1.2
1.4
0 100 200 300 400 500 600 700 800 900
Time (sec)
Sensitivity
TiO2 Pure
TiO2 :1% Ni
TiO2 :2%Ni
TiO2 :3% Ni
a b
d
c
Figure (25) Sensitivity for TiO2/glass pure and doping with a )Ag b)Pt c) Pd d)
Ni as a function of operation time for CO gas at operation temperature 250 C and
laser fluence 1.2 J/cm2 with O2 pressure=10-1 mbar
Operation time Effect on resistance properties
0
2
4
6
8
10
12
0 200 400 600 800 1000
Time (sec)
Resistance(ohm)*10^9
TiO2 Pure
TiO2 :1% Ag
TiO2 :2% Ag
TiO2 :3% Ag
0
2
4
6
8
10
12
0 200 400 600 800 1000
Time (sec)
Resistance(ohm)*10^9
TiO2 Pure
TiO2 :1% Pt
TiO2 :2% Pt
TiO2 :3% Pt
0
2
4
6
8
10
12
0 200 400 600 800 1000
Time (sec)
Resistance(ohm)*10^9
TiO2 Pure
TiO2 :1% Pd
TiO2 :2% Pd
TiO2 :3% Pd
0
2
4
6
8
10
12
0 200 400 600 800 1000
Time (sec)
Resistance(ohm)*10^9
TiO2 Pure
TiO2 :1% Ni
TiO2 :2% Ni
TiO2 :3% Ni
Figure (26) resistance for TiO2/glass pure and doping with a )Ag b)Pt c)
Pd d) Ni as a function of operation time for CO gas at operation
temperature 250 C and laser fluence 1.2 J/cm2 with O2 pressure=10-1
mbar
a b
c
d
Operation time Effect on current properties
0
1
2
3
4
5
6
7
8
0 200 400 600 800 1000
Time (Sec)
current(nA)
TiO2 pure
TiO2 1% Ag
TiO2 2% Ag
TiO2 3% Ag
0
1
2
3
4
5
6
7
8
9
10
0 200 400 600 800 1000
Time (Sec)
current(nA)
TiO2 pure
TiO2 1%Pt
TiO2 2%Pt
TiO2 3%Pt
0
1
2
3
4
5
6
7
0 200 400 600 800 1000
Time (Sec)
current(nA)
TiO2 pure
TiO2 1% Pd
TiO2 2% Pd
TiO2 3%Pd
0
1
2
3
4
5
6
0 200 400 600 800 1000
Time (Sec)
current(nA)
TiO2 pure
TiO2 1% Ni
TiO2 2% Ni
TiO2 3% Ni
a
d
c
b
Figure (27) current for TiO2 /glass pure and doping with a )Ag
b)Pt c) Pd d) Ni as a function of operation time for CO gas at
operation temperature 250 C and laser fluence 1.2 J/cm2 with O2
pressure=10-1 mbar
Operation temperature Effect on sensing properties
0
0.5
1
1.5
2
2.5
3
0 50 100 150 200 250 300 350 400 450
T(C)
Sensitivity
TiO2 Pure
TiO2 :2% Ag
TiO2 :3% Ag
TiO2 :1% Ag
0
0.5
1
1.5
2
2.5
3
3.5
4
0 50 100 150 200 250 300 350 400 450
T(C)
Sensitivity
TiO2 Pure
TiO2 :2% Pt
TiO2 :3% Pt
TiO2 :1% Pt
0
0.5
1
1.5
2
2.5
0 50 100 150 200 250 300 350 400 450
T(C)
Sensitivity
TiO2 Pure
TiO2 :2% Pd
TiO2 :3% Pd
TiO2 :1% Pd
0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
0 50 100 150 200 250 300 350 400 450
T(C)
Sensitivity
TiO2 Pure
TiO2 :2% Ni
TiO2 :3%Ni
TiO2 :1% Ni
Figure (28) Sensitivity for TiO2/glass pure and doping with 1% ,2%
and 3% (Ag ,Pt ,Pd ,and Ni) films for CO gas at different operation
temperature and laser fluence 1.2 J/cm2 with O2 pressure=10-1 mbar
a b
c d
Sensitivity of TiO2 /Si
0
5
10
15
20
25
0 100 200 300 400 500
T (C)
Sensitivity
TiO2 Pure
TiO2:3% NI
TiO2:3% Pd
TiO2:3% Ag
TiO2:3%Pt
Figure (29) Sensitivity for TiO2/Si pure and doping with 3% (Ag ,Pt ,Pd ,and Ni) films for
CO gas at different operation temperature at laser fluence 1.2 J/cm2 with O2 pressure=10-
1 mbar
Table (5) Sensitivity values of TiO2 pure and doping with different
noble metal concentration at operation temperature T= 250 °C.
Samples Sensitivity
TiO2 pure/glass 0.5
TiO2 :1% Ag /glass 1.7
TiO2 :2% Ag/glass 2.3
TiO2 :3% Ag/glass 2.7
TiO2 :1% Pt/glass 2.2
TiO2 :2% Pt/glass 3
TiO2 :3% Pt/glass 3.3
TiO2 :1% Pd/glass 1.5
TiO2 :2% Pd/glass 1.9
TiO2 :3% Pd/glass 2.2
TiO2 :1% Ni/glass 0.85
TiO2 :2% Ni/glass 1.2
TiO2 :3% Ni/glass 1.5
TiO2 pure/Si 7.5
TiO2 :3% Ag/ Si 17
TiO2 :3% Pt/ Si 23
TiO2 :3% Pd/ Si 15
TiO2 :3% Ni/ Si 12.5
The results in this work agreement with
other results as shown in table below :
References Metal dopantTiO2 Selectivity Sensitivity
[46] - CO 2
[136] - CO 4
[45] - Ethanol and methanol vapor 5
[30] Pt CO 20
[39] Pd CO , H2 4 , 2.5
[81] Nb CO 14
[this work] Pt CO 23
Ag CO 17
Pd CO 14
Ni CO 11
- CO 7.5
Conclusion
Pure TiO2 showed poor response to CO gas.
3 % wt Ag ,Pt ,Pd and Ni doped TiO2 thin film was the
most sensitive element to CO gas .
The optimum operating temperature for CO gas
sensing was (250) °C .
 Ag ,Pt ,Pd and Ni doped TiO2 thin film would be
suitable for fabricating the CO gas sensors.
The sensor TiO2 doping with Pt showed good
selectivity to CO gas.
TiO2 deposited on silicon has sensitivity to CO gas
higher than TiO2 deposited on glass
Future Work
• 1- Studying (TiO2) films as
antireflection coating on (p-n)
junction solar cells and as a
photocatalyst .
• 2- Using a mixing of background gas
N2 + O2 with high vacuum to
enhancement the quality of the films.
• 3- Studying (TiO2) films as a gas
sensor for NO2 and H2 gas .
Paper accepted
1- “Structural and optical properties of TiO 2 photocatalyst thin
film produced by PLD”.
Iraqi Journal science 3rd Scientific conference Baghdad University.
2- "Investigation of structural and Morphology properties of
Nanocrystalline thin films prepared by PLD ".
Journal of the collage education in the 6th conference on physics .
Paper submitted
3-" Structure and Morphology properties of nanocrystalline
noble metal doped films for gas sensing properties "
-2nd conference of nano technology and advance material and their
application .
4-" Nanostructure dopants TiO2 films for gas sensing".
Iraqi Journal of applied physics .
UNIVERSITY OF
TECHNOLOGY

More Related Content

PPTX
Photocatalytsis_ significance and Applications.pptx
PPTX
Sol-Gel Method
PDF
Effect of metal dopant on photocatalytic performance of TiO2 nano particles
PPTX
TiO2 Nanomaterial
PPTX
Metal nanocluster
PPTX
Molecular Beam Epitaxy-MBE---ABU SYED KUET
PPTX
Chemical Vapour Deposition
PPTX
Synthesis of ZnO Nanoparticles using wet chemical method and its characteriza...
Photocatalytsis_ significance and Applications.pptx
Sol-Gel Method
Effect of metal dopant on photocatalytic performance of TiO2 nano particles
TiO2 Nanomaterial
Metal nanocluster
Molecular Beam Epitaxy-MBE---ABU SYED KUET
Chemical Vapour Deposition
Synthesis of ZnO Nanoparticles using wet chemical method and its characteriza...

What's hot (20)

PDF
Magnetoresistance and Its Types(PPT)
PPTX
Perovskite
PPTX
PDF
Applications of nanomaterials by dr.ck
PPTX
carbon quantum dots
PDF
Single Electron Transistor(SET)
PPTX
Nanomaterials 3
PPTX
Pulse laser deposition of thin film
PDF
Four probe-method
PPTX
Shashi presentaion
PDF
X ray Photoelectron Spectroscopy (XPS)
PPTX
TiO2 nanostructure for biomedical application.
PPTX
Nanomaterial and their application
PPTX
Thin film deposition using spray pyrolysis
PPTX
Synthesis of TiO2
PPTX
Nanomaterials dr.surendran prambadath
PPT
Xps
PPTX
laser ablation and pyrolysis for micro machining and nano fabrication
Magnetoresistance and Its Types(PPT)
Perovskite
Applications of nanomaterials by dr.ck
carbon quantum dots
Single Electron Transistor(SET)
Nanomaterials 3
Pulse laser deposition of thin film
Four probe-method
Shashi presentaion
X ray Photoelectron Spectroscopy (XPS)
TiO2 nanostructure for biomedical application.
Nanomaterial and their application
Thin film deposition using spray pyrolysis
Synthesis of TiO2
Nanomaterials dr.surendran prambadath
Xps
laser ablation and pyrolysis for micro machining and nano fabrication
Ad

Viewers also liked (20)

PPT
PPT
50W single-mode linearly polarized high peak power pulsed fiber laser
PPTX
Chemistry and physics of dssc ppt
PPT
Synthesis and applications of graphene based ti o2 photocatalysts
PDF
Synthesis Of Nanostructured TiO2 Thin Films By Pulsed Laser Deposition (PLD) ...
PPTX
Optical fibre communication
PPT
Presentation on optical fiber communication
PPTX
Effect of Annealing on the Structural and Optical Properties of Nanostr...
PPTX
Optical fibre communication basics
PPTX
Synthesis and charaterization of la1 x srxmno3 perovskite nanoparticles
PDF
Pulsed laser deposition
PPTX
Pulsed nd yag laser welding
PPTX
Zirconia crowns for primary anterior and posterior teeth
PDF
Crystal Growth
PPT
Optical fiber communications
PPT
Zirconia all ceramic restorations/ dentistry course in india
PPTX
Thin films
PDF
Introduction to raman spectroscopy
PPTX
ND YAG laser
PPTX
Raman Effect
50W single-mode linearly polarized high peak power pulsed fiber laser
Chemistry and physics of dssc ppt
Synthesis and applications of graphene based ti o2 photocatalysts
Synthesis Of Nanostructured TiO2 Thin Films By Pulsed Laser Deposition (PLD) ...
Optical fibre communication
Presentation on optical fiber communication
Effect of Annealing on the Structural and Optical Properties of Nanostr...
Optical fibre communication basics
Synthesis and charaterization of la1 x srxmno3 perovskite nanoparticles
Pulsed laser deposition
Pulsed nd yag laser welding
Zirconia crowns for primary anterior and posterior teeth
Crystal Growth
Optical fiber communications
Zirconia all ceramic restorations/ dentistry course in india
Thin films
Introduction to raman spectroscopy
ND YAG laser
Raman Effect
Ad

Similar to Characterization of different dopants in TiO2 Structure by Pulsed Laser Deposition (20)

PDF
Influence of concentration on the structural, optical and electrical properti...
PDF
Synthesis and Characterization Studies of Solvothermally Synthesized Undoped ...
PDF
10.1007_s12633-015-9356-x
PDF
Paper id 21201475
PDF
Synthesis of Titaniumdioxide (TIO2) Nano Particles
PPTX
Bespoke compositions and microstructures from suspension and solution precurs...
PPTX
Optical Control of Selectivity of High Rate CO2 Photoreduction Via Interband-...
PPT
Ayida8thnov
PDF
IRJET- Sonochemical Synthesis of Tio2 and Tio2-Sio2 Nanocomposites and their ...
PPT
Presentation__ferroelectric_materials.ppt
PDF
SLIDE VIVA APRIL 2016
PDF
2012 TPCA presentation _New process
PDF
Optical and Electrical Properties of TiO2 Doped Fe2O3 Thin Film Prepared by S...
PDF
Km2518391842
PDF
Km2518391842
PDF
10.1007_s11082-015-0120-7
PDF
Structural and Optical Properties of Electron Beam Evaporated ITO and Ni: ITO...
PDF
Annealing effect on the growth of nanostructured ti o2 thin films by pulsed l...
PDF
Influence of Carbon in Iron on Characteristics of Surface Modification by EDM...
PDF
Influence of Carbon in Iron on Characteristics of Surface Modification by EDM...
Influence of concentration on the structural, optical and electrical properti...
Synthesis and Characterization Studies of Solvothermally Synthesized Undoped ...
10.1007_s12633-015-9356-x
Paper id 21201475
Synthesis of Titaniumdioxide (TIO2) Nano Particles
Bespoke compositions and microstructures from suspension and solution precurs...
Optical Control of Selectivity of High Rate CO2 Photoreduction Via Interband-...
Ayida8thnov
IRJET- Sonochemical Synthesis of Tio2 and Tio2-Sio2 Nanocomposites and their ...
Presentation__ferroelectric_materials.ppt
SLIDE VIVA APRIL 2016
2012 TPCA presentation _New process
Optical and Electrical Properties of TiO2 Doped Fe2O3 Thin Film Prepared by S...
Km2518391842
Km2518391842
10.1007_s11082-015-0120-7
Structural and Optical Properties of Electron Beam Evaporated ITO and Ni: ITO...
Annealing effect on the growth of nanostructured ti o2 thin films by pulsed l...
Influence of Carbon in Iron on Characteristics of Surface Modification by EDM...
Influence of Carbon in Iron on Characteristics of Surface Modification by EDM...

More from sarmad (6)

PDF
Study of Annealing Effect on the Some Physical Properties of Nanostructured T...
PDF
ZnO:Fe ودراسة بعض الخصائص الفيزيائية وظروف الترسيب للمركب APCVD تصميم وتصني...
PPT
مقدمة في فيزياء الليزر
PPTX
Cd2SnO4 دراسة تأثير التلدين على الخواص التركيبية والبصرية لأغشية
PDF
Effect of annealing on the structural and optical properties of nanostructure...
PPT
Heterojunction المفرق الهجين
Study of Annealing Effect on the Some Physical Properties of Nanostructured T...
ZnO:Fe ودراسة بعض الخصائص الفيزيائية وظروف الترسيب للمركب APCVD تصميم وتصني...
مقدمة في فيزياء الليزر
Cd2SnO4 دراسة تأثير التلدين على الخواص التركيبية والبصرية لأغشية
Effect of annealing on the structural and optical properties of nanostructure...
Heterojunction المفرق الهجين

Recently uploaded (20)

PDF
KodekX | Application Modernization Development
PDF
Optimiser vos workloads AI/ML sur Amazon EC2 et AWS Graviton
PDF
Building Integrated photovoltaic BIPV_UPV.pdf
PPTX
Detection-First SIEM: Rule Types, Dashboards, and Threat-Informed Strategy
PDF
How UI/UX Design Impacts User Retention in Mobile Apps.pdf
PDF
7 ChatGPT Prompts to Help You Define Your Ideal Customer Profile.pdf
PPTX
Effective Security Operations Center (SOC) A Modern, Strategic, and Threat-In...
PPTX
ACSFv1EN-58255 AWS Academy Cloud Security Foundations.pptx
PDF
Advanced methodologies resolving dimensionality complications for autism neur...
PDF
Dropbox Q2 2025 Financial Results & Investor Presentation
PDF
Chapter 3 Spatial Domain Image Processing.pdf
PPTX
Digital-Transformation-Roadmap-for-Companies.pptx
PDF
MIND Revenue Release Quarter 2 2025 Press Release
PPTX
Understanding_Digital_Forensics_Presentation.pptx
PDF
Blue Purple Modern Animated Computer Science Presentation.pdf.pdf
PPTX
MYSQL Presentation for SQL database connectivity
PPT
“AI and Expert System Decision Support & Business Intelligence Systems”
PDF
Architecting across the Boundaries of two Complex Domains - Healthcare & Tech...
PPTX
sap open course for s4hana steps from ECC to s4
PDF
cuic standard and advanced reporting.pdf
KodekX | Application Modernization Development
Optimiser vos workloads AI/ML sur Amazon EC2 et AWS Graviton
Building Integrated photovoltaic BIPV_UPV.pdf
Detection-First SIEM: Rule Types, Dashboards, and Threat-Informed Strategy
How UI/UX Design Impacts User Retention in Mobile Apps.pdf
7 ChatGPT Prompts to Help You Define Your Ideal Customer Profile.pdf
Effective Security Operations Center (SOC) A Modern, Strategic, and Threat-In...
ACSFv1EN-58255 AWS Academy Cloud Security Foundations.pptx
Advanced methodologies resolving dimensionality complications for autism neur...
Dropbox Q2 2025 Financial Results & Investor Presentation
Chapter 3 Spatial Domain Image Processing.pdf
Digital-Transformation-Roadmap-for-Companies.pptx
MIND Revenue Release Quarter 2 2025 Press Release
Understanding_Digital_Forensics_Presentation.pptx
Blue Purple Modern Animated Computer Science Presentation.pdf.pdf
MYSQL Presentation for SQL database connectivity
“AI and Expert System Decision Support & Business Intelligence Systems”
Architecting across the Boundaries of two Complex Domains - Healthcare & Tech...
sap open course for s4hana steps from ECC to s4
cuic standard and advanced reporting.pdf

Characterization of different dopants in TiO2 Structure by Pulsed Laser Deposition

  • 1. UNIVERSITY OF TECHNOLOGY A thesis submitted By Khaled Z.Yahya
  • 3. PLD: Pulsed Laser Deposition The interaction of the laser beam with the target resulting in evaporation of the surface layers. The interaction of the laser beam with the evaporation materials causing the formation of isothermal expanding plasma. The expansion of the laser induced plasma with a rapid transfer of thermal energy of the species in plasma into kinetic energy. Thin film growth.
  • 5. Why TiO2 ? Titanium dioxide (TiO2) is a wide band gap ( ) eV for anatase and 3 eV for rutile . Titanium dioxide have high refractive index - up to 2.7 (at wavelength of 600nm) Titanium dioxide good chemical resistance and high chemical stability. Titanium dioxide good sensitivity to poison gases. Titanium dioxide good photocatalysts.
  • 7. TiO2 gas sensor • TiO2 based sensor are predominant solid-state gas sensors for domestic, commercial and industrial application. • •Low cost • •Easy production • •Rigid construction • •Compact size • •Simple measuring electronics
  • 8. Aim of the work The aim of this work is to reveal specific properties of TiO2 nanostructure prepared by pulsed laser deposition technique TiO2 samples have been prepared at different dopant noble metal such as (Pd ,Pt, Ni, Ag,…) The main objective of this work are : • 1. Characteristics of structural , microstructural and photoluminescence properties of thin films . • 2. Studying the sensitivity and selectivity of these films doped with different noble metal deposited by PLD to CO gas.
  • 14. Characterization Measurements of prepare films Films thickness measurement XRD Study TCO film Morphology SEM ,AFM Optical properties photoluminescence properties Gas sensor measurement
  • 15. a)SEM b)AFM c)PL d)Gas sensing c d a ba b
  • 17. •Substrate Temperatures effect (Ts ) c b a 2θ (degree) A :anatase Figure (1) XRD spectra of TiO2/glass at different temperature a) 200ºC b) 300ºC, c)400ºC Intensity (a.u) laser fluence 0.8 J/cm2 oxygen pressure 5 *10-1 Torr
  • 19. FWHM and Main grain size 0 10 20 30 40 50 250 300 350 400 450 500 550 Temperature °C Maingrainsize(nm) 0.42 0.43 0.44 0.45 0.46 0.47 0.48 0.49 0.5 0.51 250 300 350 400 450 500 550 Temperature °C FWHM° a b Figure (3) TiO2 A(101) thin films grown on Si (111) at different substrate temperature for (a) main grain size (b)FWHM
  • 20. Oxygen pressure effect Fig (4) XRD patterns of TiO2 films grown on Si at various oxygen pressures a) 5×10-2 Torr b) 5×10-1 Torr c) 10 Torr Intens ity (a.u) 2θ (degree)
  • 21. Laser Fluence effect Fig (5) XRD patterns of TiO2 films grown on Si at various laser fluence a) 1.2 b) 0.8 c) 1.8 J/cm2
  • 22. Doping effect of noble metal (Ag, Pt, Pd and Ni).
  • 23. X - ray Florescence Fig (7) X-ray florescence pattern for a) TiO2 pure b) TiO2 3% Ag c) TiO2 3% Pt d) TiO2 3% Pd e) TiO2 3% Ni . a b
  • 25. SEM Substrate Temperatures effect (Ts ) Figure (8) SEM image of the TiO2/Si thin films deposited at various temperature of a) 300°C, b) 400°C, c) 500°C, and laser fluence 1.2 J/cm2 ,O2 pressure= 10-1 mbar
  • 26. Oxygen pressure effect c ba Figure (9) SEM image of the TiO2/Si thin films deposited at various oxygen pressure a ) 5×10-2 mbar, b) 5×10-1 mbar and c) 10 mbar at substrate temperature 500 °C and laser fluence 1.2 J/cm2
  • 27. Doping effect of noble metal (Ag, Pt, Pd and Ni). a c b d Figure (10) SEM image of the TiO2/Si thin films doping 3% with different noble metal a) Ag b) Pt c) Pd and d) Ni
  • 28. SEM of plane grain size (nm)X-ray of plane grain size (nm)sample 2931TiO2 Pure 300°C 3536.3TiO2 Pure 400°C 4041.28TiO2 Pure 500°C Table (1). The grain size of the TiO2 films SEM of plane grain size (nm)X-ray of plane grain size (nm)O2 Pressure (mbar)sample 33345×10-2TiO2/Si 39415×10-1TiO2/Si 343610TiO2/Si SEM of plane grain size (nm)X-ray of plane grain size (nm) Dopants atom Radii (pm) sample 1515.7126TiO23Ag 1111.6130TiO23Pt 2021.572TiO2Pd 3 181969TiO2Ni 3
  • 29. Atomic Force Microscopy (AFM) Substrate Temperatures effe (TS) Figure (11) AFM image of the TiO2/Si thin films deposited at various substrate temperature of a) 300 C, b) 400 C, c) 500 C, and laser fluence 1.2 J/cm2 ,O2 pressure=10-1 mbar
  • 30. Oxygen Pressure effect Figure (12) AFM image of the TiO2/Si thin films deposited at various oxygen pressure a ) 5×10-2 mbar, b ) 5×10-1 mbar and c) 10 mbar at substrate temperature 500 °C and laser fluence 1.2 J/cm2
  • 31. doping effect of noble metal (Ag ,Pt ,Pd ,and Ni) b c d a Figure (13) AFM image of the TiO2/Si thin films doping 3% with different noble metal a) Ag b) Pt c) Pd and d) Ni substrate temperature 500 °C and laser fluence 1.2 J/cm2 with O2 pressure=10-1 mbar.
  • 32. Table (2). The RMS and roughness of TiO2 films from AFM RMS roughness(nm)AFM of plane grain size (nm)X-ray of plane grain size(nm)sample 2.13031TiO2 Pure 300°C 434.436.3TiO2 Pure 400°C 11.24241.28TiO2 Pure 500°C RMS roughness AFM of plane grain size (nm)X-ray of plane grain size (nm)(O2) Pressure mbarsample 4 (nm)32345×10-2TiO2/Si 6 nm40415×10-1TiO2/Si 16.7nm333610TiO2/Si RMS roughnessAFM of plane grain size (nm)X-ray of plane grain size (nm)sample 26 nm1615.7TiO2 :3% Ag 28 nm12.411.6TiO2 :3% Pt 23 nm2321.5TiO2 :3% Pd 24 nm20.519TiO2 :3% Ni
  • 33. Optical Properties Transmission 0 10 20 30 40 50 60 70 80 90 100 0 200 400 600 800 1000 Wave length (nm) T(%) TiO2 400 C TiO2 300 C TiO2 200 C Substrate Temperatures effect (TS) 0 10 20 30 40 50 60 70 80 90 100 0 200 400 600 800 1000 Wave length (nm) T(%) 10 mbar 10 -2 mbar 10 -1 mbar Oxygen Pressure effect 0 10 20 30 40 50 60 70 80 90 0 200 400 600 800 1000 Wave length (nm) T(%) 0.8 J/cm2 1.8 J/cm2 1.2 J/cm2 Laser Fluence effect 0 10 20 30 40 50 60 70 80 90 100 0 200 400 600 800 1000 Wave length (nm) Transmtance% TiO2 :3% Ag TiO2 :3% Pd TiO2 :3%Ni TiO2 :3% Pt TiO2 Pure Doping effect of noble metal (Ag, Pt, Pd and Ni).
  • 34. Optical Energy Gap Eg ° Substrate Temperatures effect (Ts )
  • 35. doping effect of noble metal (Ag ,Pt ,Pd ,and Ni) direct Eg
  • 36. doping effect of noble metal (Ag ,Pt ,Pd ,and Ni) Indirect Eg
  • 37. Table (3) Physical and optical measurements for pure and doped TiO2 films Optical energy gab E°g (eV) (indirect) Optical energy gab E°g (eV) (direct) Samples 3.033.4TiO2 Pure at 200 °C 3.13.5TiO2 Pure at 300 °C 3.23.6TiO2 Pure at 400 °C 3.123.42TiO2:1%Ag at 200 °C 3.203.5TiO2 :2%Ag at 200 °C 3.283.67TiO2 :3%Ag at 200 °C 3.113.41TiO2 :1%Pt at 200 °C 3.193.52TiO2 :2%Pt at 200 °C 3.253.58TiO2 :3%Pt at 200 °C 2.933.42TiO2:1%Pd at 200 °C 2.93.37TiO2 :2%Pd at 200 °C 2.883.32TiO2 :3%Pd at 200 °C 2.943.42TiO2:1%Ni at 200 °C 2.93.38TiO2 :2%Ni at 200 °C 2.83.35TiO2 :3%Ni at 200 °C
  • 38. Refractive index (n) 0 0.5 1 1.5 2 2.5 3 3.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 hv (eV) Refractiveindex(n) TiO2 400 C TiO2 300 C TiO2 200 C Substrate Temperatures effect (TS) doping effect of noble metal (Ag ,Pt ,Pd ,and Ni) 0 0.5 1 1.5 2 2.5 3 3.5 0 1 2 3 4 5 hv (eV) Refractiveindex(n) TiO2 Pure TiO2 :1%Ag TiO2 :2% Ag TiO2 :3%Ag 0 0.5 1 1.5 2 2.5 3 3.5 0 1 2 3 4 5 hv (eV) Refractiveindex(n) TiO2 Pure TiO2 :1% Pt TiO2 :2% Pt TiO2 :3%Pt 0 0.5 1 1.5 2 2.5 3 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 hv (eV) Refractiveindex(n) TiO2 Pure TiO2 :3% Pd TiO2 :2% Pd TiO2 :1% Pd 0 0.5 1 1.5 2 2.5 3 3.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 hv (eV) Refractiveindex(n) TiO2 Pure TiO2 :3% Ni TiO2 :2%Ni TiO2 :1% Ni
  • 39. 0 0.05 0.1 0.15 0.2 0.25 0.3 0 1 2 3 4 5 hv (eV) extinctioncoefficient(K) TiO2 :3% Ag TiO2 :2% Ag TiO2 :1% Ag TiO2 Pure 0 0.05 0.1 0.15 0.2 0.25 0.3 0 1 2 3 4 5 hv (eV)extinctioncoefficient(K) TiO2 :3%Pt TiO2 :2%Pt TiO2 :1%Pt TiO2 pure 0 0.05 0.1 0.15 0.2 0.25 0.3 0 1 2 3 4 5 hv (eV) extinctioncoefficient(K) TiO2 Pure TiO2 :1%Pd TiO2 :2%Pd TiO2 :3%Pd 0 0.05 0.1 0.15 0.2 0.25 0.3 0 1 2 3 4 5 hv (eV) extinctioncoefficient(K) TiO2 Pure TiO2 :1%Ni TiO2 :2%Ni TiO2 :3%Ni Extinction Coefficient 0 0.05 0.1 0.15 0.2 0.25 0.3 0 1 2 3 4 5 hv (eV) extinctioncoefficient(K) TiO2 200 C TiO2 300 C TiO2 400 C Substrate Temperatures effect (TS) doping effect of noble metal (Ag ,Pt ,Pd ,and Ni)
  • 40. Photoluminescence (PL) Substrate Temperature effect (Ts) c a b Figure (23) Photoluminescence spectrum of pure TiO2/glass thin films deposited at various substrate temperature of a) 300°C, b) 350 °C, c) 400°C, and laser fluence 1.2 J/cm2 ,O2 pressure=10-1 mbar
  • 41. The doping effect of noble metals (Ag ,Pt ,Pd ,and Ni) a b c d Figure (24) Photoluminescence spectrum of the TiO2/glass thin films doping 3% with different noble metal a) Ag b) Pt c) Pd and d) Ni ,at substrate temperature 400 °C and laser fluence 1.2 J/cm2 with O2 pressure=10-1 mbar.
  • 42. Table (4) Energy values and Intensity of PL Peaks Samples Energy of Peak A (eV) Intensity (a.u) Energy of Peak B (eV) Intensity (a.u) Optical energy gap (eV) E° g TiO2 at 300°C 3.06 840 2.39 365 3.03 TiO2 at 350°C 3.12 900 2.4 390 3.1 TiO2 at 400°C 3.22 1000 2.43 415 3.2 TiO2 :3% Ag at 400°C 3.24 280 2.45 150 3.28 TiO2 :3% Pt at 400°C 3.25 540 2.5 380 3.25 TiO2 :3% Pd at 400°C 2.93 810 2.33 350 2.88 TiO2 :3% Ni at 400°C 2.85 820 2.3 400 2.8
  • 43. Sensing properties Room Temperature 0 0.02 0.04 0.06 0.08 0.1 0.12 0 200 400 600 800 1000 Time (sec) Sensetivity TiO2 Pure TiO2:3%Pt TiO2:3%Ag TiO2:3%Pd TiO2:3%Ni Figure (24) Sensitivity for TiO2/glass pure and doping with a )Ag b)Pt c) Pd d) Ni as a function of operation time for CO gas at Room temperature and laser fluence 1.2 J/cm2 with O2 pressure=10-1 mbar
  • 44. Operation time Effect on sensing properties 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 0 100 200 300 400 500 600 700 800 900 Time (sec) Sensitivity TiO2 Pure TiO2 :1% Ag TiO2 :2% Ag TiO2 :3% Ag 0 0.5 1 1.5 2 2.5 3 3.5 0 100 200 300 400 500 600 700 800 900 Time (sec) Sensitivity TiO2 Pure TiO2 :1% Pt TiO2 :2% Pt TiO2 :3% Pt 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 0 100 200 300 400 500 600 700 800 900 Time (sec) Sensitivity TiO2 Pure TiO2 :1% Pd TiO2 :2% Pd TiO2 :3% Pd 0 0.2 0.4 0.6 0.8 1 1.2 1.4 0 100 200 300 400 500 600 700 800 900 Time (sec) Sensitivity TiO2 Pure TiO2 :1% Ni TiO2 :2%Ni TiO2 :3% Ni a b d c Figure (25) Sensitivity for TiO2/glass pure and doping with a )Ag b)Pt c) Pd d) Ni as a function of operation time for CO gas at operation temperature 250 C and laser fluence 1.2 J/cm2 with O2 pressure=10-1 mbar
  • 45. Operation time Effect on resistance properties 0 2 4 6 8 10 12 0 200 400 600 800 1000 Time (sec) Resistance(ohm)*10^9 TiO2 Pure TiO2 :1% Ag TiO2 :2% Ag TiO2 :3% Ag 0 2 4 6 8 10 12 0 200 400 600 800 1000 Time (sec) Resistance(ohm)*10^9 TiO2 Pure TiO2 :1% Pt TiO2 :2% Pt TiO2 :3% Pt 0 2 4 6 8 10 12 0 200 400 600 800 1000 Time (sec) Resistance(ohm)*10^9 TiO2 Pure TiO2 :1% Pd TiO2 :2% Pd TiO2 :3% Pd 0 2 4 6 8 10 12 0 200 400 600 800 1000 Time (sec) Resistance(ohm)*10^9 TiO2 Pure TiO2 :1% Ni TiO2 :2% Ni TiO2 :3% Ni Figure (26) resistance for TiO2/glass pure and doping with a )Ag b)Pt c) Pd d) Ni as a function of operation time for CO gas at operation temperature 250 C and laser fluence 1.2 J/cm2 with O2 pressure=10-1 mbar a b c d
  • 46. Operation time Effect on current properties 0 1 2 3 4 5 6 7 8 0 200 400 600 800 1000 Time (Sec) current(nA) TiO2 pure TiO2 1% Ag TiO2 2% Ag TiO2 3% Ag 0 1 2 3 4 5 6 7 8 9 10 0 200 400 600 800 1000 Time (Sec) current(nA) TiO2 pure TiO2 1%Pt TiO2 2%Pt TiO2 3%Pt 0 1 2 3 4 5 6 7 0 200 400 600 800 1000 Time (Sec) current(nA) TiO2 pure TiO2 1% Pd TiO2 2% Pd TiO2 3%Pd 0 1 2 3 4 5 6 0 200 400 600 800 1000 Time (Sec) current(nA) TiO2 pure TiO2 1% Ni TiO2 2% Ni TiO2 3% Ni a d c b Figure (27) current for TiO2 /glass pure and doping with a )Ag b)Pt c) Pd d) Ni as a function of operation time for CO gas at operation temperature 250 C and laser fluence 1.2 J/cm2 with O2 pressure=10-1 mbar
  • 47. Operation temperature Effect on sensing properties 0 0.5 1 1.5 2 2.5 3 0 50 100 150 200 250 300 350 400 450 T(C) Sensitivity TiO2 Pure TiO2 :2% Ag TiO2 :3% Ag TiO2 :1% Ag 0 0.5 1 1.5 2 2.5 3 3.5 4 0 50 100 150 200 250 300 350 400 450 T(C) Sensitivity TiO2 Pure TiO2 :2% Pt TiO2 :3% Pt TiO2 :1% Pt 0 0.5 1 1.5 2 2.5 0 50 100 150 200 250 300 350 400 450 T(C) Sensitivity TiO2 Pure TiO2 :2% Pd TiO2 :3% Pd TiO2 :1% Pd 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 0 50 100 150 200 250 300 350 400 450 T(C) Sensitivity TiO2 Pure TiO2 :2% Ni TiO2 :3%Ni TiO2 :1% Ni Figure (28) Sensitivity for TiO2/glass pure and doping with 1% ,2% and 3% (Ag ,Pt ,Pd ,and Ni) films for CO gas at different operation temperature and laser fluence 1.2 J/cm2 with O2 pressure=10-1 mbar a b c d
  • 48. Sensitivity of TiO2 /Si 0 5 10 15 20 25 0 100 200 300 400 500 T (C) Sensitivity TiO2 Pure TiO2:3% NI TiO2:3% Pd TiO2:3% Ag TiO2:3%Pt Figure (29) Sensitivity for TiO2/Si pure and doping with 3% (Ag ,Pt ,Pd ,and Ni) films for CO gas at different operation temperature at laser fluence 1.2 J/cm2 with O2 pressure=10- 1 mbar
  • 49. Table (5) Sensitivity values of TiO2 pure and doping with different noble metal concentration at operation temperature T= 250 °C. Samples Sensitivity TiO2 pure/glass 0.5 TiO2 :1% Ag /glass 1.7 TiO2 :2% Ag/glass 2.3 TiO2 :3% Ag/glass 2.7 TiO2 :1% Pt/glass 2.2 TiO2 :2% Pt/glass 3 TiO2 :3% Pt/glass 3.3 TiO2 :1% Pd/glass 1.5 TiO2 :2% Pd/glass 1.9 TiO2 :3% Pd/glass 2.2 TiO2 :1% Ni/glass 0.85 TiO2 :2% Ni/glass 1.2 TiO2 :3% Ni/glass 1.5 TiO2 pure/Si 7.5 TiO2 :3% Ag/ Si 17 TiO2 :3% Pt/ Si 23 TiO2 :3% Pd/ Si 15 TiO2 :3% Ni/ Si 12.5
  • 50. The results in this work agreement with other results as shown in table below : References Metal dopantTiO2 Selectivity Sensitivity [46] - CO 2 [136] - CO 4 [45] - Ethanol and methanol vapor 5 [30] Pt CO 20 [39] Pd CO , H2 4 , 2.5 [81] Nb CO 14 [this work] Pt CO 23 Ag CO 17 Pd CO 14 Ni CO 11 - CO 7.5
  • 51. Conclusion Pure TiO2 showed poor response to CO gas. 3 % wt Ag ,Pt ,Pd and Ni doped TiO2 thin film was the most sensitive element to CO gas . The optimum operating temperature for CO gas sensing was (250) °C .  Ag ,Pt ,Pd and Ni doped TiO2 thin film would be suitable for fabricating the CO gas sensors. The sensor TiO2 doping with Pt showed good selectivity to CO gas. TiO2 deposited on silicon has sensitivity to CO gas higher than TiO2 deposited on glass
  • 52. Future Work • 1- Studying (TiO2) films as antireflection coating on (p-n) junction solar cells and as a photocatalyst . • 2- Using a mixing of background gas N2 + O2 with high vacuum to enhancement the quality of the films. • 3- Studying (TiO2) films as a gas sensor for NO2 and H2 gas .
  • 53. Paper accepted 1- “Structural and optical properties of TiO 2 photocatalyst thin film produced by PLD”. Iraqi Journal science 3rd Scientific conference Baghdad University. 2- "Investigation of structural and Morphology properties of Nanocrystalline thin films prepared by PLD ". Journal of the collage education in the 6th conference on physics . Paper submitted 3-" Structure and Morphology properties of nanocrystalline noble metal doped films for gas sensing properties " -2nd conference of nano technology and advance material and their application . 4-" Nanostructure dopants TiO2 films for gas sensing". Iraqi Journal of applied physics .