SlideShare a Scribd company logo
GROWTH AND
DEVELOPMENT
VEGETATIVE GROWTH AND
            DEVELOPMENT
   Shoot and Root Systems
       Crop plants must yield for profit
   Root functions
       Anchor
       Absorb
       Conduct
       Store

    As the shoot system enlarges, the root system must
      also increase to meet demands of leaves/stems
MEASURING GROWTH

   Increase in fresh weight
   Increase in dry weight
   Volume
   Length
   Height
   Surface area
MEASURING GROWTH

   Definition:

       Size increase by cell division and enlargement,
        including synthesis of new cellular material and
        organization of subcellular organelles.
MEASURING GROWTH

   Classifying shoot growth

       Determinate – flower buds initiate terminally;
        shoot elongation stops; e.g. bush snap beans

       Indeterminate – flower buds born laterally;
        shoot terminals remain vegetative; e.g. pole beans
SHOOT GROWTH PATTERNS

   Annuals

       Herbaceous (nonwoody) plants
       Complete life cycle in one growing season
       See general growth curve; fig. 9-1
           Note times of flower initiation
       See life cycle of angiosperm annual; fig. 9-3
           Note events over 120-day period
Chp9 growthanddevelopment
SHOOT GROWTH PATTERNS

   Biennials

       Herbaceous plants
       Require two growing seasons to complete their
        life cycle (not necessarily two full years)
       Stem growth limited during first growing season;
        see fig. 9-4; Note vegetative growth vs. flowering
        e.g. celery, beets, cabbage, Brussels sprouts
SHOOT GROWTH PATTERNS

   Perennials

       Either herbaceous or woody
       Herbaceous roots live indefinitely (shoots can)
           Shoot growth resumes in spring from adventitious buds in
            crown
           Many grown as annuals
       Woody roots and shoots live indefinitely
           Growth varies with annual environment and zone
           Pronounced diurnal variation in shoot growth; night greater
ROOT GROWTH PATTERNS

   Variation in pattern with species and season
   Growth peaks in spring, late summer/early fall
       Spring growth from previous year’s foods
       Fall growth from summer’s accumulated foods
   Some species roots grow during winter
   Some species have some roots ‘resting’ while,
    in the same plant, others are growing
HOW PLANTS GROW

   Meristems
       Dicots
           Apical meristems – vegetative buds
               shoot tips
               axils of leaves
           Cells divide/redivide by mitosis/cytokinesis
           Cell division/elongation causes shoot growth
           Similar meristematic cells at root tips
HOW PLANTS GROW

   Meristems (cont)

        Secondary growth in woody perennials
            Increase in diameter
              due to meristematic regions
            vascular cambium
              xylem to inside, phloem to outside
            cork cambium
              external to vascular cambium
              produces cork in the bark layer
GENETIC FACTORS AFFECTING
GROWTH AND DEVELOPMENT
   DNA directs growth and differentiation
       Enzymes catalyze biochemical reactions
   Structural genes
       Genes involved in protein synthesis
   Operator genes
       Regulate structural genes
   Regulatory genes
       Regulate operator genes
GENETIC FACTORS AFFECTING
GROWTH AND DEVELOPMENT
   What signals trigger these genes?

       Believed to include:
           Growth regulators
           Inorganic ions
           Coenzymes
           Environmental factors; e.g. temperature, light

           Therefore . . .
               Genetics directs the final form and size of the plant as
                altered by the environment
ENVIRONMENTAL FACTORS
INFLUENCING PLANT GROWTH
   Light
   Temperature
   Water
   Gases
ENVIRONMENTAL FACTORS
INFLUENCING PLANT GROWTH
   Light
       Sun’s radiation
           not all reaches earth; atmosphere absorbs much
           visible (and some invisible) rays pass, warming surface
           reradiation warms atmosphere
       Intensity
           high in deserts; no clouds, dry air
           low in cloudy, humid regions
           earth tilted on axis; rays strike more directly in summer
           day length varies during year due to tilt
ENVIRONMENTAL FACTORS
INFLUENCING PLANT GROWTH
   Light (cont)
       narrow band affects plant photoreaction processes
       PAR (Photosynthetically Active Radiation)
           400-700nm
       stomates regulated by red (660nm), blue (440nm)
       photomorphogenesis – shape determined by light
           controlled by pigment phytochrome
           phytochrome absorbs red (660nm) and far-red (730nm)
            but not at same time
           pigment changes form as it absorbs each wavelength
ENVIRONMENTAL FACTORS
INFLUENCING PLANT GROWTH
   Light (cont)
       importance of phytochrome in plant responses
           plants detect ratio of red:far-red light
           red light – full sun
               yields sturdy, branched, compact, dark green plants
           far-red light – crowded, shaded fields/greenhouses
               plants tall, spindly, weak, few branches; leaves light green
ENVIRONMENTAL FACTORS
INFLUENCING PLANT GROWTH
   Light (cont)
       Phototropism – movement toward light
           hormone auxin accumulates on shaded side
           cell growth from auxin effect bends plant
           blue light most active in process
           pigment uncertain
ENVIRONMENTAL FACTORS
INFLUENCING PLANT GROWTH
   Light (cont)
       Photoperiodism – response to varying length of
        light and dark
           shorter days (longer nights)
               onset of dormancy
               fall leaf color
               flower initiation in strawberry, poinsettia, chrysanthemum
               tubers/tuberous roots begin to form
           longer days (shorter nights)
               bulbs of onion begin to form
               flower initiation in spinach, sugar beets, winter barley
ENVIRONMENTAL FACTORS
INFLUENCING PLANT GROWTH
   Temperature
       correlates with seasonal variation of light intensity
       temperate-region growth between 39°F and 122°F
       high light intensity creates heat; sunburned
       low temp injury associated with frosts; heat loss
        by radiation contributes
           opaque cover reduces radiation heat loss
           burning smudge pots radiate heat to citrus trees
           wind machines circulate warm air from temperature
            inversions
ENVIRONMENTAL FACTORS
INFLUENCING PLANT GROWTH
   Water
       most growing plants contain about 90% water
       amount needed for growth varies with plant and
        light intensity
       transpiration drives water uptake from soil
           water pulled through xylem
           exits via stomates
       evapotranspiration - total loss of water from soil
           loss from soil evaporation and plant transpiration
ENVIRONMENTAL FACTORS
INFLUENCING PLANT GROWTH
   Gases
       Nitrogen is most abundant
       Oxygen and carbon dioxide are most important
           plants use CO2 for photosynthesis; give off O2
           plants use O2 for respiration; give off CO2
           stomatal opening and closing related to CO2 levels?
           oxygen for respiration limited in waterlogged soils
           increased CO2 levels in atmosphere associated with
            global warming
           additional pollutants harm plants
PHASE CHANGE: JUVENILITY,
MATURATION, SENESCENCE
   Phasic development
       embryonic growth
       juvenility
       transition stage
       maturity
       senescence
       death
   During maturation, seedlings of many woody
    perennials differ strikingly in appearance at
    various stages of development
PHASE CHANGE: JUVENILITY,
MATURATION, SENESCENCE
   Juvenility
       terminated by flowering and fruiting
       may be extensive in certain forest species
   Maturity
       loss or reduction in ability of cuttings to form adventitious
        roots
   Physiologically related
       lower part of plant may be oldest chronologically, yet be
        youngest physiologically (e.g. some woody plants)
       top part of plant may be youngest in days, yet develop into
        the part that matures and bears flowers and fruit
AGING AND SENESCENCE
   Life spans among plants differ greatly
       range from few months to thousands of years
           e.g. bristlecone pine (over 4000 years old)
           e.g. California redwoods (over 3000 years old)
       clones should be able to exist indefinately
   Senescence
       a physiological aging process in which tissues in an
        organism deteriorate and finally die
       considered to be terminal, irreversible
       can be postponed by removing flowers before seeds start
        to form
REPRODUCTIVE GROWTH
AND DEVELOPMENT
   Phases
       Flower induction and initiation
       Flower differentiation and development
       Pollination
       Fertilization
       Fruit set and seed formation
       Growth and maturation of fruit and seed
       Fruit senescence
REPRODUCTIVE GROWTH
AND DEVELOPMENT
   Flower induction and initiation

       What causes a plant to flower?

           Daylength (photoperiod)

           Low temperatures (vernalization)

           Neither
REPRODUCTIVE GROWTH
AND DEVELOPMENT
   Photoperiodism (see table 9-5)
       Short-day plants (long-night; need darkness)
       Long-day plants (need sufficient light)
       Day-neutral plants (flowering unaffected by period)
   Change from vegetative to reproductive
   Manipulations enable year-round production
       Market may dictate; consumer’s expectations
        associated with seasons, e.g. poinsettias at
        Christmas
Chp9 growthanddevelopment
REPRODUCTIVE GROWTH
AND DEVELOPMENT
   Photoperiodism (cont)
       Stimulus transported from leaves to meristems
           Cocklebur
           Leaf removal – failed to flower
           Isolated leaf, dark exposure – flowering initiated
       Believed to be hormone related
       Interruption of night with light affects flowering
           Cocklebur
           Red light, 660 nm, inhibits
           Far-red, 730 nm, restores
           Discovery of Phytochrome
Chp9 growthanddevelopment
REPRODUCTIVE GROWTH
AND DEVELOPMENT
   Low temperature induction
   Vernalization
       “making ready for spring”
       Any temperature treatment that induces or
        promotes flowering
       First observed in winter wheat; many biennials
       Temperature and exposure varies among species
       Note difference/relationship to dormancy
        Many plants do not respond to changed
        daylength or low temperature; agricultural
REPRODUCTIVE GROWTH
AND DEVELOPMENT

   Flower development
       Stimulus from leaves to apical meristem changes
        vegetative to flowering
       Some SDPs require only limited stimulus to
        induce flowering; e.g. cocklebur – one day (night)
       Once changed the process is not reversible
       Environmental conditions must be favorable for
        full flower development
REPRODUCTIVE GROWTH
AND DEVELOPMENT

   Pollination
       Transfer of pollen from anther to stigma
       May be:
           Same flower (self-pollination)
           Different flowers, but same plant (self-pollination)
           Different flowers/plants, same cultivar (self-pollination)
           Different flowers, different cultivars (cross-pollination)
REPRODUCTIVE GROWTH
AND DEVELOPMENT

   Self-fertile plant produces fruit and seed with
    its own pollen
   Self-sterile plant requires pollen from another
    cultivar to set fruit and seed
       Often due to incompatibility; pollen will not grow
        through style to embryo sac
       Sometimes cross-pollination incompatibility
REPRODUCTIVE GROWTH
AND DEVELOPMENT
   Pollen transferred by:
       Insects; chiefly honeybees
           Bright flowers
           Attractive nectar
       Wind
           Important for plants with inconspicuous flowers
           e.g. grasses, cereal grain crops, forest tree species, some
            fruit and nut crops
       Other minor agents – water, snails, slugs, birds, bats
REPRODUCTIVE GROWTH
AND DEVELOPMENT
   What if pollination and fertilization fail to
    occur?
   Fruit and seed don’t develop
   Exception: Parthenocarpy
       Formation of fruit without pollination/fertilization
       Parthenocarpic fruit are seedless
           e.g. ‘Washington Navel’ orange, many fig cultivars
       Note: not all seedless fruits are parthenocarpic
           Certain seedless grapes – fruit forms but embryo aborts
REPRODUCTIVE GROWTH
AND DEVELOPMENT

   Fertilization
       Angiosperms (flowering plants)
           Termed double fertilization
       Gymnosperms (cone-bearing plants)
           Staminate, pollen-producing cones
           Ovulate cones produce “naked” seed on cone scales
REPRODUCTIVE GROWTH
AND DEVELOPMENT
   Fruit setting
       Accessory tissues often involved
           e.g. enlarged, fleshy receptacle of apple and pear
           True fruit is enlarged ovary
       Not all flowers develop into fruit
       Certain plant hormones involved
       Optimum level of fruit setting
           Remove excess by hand, machine, or chemical
           Some species self-thinning; Washington Navel Orange
       Temperature strongly influences fruit set
REPRODUCTIVE GROWTH
AND DEVELOPMENT

   Fruit growth and development
       After set, true fruit and associated tissues begin to
        grow
       Food moves from other plant parts into fruit tissue
       Hormones from seeds and fruit affect growth
       Auxin relation in strawberry fruits
       Gibberellins in grape (fig. 9-21, 9-22)
       Patterns of growth vary with fruits (fig. 9-16, 9-17)
PLANT GROWTH REGULATORS

   Plant hormones are natural
   Plant growth regulators include:
       Plant hormones (natural)
       Plant hormones (synthetic)
       Non-nutrient chemicals
   Five groups of natural plant hormones:
       Auxins, Gibberellins, Cytokinins, Ethylene, and
        Abscisic acid

More Related Content

PPTX
protected cultivation of fruit
PPTX
Fruit drop – causes and prevention in horticuture crops
PPTX
Effect of organic farming in vegetable crops
PPTX
Nutritional disorders in fruit crops
PPTX
Physiological changes in plants during moisture stress condition
PPTX
Role of growth regulators in enhancing the productivity of vegetables
PPTX
Post harvest treatment
PPT
Inm in horticulture
protected cultivation of fruit
Fruit drop – causes and prevention in horticuture crops
Effect of organic farming in vegetable crops
Nutritional disorders in fruit crops
Physiological changes in plants during moisture stress condition
Role of growth regulators in enhancing the productivity of vegetables
Post harvest treatment
Inm in horticulture

What's hot (20)

PPTX
Salt tolerance crops
PPTX
Role of PGRs in Vegetable crops' Physiology
PPTX
Stress indices PPT
PPTX
Gourd ppt
PPTX
How do plants deal with flooding?
PPT
Green manure
PPTX
Grafting in Vegetable Crops
PPTX
Climate change and its impact on Vegetable production
PPT
Water Management in Fruit Crops
PPTX
Advances in use of plant bio-regulators for fruit production-includes new gen...
PPTX
Fruit dropping
PPTX
Drought stress
PPTX
Role of biofertilizers in Horticulture
PPTX
Rainfed Agriculture PPT
PPTX
Physiology and biochemistry of ripening fruit
PPTX
RECENT ADVANCES IN IMPROVEMENT OF VEGETABLE CROPS IN INDIA
PPTX
Environmental factors affecting seed development and maturation
PPTX
Botany of snake, bottle,ridge , ivy gourds
PPTX
Strawberry cultivation
Salt tolerance crops
Role of PGRs in Vegetable crops' Physiology
Stress indices PPT
Gourd ppt
How do plants deal with flooding?
Green manure
Grafting in Vegetable Crops
Climate change and its impact on Vegetable production
Water Management in Fruit Crops
Advances in use of plant bio-regulators for fruit production-includes new gen...
Fruit dropping
Drought stress
Role of biofertilizers in Horticulture
Rainfed Agriculture PPT
Physiology and biochemistry of ripening fruit
RECENT ADVANCES IN IMPROVEMENT OF VEGETABLE CROPS IN INDIA
Environmental factors affecting seed development and maturation
Botany of snake, bottle,ridge , ivy gourds
Strawberry cultivation
Ad

Viewers also liked (8)

PPTX
Growth & development presentation
PPTX
Plant Growth Hormones
PPT
Ergastic Substances
PPTX
Bioindicators ppt
PDF
Cytokinins
PPTX
Growth and development
PPSX
Growth and development..ppt
Growth & development presentation
Plant Growth Hormones
Ergastic Substances
Bioindicators ppt
Cytokinins
Growth and development
Growth and development..ppt
Ad

Similar to Chp9 growthanddevelopment (20)

DOCX
PPT
Veg Crops-Lesson 05 Env, Prop.ppt
PPT
Flowering physiology1 فسيولوجيا الإزهار
PPT
Yellow Packet Notes
PPTX
BS1003: The transition to flowering. Pat Heslop-Harrison
PPTX
Ch 15 Plant Growth and Development 1.pptx
PPTX
Practical Botany
PDF
4. phases of plant growth and development
PPTX
Physiological response of crop plants
PPT
HOW ABIOTIC FACTORS AFFECTS FLOWERING.ppt
PPTX
Influence of climate on fruit crops
PDF
FACTORS AFFECTING CROP PRODUCTION
PPTX
76848 (1).pptx
PPT
Plant and growth development in agronomy
PPTX
Agro-physiological basis of variation in yield.pptx
PPTX
Agro-physiological basis of variation in yield.pptx
PDF
CRP 321 - Theory full notes.pdf CROP
DOCX
juvenilityandflowerbuddifferentiation-220318165341.docx
PPTX
IMPACT OF CLIMATIC PARAMETERS ON PATHOGEN, INSECT PESTS AND CROP PRODUCTIVITY
PPT
Pbl Presentation Plant Physiology
Veg Crops-Lesson 05 Env, Prop.ppt
Flowering physiology1 فسيولوجيا الإزهار
Yellow Packet Notes
BS1003: The transition to flowering. Pat Heslop-Harrison
Ch 15 Plant Growth and Development 1.pptx
Practical Botany
4. phases of plant growth and development
Physiological response of crop plants
HOW ABIOTIC FACTORS AFFECTS FLOWERING.ppt
Influence of climate on fruit crops
FACTORS AFFECTING CROP PRODUCTION
76848 (1).pptx
Plant and growth development in agronomy
Agro-physiological basis of variation in yield.pptx
Agro-physiological basis of variation in yield.pptx
CRP 321 - Theory full notes.pdf CROP
juvenilityandflowerbuddifferentiation-220318165341.docx
IMPACT OF CLIMATIC PARAMETERS ON PATHOGEN, INSECT PESTS AND CROP PRODUCTIVITY
Pbl Presentation Plant Physiology

More from Muhammad Fahad Saleh (20)

PPTX
Chemical coordination
PPTX
Nervous coordination
PDF
Cupping therapy
PPT
Plant classification
PPT
Introduction to plants 1233859493415311-3
PPT
Chp9 growth and development
PPT
Chap. 4 plant reproduction final
PPT
plant morphological lab activities ch 091129203156-phpapp01
PPT
PPT
Stems 100926175806-phpapp02
PPT
Genotype and phenotype
PPT
PPT
Genetic code 2081
PPT
Genetic traits
PPT
52 ch13mendel2007
PPT
07 gene mutations
PPT
Molecular genetics partii 100131193902-phpapp01
Chemical coordination
Nervous coordination
Cupping therapy
Plant classification
Introduction to plants 1233859493415311-3
Chp9 growth and development
Chap. 4 plant reproduction final
plant morphological lab activities ch 091129203156-phpapp01
Stems 100926175806-phpapp02
Genotype and phenotype
Genetic code 2081
Genetic traits
52 ch13mendel2007
07 gene mutations
Molecular genetics partii 100131193902-phpapp01

Recently uploaded (20)

PDF
Univ-Connecticut-ChatGPT-Presentaion.pdf
PDF
Enhancing emotion recognition model for a student engagement use case through...
PDF
NewMind AI Weekly Chronicles - August'25-Week II
PDF
Video forgery: An extensive analysis of inter-and intra-frame manipulation al...
PDF
Zenith AI: Advanced Artificial Intelligence
PPTX
Digital-Transformation-Roadmap-for-Companies.pptx
PDF
Building Integrated photovoltaic BIPV_UPV.pdf
PDF
Hindi spoken digit analysis for native and non-native speakers
PDF
Approach and Philosophy of On baking technology
PDF
ENT215_Completing-a-large-scale-migration-and-modernization-with-AWS.pdf
PPTX
SOPHOS-XG Firewall Administrator PPT.pptx
PDF
Profit Center Accounting in SAP S/4HANA, S4F28 Col11
PPTX
1. Introduction to Computer Programming.pptx
PDF
1 - Historical Antecedents, Social Consideration.pdf
PDF
Unlocking AI with Model Context Protocol (MCP)
PPTX
A Presentation on Artificial Intelligence
PDF
From MVP to Full-Scale Product A Startup’s Software Journey.pdf
PDF
Transform Your ITIL® 4 & ITSM Strategy with AI in 2025.pdf
PPTX
Group 1 Presentation -Planning and Decision Making .pptx
PDF
Microsoft Solutions Partner Drive Digital Transformation with D365.pdf
Univ-Connecticut-ChatGPT-Presentaion.pdf
Enhancing emotion recognition model for a student engagement use case through...
NewMind AI Weekly Chronicles - August'25-Week II
Video forgery: An extensive analysis of inter-and intra-frame manipulation al...
Zenith AI: Advanced Artificial Intelligence
Digital-Transformation-Roadmap-for-Companies.pptx
Building Integrated photovoltaic BIPV_UPV.pdf
Hindi spoken digit analysis for native and non-native speakers
Approach and Philosophy of On baking technology
ENT215_Completing-a-large-scale-migration-and-modernization-with-AWS.pdf
SOPHOS-XG Firewall Administrator PPT.pptx
Profit Center Accounting in SAP S/4HANA, S4F28 Col11
1. Introduction to Computer Programming.pptx
1 - Historical Antecedents, Social Consideration.pdf
Unlocking AI with Model Context Protocol (MCP)
A Presentation on Artificial Intelligence
From MVP to Full-Scale Product A Startup’s Software Journey.pdf
Transform Your ITIL® 4 & ITSM Strategy with AI in 2025.pdf
Group 1 Presentation -Planning and Decision Making .pptx
Microsoft Solutions Partner Drive Digital Transformation with D365.pdf

Chp9 growthanddevelopment

  • 2. VEGETATIVE GROWTH AND DEVELOPMENT  Shoot and Root Systems  Crop plants must yield for profit  Root functions  Anchor  Absorb  Conduct  Store As the shoot system enlarges, the root system must also increase to meet demands of leaves/stems
  • 3. MEASURING GROWTH  Increase in fresh weight  Increase in dry weight  Volume  Length  Height  Surface area
  • 4. MEASURING GROWTH  Definition:  Size increase by cell division and enlargement, including synthesis of new cellular material and organization of subcellular organelles.
  • 5. MEASURING GROWTH  Classifying shoot growth  Determinate – flower buds initiate terminally; shoot elongation stops; e.g. bush snap beans  Indeterminate – flower buds born laterally; shoot terminals remain vegetative; e.g. pole beans
  • 6. SHOOT GROWTH PATTERNS  Annuals  Herbaceous (nonwoody) plants  Complete life cycle in one growing season  See general growth curve; fig. 9-1  Note times of flower initiation  See life cycle of angiosperm annual; fig. 9-3  Note events over 120-day period
  • 8. SHOOT GROWTH PATTERNS  Biennials  Herbaceous plants  Require two growing seasons to complete their life cycle (not necessarily two full years)  Stem growth limited during first growing season; see fig. 9-4; Note vegetative growth vs. flowering e.g. celery, beets, cabbage, Brussels sprouts
  • 9. SHOOT GROWTH PATTERNS  Perennials  Either herbaceous or woody  Herbaceous roots live indefinitely (shoots can)  Shoot growth resumes in spring from adventitious buds in crown  Many grown as annuals  Woody roots and shoots live indefinitely  Growth varies with annual environment and zone  Pronounced diurnal variation in shoot growth; night greater
  • 10. ROOT GROWTH PATTERNS  Variation in pattern with species and season  Growth peaks in spring, late summer/early fall  Spring growth from previous year’s foods  Fall growth from summer’s accumulated foods  Some species roots grow during winter  Some species have some roots ‘resting’ while, in the same plant, others are growing
  • 11. HOW PLANTS GROW  Meristems  Dicots  Apical meristems – vegetative buds  shoot tips  axils of leaves  Cells divide/redivide by mitosis/cytokinesis  Cell division/elongation causes shoot growth  Similar meristematic cells at root tips
  • 12. HOW PLANTS GROW  Meristems (cont)  Secondary growth in woody perennials  Increase in diameter  due to meristematic regions  vascular cambium  xylem to inside, phloem to outside  cork cambium  external to vascular cambium  produces cork in the bark layer
  • 13. GENETIC FACTORS AFFECTING GROWTH AND DEVELOPMENT  DNA directs growth and differentiation  Enzymes catalyze biochemical reactions  Structural genes  Genes involved in protein synthesis  Operator genes  Regulate structural genes  Regulatory genes  Regulate operator genes
  • 14. GENETIC FACTORS AFFECTING GROWTH AND DEVELOPMENT  What signals trigger these genes?  Believed to include:  Growth regulators  Inorganic ions  Coenzymes  Environmental factors; e.g. temperature, light  Therefore . . .  Genetics directs the final form and size of the plant as altered by the environment
  • 15. ENVIRONMENTAL FACTORS INFLUENCING PLANT GROWTH  Light  Temperature  Water  Gases
  • 16. ENVIRONMENTAL FACTORS INFLUENCING PLANT GROWTH  Light  Sun’s radiation  not all reaches earth; atmosphere absorbs much  visible (and some invisible) rays pass, warming surface  reradiation warms atmosphere  Intensity  high in deserts; no clouds, dry air  low in cloudy, humid regions  earth tilted on axis; rays strike more directly in summer  day length varies during year due to tilt
  • 17. ENVIRONMENTAL FACTORS INFLUENCING PLANT GROWTH  Light (cont)  narrow band affects plant photoreaction processes  PAR (Photosynthetically Active Radiation)  400-700nm  stomates regulated by red (660nm), blue (440nm)  photomorphogenesis – shape determined by light  controlled by pigment phytochrome  phytochrome absorbs red (660nm) and far-red (730nm) but not at same time  pigment changes form as it absorbs each wavelength
  • 18. ENVIRONMENTAL FACTORS INFLUENCING PLANT GROWTH  Light (cont)  importance of phytochrome in plant responses  plants detect ratio of red:far-red light  red light – full sun  yields sturdy, branched, compact, dark green plants  far-red light – crowded, shaded fields/greenhouses  plants tall, spindly, weak, few branches; leaves light green
  • 19. ENVIRONMENTAL FACTORS INFLUENCING PLANT GROWTH  Light (cont)  Phototropism – movement toward light  hormone auxin accumulates on shaded side  cell growth from auxin effect bends plant  blue light most active in process  pigment uncertain
  • 20. ENVIRONMENTAL FACTORS INFLUENCING PLANT GROWTH  Light (cont)  Photoperiodism – response to varying length of light and dark  shorter days (longer nights)  onset of dormancy  fall leaf color  flower initiation in strawberry, poinsettia, chrysanthemum  tubers/tuberous roots begin to form  longer days (shorter nights)  bulbs of onion begin to form  flower initiation in spinach, sugar beets, winter barley
  • 21. ENVIRONMENTAL FACTORS INFLUENCING PLANT GROWTH  Temperature  correlates with seasonal variation of light intensity  temperate-region growth between 39°F and 122°F  high light intensity creates heat; sunburned  low temp injury associated with frosts; heat loss by radiation contributes  opaque cover reduces radiation heat loss  burning smudge pots radiate heat to citrus trees  wind machines circulate warm air from temperature inversions
  • 22. ENVIRONMENTAL FACTORS INFLUENCING PLANT GROWTH  Water  most growing plants contain about 90% water  amount needed for growth varies with plant and light intensity  transpiration drives water uptake from soil  water pulled through xylem  exits via stomates  evapotranspiration - total loss of water from soil  loss from soil evaporation and plant transpiration
  • 23. ENVIRONMENTAL FACTORS INFLUENCING PLANT GROWTH  Gases  Nitrogen is most abundant  Oxygen and carbon dioxide are most important  plants use CO2 for photosynthesis; give off O2  plants use O2 for respiration; give off CO2  stomatal opening and closing related to CO2 levels?  oxygen for respiration limited in waterlogged soils  increased CO2 levels in atmosphere associated with global warming  additional pollutants harm plants
  • 24. PHASE CHANGE: JUVENILITY, MATURATION, SENESCENCE  Phasic development  embryonic growth  juvenility  transition stage  maturity  senescence  death  During maturation, seedlings of many woody perennials differ strikingly in appearance at various stages of development
  • 25. PHASE CHANGE: JUVENILITY, MATURATION, SENESCENCE  Juvenility  terminated by flowering and fruiting  may be extensive in certain forest species  Maturity  loss or reduction in ability of cuttings to form adventitious roots  Physiologically related  lower part of plant may be oldest chronologically, yet be youngest physiologically (e.g. some woody plants)  top part of plant may be youngest in days, yet develop into the part that matures and bears flowers and fruit
  • 26. AGING AND SENESCENCE  Life spans among plants differ greatly  range from few months to thousands of years  e.g. bristlecone pine (over 4000 years old)  e.g. California redwoods (over 3000 years old)  clones should be able to exist indefinately  Senescence  a physiological aging process in which tissues in an organism deteriorate and finally die  considered to be terminal, irreversible  can be postponed by removing flowers before seeds start to form
  • 27. REPRODUCTIVE GROWTH AND DEVELOPMENT  Phases  Flower induction and initiation  Flower differentiation and development  Pollination  Fertilization  Fruit set and seed formation  Growth and maturation of fruit and seed  Fruit senescence
  • 28. REPRODUCTIVE GROWTH AND DEVELOPMENT  Flower induction and initiation  What causes a plant to flower?  Daylength (photoperiod)  Low temperatures (vernalization)  Neither
  • 29. REPRODUCTIVE GROWTH AND DEVELOPMENT  Photoperiodism (see table 9-5)  Short-day plants (long-night; need darkness)  Long-day plants (need sufficient light)  Day-neutral plants (flowering unaffected by period)  Change from vegetative to reproductive  Manipulations enable year-round production  Market may dictate; consumer’s expectations associated with seasons, e.g. poinsettias at Christmas
  • 31. REPRODUCTIVE GROWTH AND DEVELOPMENT  Photoperiodism (cont)  Stimulus transported from leaves to meristems  Cocklebur  Leaf removal – failed to flower  Isolated leaf, dark exposure – flowering initiated  Believed to be hormone related  Interruption of night with light affects flowering  Cocklebur  Red light, 660 nm, inhibits  Far-red, 730 nm, restores  Discovery of Phytochrome
  • 33. REPRODUCTIVE GROWTH AND DEVELOPMENT  Low temperature induction  Vernalization  “making ready for spring”  Any temperature treatment that induces or promotes flowering  First observed in winter wheat; many biennials  Temperature and exposure varies among species  Note difference/relationship to dormancy Many plants do not respond to changed daylength or low temperature; agricultural
  • 34. REPRODUCTIVE GROWTH AND DEVELOPMENT  Flower development  Stimulus from leaves to apical meristem changes vegetative to flowering  Some SDPs require only limited stimulus to induce flowering; e.g. cocklebur – one day (night)  Once changed the process is not reversible  Environmental conditions must be favorable for full flower development
  • 35. REPRODUCTIVE GROWTH AND DEVELOPMENT  Pollination  Transfer of pollen from anther to stigma  May be:  Same flower (self-pollination)  Different flowers, but same plant (self-pollination)  Different flowers/plants, same cultivar (self-pollination)  Different flowers, different cultivars (cross-pollination)
  • 36. REPRODUCTIVE GROWTH AND DEVELOPMENT  Self-fertile plant produces fruit and seed with its own pollen  Self-sterile plant requires pollen from another cultivar to set fruit and seed  Often due to incompatibility; pollen will not grow through style to embryo sac  Sometimes cross-pollination incompatibility
  • 37. REPRODUCTIVE GROWTH AND DEVELOPMENT  Pollen transferred by:  Insects; chiefly honeybees  Bright flowers  Attractive nectar  Wind  Important for plants with inconspicuous flowers  e.g. grasses, cereal grain crops, forest tree species, some fruit and nut crops  Other minor agents – water, snails, slugs, birds, bats
  • 38. REPRODUCTIVE GROWTH AND DEVELOPMENT  What if pollination and fertilization fail to occur?  Fruit and seed don’t develop  Exception: Parthenocarpy  Formation of fruit without pollination/fertilization  Parthenocarpic fruit are seedless  e.g. ‘Washington Navel’ orange, many fig cultivars  Note: not all seedless fruits are parthenocarpic  Certain seedless grapes – fruit forms but embryo aborts
  • 39. REPRODUCTIVE GROWTH AND DEVELOPMENT  Fertilization  Angiosperms (flowering plants)  Termed double fertilization  Gymnosperms (cone-bearing plants)  Staminate, pollen-producing cones  Ovulate cones produce “naked” seed on cone scales
  • 40. REPRODUCTIVE GROWTH AND DEVELOPMENT  Fruit setting  Accessory tissues often involved  e.g. enlarged, fleshy receptacle of apple and pear  True fruit is enlarged ovary  Not all flowers develop into fruit  Certain plant hormones involved  Optimum level of fruit setting  Remove excess by hand, machine, or chemical  Some species self-thinning; Washington Navel Orange  Temperature strongly influences fruit set
  • 41. REPRODUCTIVE GROWTH AND DEVELOPMENT  Fruit growth and development  After set, true fruit and associated tissues begin to grow  Food moves from other plant parts into fruit tissue  Hormones from seeds and fruit affect growth  Auxin relation in strawberry fruits  Gibberellins in grape (fig. 9-21, 9-22)  Patterns of growth vary with fruits (fig. 9-16, 9-17)
  • 42. PLANT GROWTH REGULATORS  Plant hormones are natural  Plant growth regulators include:  Plant hormones (natural)  Plant hormones (synthetic)  Non-nutrient chemicals  Five groups of natural plant hormones:  Auxins, Gibberellins, Cytokinins, Ethylene, and Abscisic acid