Imaginary
&
Complex
Numbers
Daily Check
For each equation find the
discriminant and the number of
solutions.
2
1. 3 4 2 0
x x
  
2
2. 6 9 0
x x
  
Launched Object
h(t) = -16t2
+ 64t + 80
a) How many seconds until the max
height is reached?
b) What will be the max height?
c) How many seconds until the object
hits the ground?
2 sec.
144 ft.
5 sec.
Today’s Question:
How do we take the square root
of negative numbers?
2
2
2
Complex Numbers part12345678tttttttttttt
Complex Numbers part12345678tttttttttttt
Complex Numbers part12345678tttttttttttt
i
1
i  
-In the set of real numbers, negative numbers do
not have square roots.
-Imaginary numbers were invented so that negative
numbers would have square roots and certain
equations would have solutions.
-These numbers were devised using an imaginary
unit named i.
1
i  
-The imaginary numbers consist of all numbers bi,
where b is a real number and i is the imaginary unit,
with the property that i² = -1.
-The first four powers of i establish an important
pattern and should be memorized.
Powers of i
1 2 3 4
1 1
i i i i i i
   
Examples of how we use 1
i  
16 16 1
   
4 i
 
4i

81 81 1
   
9 i
 
9i

Examples of how we use 1
i  
45 45 1
   
3 3 5 1
    
3 5 1
  
3 5 i
 
3 5
i

2 2 2 5 5 1
      
200 200 1
   
2 5 2 1
   
10 2 i
 
10 2
i

Complex Numbers
A complex number has a real part
and imaginary part.
Standard form is:
bi
a
Real part Imaginary part
Example: 5+4i
Example: 5+4i
The Complex Plane
Imaginary Axis
Real Axis
Graphing in the complex plane
i
3
4 
.
i
5
2 

.
i
2
2 
.
i
3
4 

.
Adding and Subtracting
(add or subtract the real parts, then add or subtract
the imaginary parts)
Ex: )
3
3
(
)
2
1
( i
i 



)
3
2
(
)
3
1
( i
i 




i
5
2 

Ex: )
7
3
(
)
3
2
( i
i 


(2 3 ) ( 3 7 )
i i
    
i
4
1


Ex: )
3
2
(
)
3
(
2 i
i
i 



)
3
2
(
)
2
3
( i
i
i 





i
2
1


Absolute Value of a Complex
Number
The distance the complex number is
from the origin on the complex plane.
If you have a complex number
the absolute value can be found
using:
)
( bi
a
2
2
b
a 
plane
i
5
2 

.
2
5
Examples
1. i
5
2 

2
2
)
5
(
)
2
( 


25
4 

29

2. i
6

2
2
)
6
(
)
0
( 


36
0 

36

6

Which of these 2 complex numbers is
closest to the origin?
-2+5i
Try These!!!
1. 4 i

2 2
(4) ( 1)
  
16 1
 
17

2. 3i
2 2
(0) (3)
 
0 9
 
9

3

Which of these 2 complex numbers is
closest to the origin?
3i
Powers of i
1.) Find i23
2.) Find i2006
3.) Find i37
4.) Find i828
i


1


i

1

1.) 5
 1*5
  1 5
  5
i

1*7
  1 7
  7
i

1*99
  1 99
 
3 11
i

Simplify.
3.)
2.) 7
 
4.)
3.) 99

5.)
  
i 3 3 11
-Express these numbers in terms of i.
You try…
6.
7.
 7
  36
 160
8.
i 7
 6i
4 10
i
To multiply imaginary numbers or
an imaginary number by a real
number, it is important first to
express the imaginary numbers in
terms of i.
94i

2
2 5
i
 2 5

2
21
i

( 1) 21
  21

Multiplying
47 2
i 
2 5
i  
   
3 7
   
2 1 5
i  
2 5
i i
 
i i
3 7
9.
10.
11.
7.) 7 9
i i
 16i

8.) ( 5 6 ) (2 11 )
i i
    3
 5i

9.) (2 3 ) (4 2 )
i i
   2 3 4 2
i i
   
2 i
 
Add or Subtract
12.
13.
14.
Multiplying & Dividing
Complex Numbers
Part of 7.9 in your book
REMEMBER: i² = -1
12
 2
i 12( 1)
  12

2 2
7 i
 49( 1)
  49

Multiply
3 4
i i

 2
7i
1)
2)
You try…
3)
4)
 
7 12
i i
 2
11i

2
84i

 )
1
(
84 


84

   2
2
11 i

 )
1
(
121 

121


28
 8i
 21i
 2
6i

2
28 29 6
i i
  
28 29 6( 1)
i
   
28 29 6
i
  
22 29i
 
  
i
i 2
7
3
4 

5)
Multiply
You try…
  
i
i 10
3
2 

6)
2
10
3
20
6 i
i
i 



i
17
16 

2
10
17
6 i
i 


 
1
10
17
6 


 i
10
17
6 

 i
25
 35i
 35i
 2
49i

25 49( 1)
  
25 49
74
 

You try…
  
i
i 7
5
7
5 

7)
Conjugate
-The conjugate of a + bi is a – bi
-The conjugate of a – bi is a + bi
Find the conjugate of each
number…
3 4
 i 3 4
 i
 
4 7i  
4 7i
5i  5i
6 6
8)
9)
10)
11)
i
i
Because 0
6
as
same
the
is
0
6 

1
1
i
i


2
14 4
1
i
i
 


14 4
2
i
 
 7 2i
 
Divide…
 

5 9
1
i
i
12)

   
  
5 5 9 9
1
2
2
i i i
i i i
3 5
3 5
i
i


2
9 19
9 25
i
i
 


9 19
34
i
 

2 3
3 5


i
i
13)
You try…

  
  
6 10 9 15
9 15 15 25
2
2
i i i
i i i
Ex: Solve x2
+ 6x +10 = 0
a
ac
b
b
x
2
4
2




a =
b =
c =
2
6 6 4 1 10
2 1
    


1s
t
6 36 4 1 10
2 1
    


2nd
6 36 40
2
  

6 4
2
  

6 2
2
i
 

6 2 6 2
2 2
i i
and
   

3 3
i and i
   

More Related Content

PPT
Introduction to imaginary numbers.ppt
PPTX
Complex numbers- College Algebra
PPTX
9 Arithmetic Operations on Complex Numbers.pptx
PPT
Introduction to imaginary numbers.ppt
PDF
Appt and reasoning
PDF
101-maths short cut tips and tricks for apptitude
PPT
Complex numbers And Quadratic Equations
PDF
101 math short cuts [www.onlinebcs.com]
Introduction to imaginary numbers.ppt
Complex numbers- College Algebra
9 Arithmetic Operations on Complex Numbers.pptx
Introduction to imaginary numbers.ppt
Appt and reasoning
101-maths short cut tips and tricks for apptitude
Complex numbers And Quadratic Equations
101 math short cuts [www.onlinebcs.com]

Similar to Complex Numbers part12345678tttttttttttt (20)

PPT
Complex nos demo 2
PPTX
5.4 Complex Numbers
PDF
1.3 Complex Numbers
PDF
1.3 Complex Numbers
PDF
Maths: Subtraction Worksheet (CBSE Grade II )
PDF
math m1
PPTX
Complex operations
PDF
X2 t01 01 arithmetic of complex numbers (2013)
PDF
Algebra Notes Factor and Simplify Quadratics
PDF
modulo.pdf mathematics made easy for shs
PDF
3.complex numbers Further Mathematics Zimbabwe Zimsec Cambridge
PPSX
[Maths] arithmetic
DOCX
Homework packet
PPSX
Algebra 3
PDF
X maths 1
PDF
2.4 Complex Numbers
PPTX
1.4 complex numbers t
PPT
Distributive Property
DOCX
Pre-Calculus Quarter 4 Exam 1 Name ___________.docx
Complex nos demo 2
5.4 Complex Numbers
1.3 Complex Numbers
1.3 Complex Numbers
Maths: Subtraction Worksheet (CBSE Grade II )
math m1
Complex operations
X2 t01 01 arithmetic of complex numbers (2013)
Algebra Notes Factor and Simplify Quadratics
modulo.pdf mathematics made easy for shs
3.complex numbers Further Mathematics Zimbabwe Zimsec Cambridge
[Maths] arithmetic
Homework packet
Algebra 3
X maths 1
2.4 Complex Numbers
1.4 complex numbers t
Distributive Property
Pre-Calculus Quarter 4 Exam 1 Name ___________.docx
Ad

Recently uploaded (20)

PDF
LDMMIA Reiki Yoga Finals Review Spring Summer
PDF
Environmental Education MCQ BD2EE - Share Source.pdf
PDF
Complications of Minimal Access-Surgery.pdf
PPTX
Unit 4 Computer Architecture Multicore Processor.pptx
PPTX
TNA_Presentation-1-Final(SAVE)) (1).pptx
PDF
advance database management system book.pdf
PPTX
ELIAS-SEZIURE AND EPilepsy semmioan session.pptx
PPTX
History, Philosophy and sociology of education (1).pptx
PPTX
20th Century Theater, Methods, History.pptx
PDF
Empowerment Technology for Senior High School Guide
DOCX
Cambridge-Practice-Tests-for-IELTS-12.docx
PPTX
CHAPTER IV. MAN AND BIOSPHERE AND ITS TOTALITY.pptx
PDF
What if we spent less time fighting change, and more time building what’s rig...
PDF
CISA (Certified Information Systems Auditor) Domain-Wise Summary.pdf
PDF
Chinmaya Tiranga quiz Grand Finale.pdf
PPTX
Virtual and Augmented Reality in Current Scenario
PDF
Τίμαιος είναι φιλοσοφικός διάλογος του Πλάτωνα
PDF
ChatGPT for Dummies - Pam Baker Ccesa007.pdf
PDF
HVAC Specification 2024 according to central public works department
PDF
OBE - B.A.(HON'S) IN INTERIOR ARCHITECTURE -Ar.MOHIUDDIN.pdf
LDMMIA Reiki Yoga Finals Review Spring Summer
Environmental Education MCQ BD2EE - Share Source.pdf
Complications of Minimal Access-Surgery.pdf
Unit 4 Computer Architecture Multicore Processor.pptx
TNA_Presentation-1-Final(SAVE)) (1).pptx
advance database management system book.pdf
ELIAS-SEZIURE AND EPilepsy semmioan session.pptx
History, Philosophy and sociology of education (1).pptx
20th Century Theater, Methods, History.pptx
Empowerment Technology for Senior High School Guide
Cambridge-Practice-Tests-for-IELTS-12.docx
CHAPTER IV. MAN AND BIOSPHERE AND ITS TOTALITY.pptx
What if we spent less time fighting change, and more time building what’s rig...
CISA (Certified Information Systems Auditor) Domain-Wise Summary.pdf
Chinmaya Tiranga quiz Grand Finale.pdf
Virtual and Augmented Reality in Current Scenario
Τίμαιος είναι φιλοσοφικός διάλογος του Πλάτωνα
ChatGPT for Dummies - Pam Baker Ccesa007.pdf
HVAC Specification 2024 according to central public works department
OBE - B.A.(HON'S) IN INTERIOR ARCHITECTURE -Ar.MOHIUDDIN.pdf
Ad

Complex Numbers part12345678tttttttttttt

  • 2. Daily Check For each equation find the discriminant and the number of solutions. 2 1. 3 4 2 0 x x    2 2. 6 9 0 x x   
  • 3. Launched Object h(t) = -16t2 + 64t + 80 a) How many seconds until the max height is reached? b) What will be the max height? c) How many seconds until the object hits the ground? 2 sec. 144 ft. 5 sec.
  • 4. Today’s Question: How do we take the square root of negative numbers?
  • 10. -In the set of real numbers, negative numbers do not have square roots. -Imaginary numbers were invented so that negative numbers would have square roots and certain equations would have solutions. -These numbers were devised using an imaginary unit named i. 1 i  
  • 11. -The imaginary numbers consist of all numbers bi, where b is a real number and i is the imaginary unit, with the property that i² = -1. -The first four powers of i establish an important pattern and should be memorized. Powers of i 1 2 3 4 1 1 i i i i i i    
  • 12. Examples of how we use 1 i   16 16 1     4 i   4i  81 81 1     9 i   9i 
  • 13. Examples of how we use 1 i   45 45 1     3 3 5 1      3 5 1    3 5 i   3 5 i 
  • 14. 2 2 2 5 5 1        200 200 1     2 5 2 1     10 2 i   10 2 i 
  • 15. Complex Numbers A complex number has a real part and imaginary part. Standard form is: bi a Real part Imaginary part Example: 5+4i Example: 5+4i
  • 16. The Complex Plane Imaginary Axis Real Axis
  • 17. Graphing in the complex plane i 3 4  . i 5 2   . i 2 2  . i 3 4   .
  • 18. Adding and Subtracting (add or subtract the real parts, then add or subtract the imaginary parts) Ex: ) 3 3 ( ) 2 1 ( i i     ) 3 2 ( ) 3 1 ( i i      i 5 2   Ex: ) 7 3 ( ) 3 2 ( i i    (2 3 ) ( 3 7 ) i i      i 4 1   Ex: ) 3 2 ( ) 3 ( 2 i i i     ) 3 2 ( ) 2 3 ( i i i       i 2 1  
  • 19. Absolute Value of a Complex Number The distance the complex number is from the origin on the complex plane. If you have a complex number the absolute value can be found using: ) ( bi a 2 2 b a 
  • 21. Examples 1. i 5 2   2 2 ) 5 ( ) 2 (    25 4   29  2. i 6  2 2 ) 6 ( ) 0 (    36 0   36  6  Which of these 2 complex numbers is closest to the origin? -2+5i
  • 22. Try These!!! 1. 4 i  2 2 (4) ( 1)    16 1   17  2. 3i 2 2 (0) (3)   0 9   9  3  Which of these 2 complex numbers is closest to the origin? 3i
  • 23. Powers of i 1.) Find i23 2.) Find i2006 3.) Find i37 4.) Find i828 i   1   i  1 
  • 24. 1.) 5  1*5   1 5   5 i  1*7   1 7   7 i  1*99   1 99   3 11 i  Simplify. 3.) 2.) 7   4.) 3.) 99  5.)    i 3 3 11 -Express these numbers in terms of i.
  • 25. You try… 6. 7.  7   36  160 8. i 7  6i 4 10 i
  • 26. To multiply imaginary numbers or an imaginary number by a real number, it is important first to express the imaginary numbers in terms of i.
  • 27. 94i  2 2 5 i  2 5  2 21 i  ( 1) 21   21  Multiplying 47 2 i  2 5 i       3 7     2 1 5 i   2 5 i i   i i 3 7 9. 10. 11.
  • 28. 7.) 7 9 i i  16i  8.) ( 5 6 ) (2 11 ) i i     3  5i  9.) (2 3 ) (4 2 ) i i    2 3 4 2 i i     2 i   Add or Subtract 12. 13. 14.
  • 29. Multiplying & Dividing Complex Numbers Part of 7.9 in your book
  • 30. REMEMBER: i² = -1 12  2 i 12( 1)   12  2 2 7 i  49( 1)   49  Multiply 3 4 i i   2 7i 1) 2)
  • 31. You try… 3) 4)   7 12 i i  2 11i  2 84i   ) 1 ( 84    84     2 2 11 i   ) 1 ( 121   121  
  • 32. 28  8i  21i  2 6i  2 28 29 6 i i    28 29 6( 1) i     28 29 6 i    22 29i      i i 2 7 3 4   5) Multiply
  • 33. You try…    i i 10 3 2   6) 2 10 3 20 6 i i i     i 17 16   2 10 17 6 i i      1 10 17 6     i 10 17 6    i
  • 34. 25  35i  35i  2 49i  25 49( 1)    25 49 74    You try…    i i 7 5 7 5   7)
  • 35. Conjugate -The conjugate of a + bi is a – bi -The conjugate of a – bi is a + bi
  • 36. Find the conjugate of each number… 3 4  i 3 4  i   4 7i   4 7i 5i  5i 6 6 8) 9) 10) 11) i i Because 0 6 as same the is 0 6  
  • 37. 1 1 i i   2 14 4 1 i i     14 4 2 i    7 2i   Divide…    5 9 1 i i 12)         5 5 9 9 1 2 2 i i i i i i
  • 38. 3 5 3 5 i i   2 9 19 9 25 i i     9 19 34 i    2 3 3 5   i i 13) You try…        6 10 9 15 9 15 15 25 2 2 i i i i i i
  • 39. Ex: Solve x2 + 6x +10 = 0 a ac b b x 2 4 2     a = b = c = 2 6 6 4 1 10 2 1        1s t 6 36 4 1 10 2 1        2nd 6 36 40 2     6 4 2     6 2 2 i    6 2 6 2 2 2 i i and      3 3 i and i    