SlideShare a Scribd company logo
CognitiveComputing_CirrusShakeri_final
What	
  is	
  Cogni,ve	
  Compu,ng?	
  
•  Programming	
  Model	
  
–  A	
  Cogni,ve	
  Compu,ng	
  system	
  learns	
  about	
  a	
  domain	
  (e.g.,	
  medical	
  diagnos,cs)	
  by	
  
processing	
  large	
  amounts	
  of	
  data	
  and	
  unstructured	
  text	
  from	
  medical	
  literature	
  and	
  
medical	
  databases.	
  	
  
•  Technology	
  Components	
  
–  Cogni,ve	
  Compu,ng	
  is	
  comprised	
  of	
  a	
  set	
  of	
  technologies	
  that	
  automate	
  the	
  encoding	
  
of	
  large	
  amounts	
  of	
  data	
  into	
  a	
  computer-­‐understandable	
  knowledge	
  base.	
  Examples	
  of	
  
technologies	
  in	
  Cogni,ve	
  Compu,ng	
  include	
  natural	
  language	
  understanding,	
  machine	
  
learning,	
  and	
  probabilis,c	
  and	
  seman,c	
  reasoning.	
  	
  
•  User	
  Interac,on	
  
–  Cogni,ve	
  Compu,ng	
  systems	
  engage	
  in	
  conversa,ons	
  with	
  their	
  human	
  users	
  in	
  natural	
  
language	
  by	
  asking	
  and	
  answering	
  ques,ons.	
  
•  Applica,ons	
  
–  Cogni,ve	
  Compu,ng	
  enables	
  machines	
  to	
  reason	
  about	
  the	
  objects	
  and	
  events	
  in	
  a	
  
specific	
  domain	
  of	
  discourse,	
  and	
  to	
  discover	
  rela,onships	
  among	
  things	
  in	
  that	
  domain.	
  
This	
  enables	
  applica,ons	
  that	
  can	
  interact	
  conversa,onally	
  with	
  humans	
  as	
  if	
  they	
  were	
  
human.	
  	
  
3	
  
THE	
  PATH	
  TO	
  COGNITIVE	
  COMPUTING	
  
PASSES	
  THROUGH	
  (BIG)	
  DATA	
  
Big Data Data Ingestion Knowledge Graph Machine Reasoning Cognitive Function
Web Content
(web sites, blogs, …)
Predict
(demand, inventory, …)
Learning from Usage Patterns
Semantic Inferencing
Big Data ! Intelligent Applications
(A Lifecycle View)
Social Networks
(twitter, facebook, …)
Enterprise Apps
(ERP, CRM, …)
Internet of Things
(sensor data, device data, …)
Textual Content
(documents, reports, …)
Online Activities
(search, shopping, …)
Knowledge-bases
(taxonomies, ontologies, …)
Data Preparation
•  Data integration
•  Data enrichment
•  Data imputation
•  Data versioning
•  Data provenance
•  …
Natural Language
Processing
•  Entity extraction
•  Entity resolution
•  Relationship
extraction
•  Taxonomy generation
•  Knowledge based
population (slot filling)
•  …
Context Engine
Sensemaking Engine
Semantic Search
Machine Learning
(classification,
clustering, anomaly
detection, …)
Design
(product, process, …)
Analyze
(performance, problem, …)
Detect
(incident, anomaly,
opportunity, …)
Find
(people, content, …)
Discover
(insight, pattern, …)
Compare
(products, companies,, …)
Processes
(process logs, server logs, …)
Automated Update Cycle
Rule Engine
Process Automation Engine
Semantic Query Engine
Inference Engine
Network of:
people, places,
organizations,
processes, rules,
policies, events,
documents, devices, …
Recommendation Engine
Cirrus Shakeri, Inventurist LLC – All Rights Reserved
……
…
How	
  to	
  Build	
  Cogni,ve	
  Compu,ng	
  
Applica,ons	
  (in	
  the	
  enterprise)	
  
1	
  
MaptheDataLandscape
2	
  
Ideationand
Selectionofthe
Application
3	
  
ListCognitive
FunctionsRequired
Do	
  you	
  have	
  the	
  right	
  datasets?	
  
4a	
  
BuildtheKnowledge
Graph
4b	
  
ImplementAlgorithms
5	
  
AutomateData
Ingestion
Iterate	
  with	
  subset	
  of	
  data	
  
6	
  
COGNITIVE	
  COMPUTING	
  TO	
  DRIVE	
  
THE	
  STARTUP	
  ECONOMY	
  
An	
  Example	
  
From	
  Data	
  to	
  Intelligence	
  
Knowledge Graph
Data Knowledge Graph Results
Twitter
CrunchBase
Company web
site Metatag
Nearest neighbor
Shortest path
Spreading activation
Competitive landscape
Sub-graph distance
Investors active in this domain
...
Potential customers
...
Large corporations
...
7	
  
Big Data
From	
  Data	
  to	
  Intelligence	
  to	
  Ac,on	
  
Intelligence Action
8	
  
Thank	
  You	
  
9	
  
Contact	
  
Cirrus	
  Shakeri,	
  Inventurist	
  
•  cirrus.shakeri@inventurist.com	
  
•  twiWer.com/cirrus_shakeri	
  
•  www.linkedin.com/in/cshakeri/	
  

More Related Content

DOC
document-part- (6).doc
PDF
go and data can they even be friends?
PPTX
Data mining introduction
PDF
A profile of Applied Data Analysis Lab (ADA Lab)
PPT
Information retrieval
PPT
Introduction to data warehouse
PPTX
INFORMATION RETRIEVAL Anandraj.L
PPTX
Artificial Intelligence
document-part- (6).doc
go and data can they even be friends?
Data mining introduction
A profile of Applied Data Analysis Lab (ADA Lab)
Information retrieval
Introduction to data warehouse
INFORMATION RETRIEVAL Anandraj.L
Artificial Intelligence

What's hot (19)

PPT
Semantic Interoperability in Infocosm: Beyond Infrastructural and Data Intero...
PPTX
Functions of information retrival system(1)
PDF
CS6007 information retrieval - 5 units notes
PDF
A comprehensive survey on data mining
PDF
Structured and Unstructured Information Extraction Using Text Mining and Natu...
PDF
The Nature of Data
PPTX
Data and Knowledge Discovery in Databases (KDD)
PPTX
Rl1.1 dm defined
PPT
Information retrieval system
PDF
AI: The next frontier by Amparo Alonso at Big Data Spain 2017
PPT
Data mining in agriculture
PPT
Chapter 1. Introduction
PPT
Data mining-2
ODP
Position Statements
PPTX
Rl1.2 dm activities
PDF
Issues, challenges, and solutions
PPTX
Information retrieval introduction
Semantic Interoperability in Infocosm: Beyond Infrastructural and Data Intero...
Functions of information retrival system(1)
CS6007 information retrieval - 5 units notes
A comprehensive survey on data mining
Structured and Unstructured Information Extraction Using Text Mining and Natu...
The Nature of Data
Data and Knowledge Discovery in Databases (KDD)
Rl1.1 dm defined
Information retrieval system
AI: The next frontier by Amparo Alonso at Big Data Spain 2017
Data mining in agriculture
Chapter 1. Introduction
Data mining-2
Position Statements
Rl1.2 dm activities
Issues, challenges, and solutions
Information retrieval introduction
Ad

Viewers also liked (13)

PPTX
Simge
PDF
Cognitive_Computing_Article Business Transformation Journal
PDF
Exploiting Data
PDF
Four Perspectives on Change Management
PPTX
подходы к оценке количества информации.
PPTX
Save food Save Life
PPTX
Practical Accessibility Testing
PDF
Uses of tmux explained
PPT
Sistemas complejos adaptativos - Modelos basados en agentes
PDF
新しい暗号技術
PPTX
Utility and Added Value of Classifications in Health Information Systems
PDF
HBase at LINE
Simge
Cognitive_Computing_Article Business Transformation Journal
Exploiting Data
Four Perspectives on Change Management
подходы к оценке количества информации.
Save food Save Life
Practical Accessibility Testing
Uses of tmux explained
Sistemas complejos adaptativos - Modelos basados en agentes
新しい暗号技術
Utility and Added Value of Classifications in Health Information Systems
HBase at LINE
Ad

Similar to CognitiveComputing_CirrusShakeri_final (20)

DOCX
Web Mining
PDF
Fundamental Areas Of Study In Data Science.pdf
PDF
An Elementary Introduction to Artificial Intelligence, Data Science and Machi...
PPTX
Artificial intelligence and its application
PPTX
Workshop_Presentation.pptx
PPTX
PPT
Artificial Intelligence and the Internet
PPT
AI (1).ppt ug gjhghhhjkjhhjjffdfhhcchhvvh
PPTX
Semantic Web Technologies
PPT
The Internet of Things, Ambient Intelligence, and the Move Towards Intelligen...
PPTX
recent.pptx
PDF
The technologies of ai used in different corporate world
PDF
Introduction to Knowledge Graphs
PPTX
AI and data science notes.pptx for DICT module 2
PPTX
IT webinar 2016
PPTX
Unit I and II Machine Learning MCA CREC.pptx
PDF
CS8080_IRT__UNIT_I_NOTES.pdf
PDF
PDF
Km cognitive computing overview by ken martin 19 jan2015
Web Mining
Fundamental Areas Of Study In Data Science.pdf
An Elementary Introduction to Artificial Intelligence, Data Science and Machi...
Artificial intelligence and its application
Workshop_Presentation.pptx
Artificial Intelligence and the Internet
AI (1).ppt ug gjhghhhjkjhhjjffdfhhcchhvvh
Semantic Web Technologies
The Internet of Things, Ambient Intelligence, and the Move Towards Intelligen...
recent.pptx
The technologies of ai used in different corporate world
Introduction to Knowledge Graphs
AI and data science notes.pptx for DICT module 2
IT webinar 2016
Unit I and II Machine Learning MCA CREC.pptx
CS8080_IRT__UNIT_I_NOTES.pdf
Km cognitive computing overview by ken martin 19 jan2015

CognitiveComputing_CirrusShakeri_final

  • 2. What  is  Cogni,ve  Compu,ng?   •  Programming  Model   –  A  Cogni,ve  Compu,ng  system  learns  about  a  domain  (e.g.,  medical  diagnos,cs)  by   processing  large  amounts  of  data  and  unstructured  text  from  medical  literature  and   medical  databases.     •  Technology  Components   –  Cogni,ve  Compu,ng  is  comprised  of  a  set  of  technologies  that  automate  the  encoding   of  large  amounts  of  data  into  a  computer-­‐understandable  knowledge  base.  Examples  of   technologies  in  Cogni,ve  Compu,ng  include  natural  language  understanding,  machine   learning,  and  probabilis,c  and  seman,c  reasoning.     •  User  Interac,on   –  Cogni,ve  Compu,ng  systems  engage  in  conversa,ons  with  their  human  users  in  natural   language  by  asking  and  answering  ques,ons.   •  Applica,ons   –  Cogni,ve  Compu,ng  enables  machines  to  reason  about  the  objects  and  events  in  a   specific  domain  of  discourse,  and  to  discover  rela,onships  among  things  in  that  domain.   This  enables  applica,ons  that  can  interact  conversa,onally  with  humans  as  if  they  were   human.    
  • 3. 3   THE  PATH  TO  COGNITIVE  COMPUTING   PASSES  THROUGH  (BIG)  DATA  
  • 4. Big Data Data Ingestion Knowledge Graph Machine Reasoning Cognitive Function Web Content (web sites, blogs, …) Predict (demand, inventory, …) Learning from Usage Patterns Semantic Inferencing Big Data ! Intelligent Applications (A Lifecycle View) Social Networks (twitter, facebook, …) Enterprise Apps (ERP, CRM, …) Internet of Things (sensor data, device data, …) Textual Content (documents, reports, …) Online Activities (search, shopping, …) Knowledge-bases (taxonomies, ontologies, …) Data Preparation •  Data integration •  Data enrichment •  Data imputation •  Data versioning •  Data provenance •  … Natural Language Processing •  Entity extraction •  Entity resolution •  Relationship extraction •  Taxonomy generation •  Knowledge based population (slot filling) •  … Context Engine Sensemaking Engine Semantic Search Machine Learning (classification, clustering, anomaly detection, …) Design (product, process, …) Analyze (performance, problem, …) Detect (incident, anomaly, opportunity, …) Find (people, content, …) Discover (insight, pattern, …) Compare (products, companies,, …) Processes (process logs, server logs, …) Automated Update Cycle Rule Engine Process Automation Engine Semantic Query Engine Inference Engine Network of: people, places, organizations, processes, rules, policies, events, documents, devices, … Recommendation Engine Cirrus Shakeri, Inventurist LLC – All Rights Reserved …… …
  • 5. How  to  Build  Cogni,ve  Compu,ng   Applica,ons  (in  the  enterprise)   1   MaptheDataLandscape 2   Ideationand Selectionofthe Application 3   ListCognitive FunctionsRequired Do  you  have  the  right  datasets?   4a   BuildtheKnowledge Graph 4b   ImplementAlgorithms 5   AutomateData Ingestion Iterate  with  subset  of  data  
  • 6. 6   COGNITIVE  COMPUTING  TO  DRIVE   THE  STARTUP  ECONOMY   An  Example  
  • 7. From  Data  to  Intelligence   Knowledge Graph Data Knowledge Graph Results Twitter CrunchBase Company web site Metatag Nearest neighbor Shortest path Spreading activation Competitive landscape Sub-graph distance Investors active in this domain ... Potential customers ... Large corporations ... 7  
  • 8. Big Data From  Data  to  Intelligence  to  Ac,on   Intelligence Action 8  
  • 9. Thank  You   9   Contact   Cirrus  Shakeri,  Inventurist   •  cirrus.shakeri@inventurist.com   •  twiWer.com/cirrus_shakeri   •  www.linkedin.com/in/cshakeri/