SlideShare a Scribd company logo
Introduction to imaginary numbers.ppt
Introduction to imaginary numbers.ppt
2
2
2
Introduction to imaginary numbers.ppt
Introduction to imaginary numbers.ppt
Introduction to imaginary numbers.ppt
Introduction to imaginary numbers.ppt
i1
i  
• You can't take the square root of a negative
number, right?
• When we were young and still in Coordinate
Algebra, no numbers that, when multiplied
by themselves, gave us a negative answer.
• Squaring a negative number always gives
you a positive. (-1)² = 1. (-2)² = 4 (-3)² = 9
So here’s what the math people
did: They used the letter “i” to
represent the square root of (-1).
“i” stands for “imaginary.”
1
i  
So, does 1

really exist?
Examples of how we use 1
i  
16 16 1
   
4 i
 
4i

81 81 1
   
9 i
 
9i

Examples of how we use 1
i  
45 45 1
   
3 5 1
  
3 5 i
 
3 5
i

200

10 2 i
 
10 2
i

200 1
  
The first four powers of i establish an
important pattern and should be
memorized.
Powers of i
1 2
1
i i i
  
3 4
1
i i i
  
Divide the exponent by 4
No remainder: answer is 1.
Remainder of 1: answer is i.
Remainder of 2: answer is –1.
Remainder of 3: answer is –i.
i4
1

i i
1

i2
1
 
i i
3
 
Powers of i
Find i23
Find i2006
Find i37
Find i828
i


1


i

1

Complex Number System
Reals
Rationals
(fractions, decimals)
Integers
(…, -1, -2, 0, 1, 2, …)
Whole
(0, 1, 2, …)
Natural
(1, 2, …)
Irrationals
(no fractions)
pi, e
Imaginary
i, 2i, -3-7i, etc.
1.) 5
 1 5
   1 5
  5
i

1 7
    1 7
  
7
i
 
1 99
   1 99
 
3 11
i

Express these numbers in terms of i.
2.) 7
 
3.) 99

11
9
 i
You try…
4.
5.
7
 36
160
6.
 i 7
 6i
 4 10
i
94i

2
2 5
i

2 5
 
2
21
i
 
( 1) 21
   21

Multiplying
47 2
i
2 5
i  
   
3 7
   
2 1 5
i  
2 5
i i
  
i i
3 7
7.
8.
9.
To mult. imaginary
numbers or an
imaginary number by a
real number, it’s
important to 1st express
the imaginary numbers
in terms of i.
a + bi
Complex Numbers
real imaginary
The complex numbers consist of all sums
a + bi, where a and b are real numbers and i
is the imaginary unit. The real part is a, and
the imaginary part is bi.
7.) 7 9
i i
 16i

8.) ( 5 6 ) (2 11 )
i i
    3
  5i

9.) (2 3 ) (4 2 )
i i
   2 3 4 2
i i
   
2 i
  
Add or Subtract
10.
11.
12.
Examples
2
)
3
(
1. i
2
2
)
3
(
i

1( 3 3)
  
)
3
(
1


3


26
10
3
Solve
2. 2



x
36
3 2


x
12
2


x
12
2


x
12
i
x 

3
2i
x 

Multiplying
Treat the i’s like variables, then change
any that are not to the first power
Ex: )
3
( i
i 

2
3 i
i 


)
1
(
3 


 i
i
3
1

Ex: )
2
6
)(
3
2
( i
i 


2
6
18
4
12 i
i
i 




)
1
(
6
22
12 



 i
6
22
12 


 i
i
22
6


3 11
:
1 2
i
Ex
i

 
)
2
1
)(
2
1
(
)
2
1
)(
11
3
(
i
i
i
i








2
2
4
2
2
1
22
11
6
3
i
i
i
i
i
i








)
1
(
4
1
)
1
(
22
5
3







i
4
1
22
5
3





i
5
5
25 i



5
5
5
25 i



i


 5

More Related Content

PPT
PPT
Real numbers system
PPTX
NS1: Rational and Irrational numbers
ODP
Simplifying exponents
PPTX
Operations on Real Numbers
PPT
Rational irrational and_real_number_practice
PPTX
10.4 applications of linear equations
PPTX
Powers of 10
Real numbers system
NS1: Rational and Irrational numbers
Simplifying exponents
Operations on Real Numbers
Rational irrational and_real_number_practice
10.4 applications of linear equations
Powers of 10

What's hot (20)

PPT
1631 the binomial theorem
PPT
Absolute value functions
PPTX
6-1 nth roots reg
PPTX
Complex Numbers
PPT
Exponents
PPTX
Multiplying Monomials
PPT
Properties of logarithms
PDF
Sets of numbers
PPTX
Quadratic functions
PPTX
Rewriting Linear Equation from standard form to slope intercept form
PPT
Absolute Value Equations and Inequalities
PPT
Solving multi step inequalities
PPT
Solving Systems by Substitution
PPTX
Domain-and-Range-of-a-Function
PPT
Solving add-subtract equations
PPT
complex numbers
PPTX
Logarithms
PPTX
5 4 function notation
PPT
Division of Polynomials
PPT
Chapter 5 Point Slope Form
1631 the binomial theorem
Absolute value functions
6-1 nth roots reg
Complex Numbers
Exponents
Multiplying Monomials
Properties of logarithms
Sets of numbers
Quadratic functions
Rewriting Linear Equation from standard form to slope intercept form
Absolute Value Equations and Inequalities
Solving multi step inequalities
Solving Systems by Substitution
Domain-and-Range-of-a-Function
Solving add-subtract equations
complex numbers
Logarithms
5 4 function notation
Division of Polynomials
Chapter 5 Point Slope Form
Ad

Similar to Introduction to imaginary numbers.ppt (20)

PPT
Introduction to imaginary numbers.ppt
PPT
Complex Numbers part12345678tttttttttttt
PDF
Alg complex numbers
PPT
5.9 complex numbers
DOCX
New microsoft office word document
PDF
1.3 Complex Numbers
PPTX
PowerPoint on Complex Number, Digital unit
PPTX
MIT Math Syllabus 10-3 Lesson 5: Complex numbers
PDF
1.3 Complex Numbers
PPTX
9 Arithmetic Operations on Complex Numbers.pptx
PDF
2.4 Complex Numbers
PPTX
1.4 complex numbers
PPTX
5 complex numbers y
PPT
A presentation on complex numbers of mathematics
PPTX
Imaginary numbers
PPTX
1.4 complex numbers t
PPTX
Complex operations
PPT
In mathematics, a complex variable opens a doorway
PPTX
1 lesson 7 introduction to complex numbers
PPTX
1 lesson 7 introduction to complex numbers
Introduction to imaginary numbers.ppt
Complex Numbers part12345678tttttttttttt
Alg complex numbers
5.9 complex numbers
New microsoft office word document
1.3 Complex Numbers
PowerPoint on Complex Number, Digital unit
MIT Math Syllabus 10-3 Lesson 5: Complex numbers
1.3 Complex Numbers
9 Arithmetic Operations on Complex Numbers.pptx
2.4 Complex Numbers
1.4 complex numbers
5 complex numbers y
A presentation on complex numbers of mathematics
Imaginary numbers
1.4 complex numbers t
Complex operations
In mathematics, a complex variable opens a doorway
1 lesson 7 introduction to complex numbers
1 lesson 7 introduction to complex numbers
Ad

More from Noemar Soria (10)

PDF
marspathfnder-170920005718.pdf
PPTX
MarsMatch.pptx
PDF
hubblespacetelescope-150407101134-conversion-gate01.pdf
PPT
newtons_laws_of_motion.ppt
PPT
BlackHoles.ppt
PPTX
nuclear power ps.pptx
PPT
What Is ATP.ppt
PPT
nuclear waste 1.ppt
PPTX
atomic structure theory 2017.pptx
PPT
Elements and Atoms.ppt
marspathfnder-170920005718.pdf
MarsMatch.pptx
hubblespacetelescope-150407101134-conversion-gate01.pdf
newtons_laws_of_motion.ppt
BlackHoles.ppt
nuclear power ps.pptx
What Is ATP.ppt
nuclear waste 1.ppt
atomic structure theory 2017.pptx
Elements and Atoms.ppt

Recently uploaded (20)

PPTX
school management -TNTEU- B.Ed., Semester II Unit 1.pptx
PDF
Complications of Minimal Access Surgery at WLH
PDF
Black Hat USA 2025 - Micro ICS Summit - ICS/OT Threat Landscape
PPTX
Presentation on HIE in infants and its manifestations
PPTX
IMMUNITY IMMUNITY refers to protection against infection, and the immune syst...
PPTX
Final Presentation General Medicine 03-08-2024.pptx
PPTX
Cell Structure & Organelles in detailed.
PPTX
PPT- ENG7_QUARTER1_LESSON1_WEEK1. IMAGERY -DESCRIPTIONS pptx.pptx
PPTX
Institutional Correction lecture only . . .
PPTX
1st Inaugural Professorial Lecture held on 19th February 2020 (Governance and...
PDF
Microbial disease of the cardiovascular and lymphatic systems
PDF
O5-L3 Freight Transport Ops (International) V1.pdf
PDF
O7-L3 Supply Chain Operations - ICLT Program
PPTX
Cell Types and Its function , kingdom of life
PPTX
GDM (1) (1).pptx small presentation for students
PDF
ANTIBIOTICS.pptx.pdf………………… xxxxxxxxxxxxx
PDF
Chapter 2 Heredity, Prenatal Development, and Birth.pdf
PDF
01-Introduction-to-Information-Management.pdf
PDF
Module 4: Burden of Disease Tutorial Slides S2 2025
PDF
RMMM.pdf make it easy to upload and study
school management -TNTEU- B.Ed., Semester II Unit 1.pptx
Complications of Minimal Access Surgery at WLH
Black Hat USA 2025 - Micro ICS Summit - ICS/OT Threat Landscape
Presentation on HIE in infants and its manifestations
IMMUNITY IMMUNITY refers to protection against infection, and the immune syst...
Final Presentation General Medicine 03-08-2024.pptx
Cell Structure & Organelles in detailed.
PPT- ENG7_QUARTER1_LESSON1_WEEK1. IMAGERY -DESCRIPTIONS pptx.pptx
Institutional Correction lecture only . . .
1st Inaugural Professorial Lecture held on 19th February 2020 (Governance and...
Microbial disease of the cardiovascular and lymphatic systems
O5-L3 Freight Transport Ops (International) V1.pdf
O7-L3 Supply Chain Operations - ICLT Program
Cell Types and Its function , kingdom of life
GDM (1) (1).pptx small presentation for students
ANTIBIOTICS.pptx.pdf………………… xxxxxxxxxxxxx
Chapter 2 Heredity, Prenatal Development, and Birth.pdf
01-Introduction-to-Information-Management.pdf
Module 4: Burden of Disease Tutorial Slides S2 2025
RMMM.pdf make it easy to upload and study

Introduction to imaginary numbers.ppt

  • 9. • You can't take the square root of a negative number, right? • When we were young and still in Coordinate Algebra, no numbers that, when multiplied by themselves, gave us a negative answer. • Squaring a negative number always gives you a positive. (-1)² = 1. (-2)² = 4 (-3)² = 9
  • 10. So here’s what the math people did: They used the letter “i” to represent the square root of (-1). “i” stands for “imaginary.” 1 i   So, does 1  really exist?
  • 11. Examples of how we use 1 i   16 16 1     4 i   4i  81 81 1     9 i   9i 
  • 12. Examples of how we use 1 i   45 45 1     3 5 1    3 5 i   3 5 i 
  • 13. 200  10 2 i   10 2 i  200 1   
  • 14. The first four powers of i establish an important pattern and should be memorized. Powers of i 1 2 1 i i i    3 4 1 i i i   
  • 15. Divide the exponent by 4 No remainder: answer is 1. Remainder of 1: answer is i. Remainder of 2: answer is –1. Remainder of 3: answer is –i. i4 1  i i 1  i2 1   i i 3  
  • 16. Powers of i Find i23 Find i2006 Find i37 Find i828 i   1   i  1 
  • 17. Complex Number System Reals Rationals (fractions, decimals) Integers (…, -1, -2, 0, 1, 2, …) Whole (0, 1, 2, …) Natural (1, 2, …) Irrationals (no fractions) pi, e Imaginary i, 2i, -3-7i, etc.
  • 18. 1.) 5  1 5    1 5   5 i  1 7     1 7    7 i   1 99    1 99   3 11 i  Express these numbers in terms of i. 2.) 7   3.) 99  11 9  i
  • 20. 94i  2 2 5 i  2 5   2 21 i   ( 1) 21    21  Multiplying 47 2 i 2 5 i       3 7     2 1 5 i   2 5 i i    i i 3 7 7. 8. 9.
  • 21. To mult. imaginary numbers or an imaginary number by a real number, it’s important to 1st express the imaginary numbers in terms of i.
  • 22. a + bi Complex Numbers real imaginary The complex numbers consist of all sums a + bi, where a and b are real numbers and i is the imaginary unit. The real part is a, and the imaginary part is bi.
  • 23. 7.) 7 9 i i  16i  8.) ( 5 6 ) (2 11 ) i i     3   5i  9.) (2 3 ) (4 2 ) i i    2 3 4 2 i i     2 i    Add or Subtract 10. 11. 12.
  • 24. Examples 2 ) 3 ( 1. i 2 2 ) 3 ( i  1( 3 3)    ) 3 ( 1   3   26 10 3 Solve 2. 2    x 36 3 2   x 12 2   x 12 2   x 12 i x   3 2i x  
  • 25. Multiplying Treat the i’s like variables, then change any that are not to the first power Ex: ) 3 ( i i   2 3 i i    ) 1 ( 3     i i 3 1  Ex: ) 2 6 )( 3 2 ( i i    2 6 18 4 12 i i i      ) 1 ( 6 22 12      i 6 22 12     i i 22 6  
  • 26. 3 11 : 1 2 i Ex i    ) 2 1 )( 2 1 ( ) 2 1 )( 11 3 ( i i i i         2 2 4 2 2 1 22 11 6 3 i i i i i i         ) 1 ( 4 1 ) 1 ( 22 5 3        i 4 1 22 5 3      i 5 5 25 i    5 5 5 25 i    i    5