The document compares two algorithms for hyperspectral image unmixing - one based on minimum volume constraint and one based on sum of squared distances constraint. It analyzes the performance of the two algorithms under different conditions like flatness of the endmember simplex, effects of initialization, and robustness to noise. The analysis shows that the sum of squared distances constraint performs better than the volume constraint for non-regular simplex shapes and is more robust to random initialization and noise. The comparison provides guidance on which constraint is more suitable for specific hyperspectral unmixing tasks.