SlideShare a Scribd company logo
Complex Numbers
10.7
10.7
1. Write imaginary numbers using i.
2. Perform arithmetic operations with complex numbers.
3. Raise i to powers.
A presentation on complex numbers of mathematics
Imaginary unit:
Imaginary number: A number that can be expressed
in the form bi, where b is a real number and i is the
imaginary unit.
i
3 i
9
 i
5
2
1


i
1
2


i
16

21

32

1 16
   4
i
  4i

1 21
   21
i

1 32
   16 2
i
  4 2
i

1
1
2




i
i
Complex number: A number that can be expressed in
the form a + bi, where a and b are real numbers and i
is the imaginary unit.
i
3
4  i
5
7  i
5
4
3
2

Examples:
real
im
aginary
Complex Numbers: a + b
Complex Numbers: a + bi
i
b = 0: Real numbers
a = 0: Imaginary numbers
real imaginary
Add Complex Numbers
Add Complex Numbers
   
i
i 5
4
3
5 


1
1
2




i
i
i
i 5
4
3
5 


Add the real parts – add the imaginary parts
i
8
9 
Subtract Complex Numbers
Subtract Complex Numbers
   
i
i 2
1
3
8 



1
1
2




i
i
i
i 2
1
3
8 


i

9
Slide 10- 9
Copyright © 2011 Pearson Education, Inc.
Simplify. (4 + 7i) – (2 + i)
a) 2 + 7i2
b) 2 + 8i
c) 6 + 6i
d) 6 + 8i
Slide 10- 10
Copyright © 2011 Pearson Education, Inc.
Simplify. (4 + 7i) – (2 + i)
a) 2 + 7i2
b) 2 + 8i
c) 6 + 6i
d) 6 + 8i
Multiply Complex Numbers
Multiply Complex Numbers
  
i
i 7
4 
1
1
2




i
i
2
28i

 
1
28 

28
Multiply Complex Numbers
Multiply Complex Numbers
 
i
i 8
5
7 

1
1
2




i
i
2
56
35 i
i 

 
1
56
35 

 i
56
35 
 i
i
35
56 

standard a + bi form
Multiply Complex Numbers
Multiply Complex Numbers
  
i
i 
 4
2
5
1
1
2




i
i
2
2
8
5
20 i
i
i 


2
2
3
20 i
i 

 
1
2
3
20 

 i
2
3
20 
 i
i
3
22 
Multiply Complex Numbers
Multiply Complex Numbers
 2
3
5 i

1
1
2




i
i
2
9
15
15
25 i
i
i 


 
1
9
30
25 

 i
9
30
25 
 i
i
30
16 
Rewrite & Foil
  
i
i 3
5
3
5 

Slide 10- 15
Copyright © 2011 Pearson Education, Inc.
Multiply. (4 + 7i)(2 + i)
a) 15 + 10i
b) 1 + 10i
c) 15 + 18i
d) 15 + 18i
Slide 10- 16
Copyright © 2011 Pearson Education, Inc.
Multiply. (4 + 7i)(2 + i)
a) 15 + 10i
b) 1 + 10i
c) 15 + 18i
d) 15 + 18i
Divide Complex Numbers
Divide Complex Numbers
i
7
6
1
1
2




i
i
i
i
i

7
6
2
7
6
i
i

 
1
7
6


i
7
6


i
7
6i


7
6i


Binomial denominator conjugate
Divide Complex Numbers
Divide Complex Numbers
i

6
5
1
1
2




i
i
 
 
 
i
i
i 


 6
6
6
5
2
36
5
30
i
i



 
1
36
5
30




i
i
37
5
37
30

standard a + bi form
37
5
30 i


Slide 10- 19
Copyright © 2011 Pearson Education, Inc.
Write in standard form.
a)
b)
c)
d)
4
2 3
i
i


5 14
13 13
i

5 14
13 13
i

11 14
13 13
i

11 14
13 13
i

Slide 10- 20
Copyright © 2011 Pearson Education, Inc.
Write in standard form.
a)
b)
c)
d)
4
2 3
i
i


5 14
13 13
i

5 14
13 13
i

11 14
13 13
i

11 14
13 13
i

Powers of i:
Powers of i:
1
1
2




i
i
i
   1
1
1
2
2
4





 i
i
i
  i
i
i
i
i 




 1
2
3
1
2


i
 
  
  
   1
1
1
1
1
1
1
1
4
4
8
3
4
7
2
4
6
4
5




















i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i

41
i   i
i 
10
4
i
i 

1

15
i   3
3
4
i
i  i
i 



1
i
   1
1
1
2
2
4





 i
i
i
  i
i
i
i
i 




 1
2
3
1
2


i
Powers of i:
Powers of i:
4
3
2
i
i
i
i 


Simplify:
A presentation on complex numbers of mathematics

More Related Content

PPT
In mathematics, a complex variable opens a doorway
PDF
1.3 Complex Numbers
KEY
0305 ch 3 day 5
PPT
1.3 Complex Numbers, Quadratic Equations In The Complex Number System
PPT
IntrotoCo-53c193a49f5a43788ae15577fab1b4b61705042728 (1).ppt
PPTX
Intro to Complex Numbers.pptx
PPT
Introduction to imaginary numbers.ppt
PPT
Introduction to imaginary numbers.ppt
In mathematics, a complex variable opens a doorway
1.3 Complex Numbers
0305 ch 3 day 5
1.3 Complex Numbers, Quadratic Equations In The Complex Number System
IntrotoCo-53c193a49f5a43788ae15577fab1b4b61705042728 (1).ppt
Intro to Complex Numbers.pptx
Introduction to imaginary numbers.ppt
Introduction to imaginary numbers.ppt

Similar to A presentation on complex numbers of mathematics (20)

PDF
2.4 Complex Numbers
PDF
1.3 Complex Numbers
PPT
Complex Numbers
PPT
5.9 Complex Numbers 2.ppt
PPTX
Complex operations
PPTX
1.4 complex numbers
PPTX
5 complex numbers y
PPT
Math unit7 number system and bases
PPT
Lesson5.1 complexnumbers
PPTX
5.4 Complex Numbers
PPTX
Complex numbers- College Algebra
PPTX
MIT Math Syllabus 10-3 Lesson 5: Complex numbers
PPTX
Mathematics 4-operations-mixed-numbers.pptx
PPTX
Alg II Unit 4-8 Quadratic Equations and Complex Numbers
PPT
2sComplementArithmetic1 lecture slides ppt
PPT
2sComplementArithmetic1.ppt
PPT
2sComplementArithmetic1.ppt
PDF
Math1000 section1.6
PPTX
Data representation number
DOC
Number system By expert's class Ahmedabad
2.4 Complex Numbers
1.3 Complex Numbers
Complex Numbers
5.9 Complex Numbers 2.ppt
Complex operations
1.4 complex numbers
5 complex numbers y
Math unit7 number system and bases
Lesson5.1 complexnumbers
5.4 Complex Numbers
Complex numbers- College Algebra
MIT Math Syllabus 10-3 Lesson 5: Complex numbers
Mathematics 4-operations-mixed-numbers.pptx
Alg II Unit 4-8 Quadratic Equations and Complex Numbers
2sComplementArithmetic1 lecture slides ppt
2sComplementArithmetic1.ppt
2sComplementArithmetic1.ppt
Math1000 section1.6
Data representation number
Number system By expert's class Ahmedabad
Ad

Recently uploaded (20)

PPTX
Tissue processing ( HISTOPATHOLOGICAL TECHNIQUE
PDF
OBE - B.A.(HON'S) IN INTERIOR ARCHITECTURE -Ar.MOHIUDDIN.pdf
PDF
102 student loan defaulters named and shamed – Is someone you know on the list?
PPTX
master seminar digital applications in india
PDF
Anesthesia in Laparoscopic Surgery in India
PDF
Chapter 2 Heredity, Prenatal Development, and Birth.pdf
PDF
RMMM.pdf make it easy to upload and study
PDF
O7-L3 Supply Chain Operations - ICLT Program
PDF
3rd Neelam Sanjeevareddy Memorial Lecture.pdf
PDF
01-Introduction-to-Information-Management.pdf
PDF
A systematic review of self-coping strategies used by university students to ...
PPTX
1st Inaugural Professorial Lecture held on 19th February 2020 (Governance and...
PDF
STATICS OF THE RIGID BODIES Hibbelers.pdf
PPTX
GDM (1) (1).pptx small presentation for students
PPTX
Cell Types and Its function , kingdom of life
PDF
Saundersa Comprehensive Review for the NCLEX-RN Examination.pdf
PPTX
PPT- ENG7_QUARTER1_LESSON1_WEEK1. IMAGERY -DESCRIPTIONS pptx.pptx
PPTX
Lesson notes of climatology university.
PPTX
202450812 BayCHI UCSC-SV 20250812 v17.pptx
PPTX
Final Presentation General Medicine 03-08-2024.pptx
Tissue processing ( HISTOPATHOLOGICAL TECHNIQUE
OBE - B.A.(HON'S) IN INTERIOR ARCHITECTURE -Ar.MOHIUDDIN.pdf
102 student loan defaulters named and shamed – Is someone you know on the list?
master seminar digital applications in india
Anesthesia in Laparoscopic Surgery in India
Chapter 2 Heredity, Prenatal Development, and Birth.pdf
RMMM.pdf make it easy to upload and study
O7-L3 Supply Chain Operations - ICLT Program
3rd Neelam Sanjeevareddy Memorial Lecture.pdf
01-Introduction-to-Information-Management.pdf
A systematic review of self-coping strategies used by university students to ...
1st Inaugural Professorial Lecture held on 19th February 2020 (Governance and...
STATICS OF THE RIGID BODIES Hibbelers.pdf
GDM (1) (1).pptx small presentation for students
Cell Types and Its function , kingdom of life
Saundersa Comprehensive Review for the NCLEX-RN Examination.pdf
PPT- ENG7_QUARTER1_LESSON1_WEEK1. IMAGERY -DESCRIPTIONS pptx.pptx
Lesson notes of climatology university.
202450812 BayCHI UCSC-SV 20250812 v17.pptx
Final Presentation General Medicine 03-08-2024.pptx
Ad

A presentation on complex numbers of mathematics

  • 1. Complex Numbers 10.7 10.7 1. Write imaginary numbers using i. 2. Perform arithmetic operations with complex numbers. 3. Raise i to powers.
  • 3. Imaginary unit: Imaginary number: A number that can be expressed in the form bi, where b is a real number and i is the imaginary unit. i 3 i 9  i 5 2 1   i 1 2   i
  • 4. 16  21  32  1 16    4 i   4i  1 21    21 i  1 32    16 2 i   4 2 i  1 1 2     i i
  • 5. Complex number: A number that can be expressed in the form a + bi, where a and b are real numbers and i is the imaginary unit. i 3 4  i 5 7  i 5 4 3 2  Examples: real im aginary
  • 6. Complex Numbers: a + b Complex Numbers: a + bi i b = 0: Real numbers a = 0: Imaginary numbers real imaginary
  • 7. Add Complex Numbers Add Complex Numbers     i i 5 4 3 5    1 1 2     i i i i 5 4 3 5    Add the real parts – add the imaginary parts i 8 9 
  • 8. Subtract Complex Numbers Subtract Complex Numbers     i i 2 1 3 8     1 1 2     i i i i 2 1 3 8    i  9
  • 9. Slide 10- 9 Copyright © 2011 Pearson Education, Inc. Simplify. (4 + 7i) – (2 + i) a) 2 + 7i2 b) 2 + 8i c) 6 + 6i d) 6 + 8i
  • 10. Slide 10- 10 Copyright © 2011 Pearson Education, Inc. Simplify. (4 + 7i) – (2 + i) a) 2 + 7i2 b) 2 + 8i c) 6 + 6i d) 6 + 8i
  • 11. Multiply Complex Numbers Multiply Complex Numbers    i i 7 4  1 1 2     i i 2 28i    1 28   28
  • 12. Multiply Complex Numbers Multiply Complex Numbers   i i 8 5 7   1 1 2     i i 2 56 35 i i     1 56 35    i 56 35   i i 35 56   standard a + bi form
  • 13. Multiply Complex Numbers Multiply Complex Numbers    i i   4 2 5 1 1 2     i i 2 2 8 5 20 i i i    2 2 3 20 i i     1 2 3 20    i 2 3 20   i i 3 22 
  • 14. Multiply Complex Numbers Multiply Complex Numbers  2 3 5 i  1 1 2     i i 2 9 15 15 25 i i i      1 9 30 25    i 9 30 25   i i 30 16  Rewrite & Foil    i i 3 5 3 5  
  • 15. Slide 10- 15 Copyright © 2011 Pearson Education, Inc. Multiply. (4 + 7i)(2 + i) a) 15 + 10i b) 1 + 10i c) 15 + 18i d) 15 + 18i
  • 16. Slide 10- 16 Copyright © 2011 Pearson Education, Inc. Multiply. (4 + 7i)(2 + i) a) 15 + 10i b) 1 + 10i c) 15 + 18i d) 15 + 18i
  • 17. Divide Complex Numbers Divide Complex Numbers i 7 6 1 1 2     i i i i i  7 6 2 7 6 i i    1 7 6   i 7 6   i 7 6i   7 6i  
  • 18. Binomial denominator conjugate Divide Complex Numbers Divide Complex Numbers i  6 5 1 1 2     i i       i i i     6 6 6 5 2 36 5 30 i i      1 36 5 30     i i 37 5 37 30  standard a + bi form 37 5 30 i  
  • 19. Slide 10- 19 Copyright © 2011 Pearson Education, Inc. Write in standard form. a) b) c) d) 4 2 3 i i   5 14 13 13 i  5 14 13 13 i  11 14 13 13 i  11 14 13 13 i 
  • 20. Slide 10- 20 Copyright © 2011 Pearson Education, Inc. Write in standard form. a) b) c) d) 4 2 3 i i   5 14 13 13 i  5 14 13 13 i  11 14 13 13 i  11 14 13 13 i 
  • 21. Powers of i: Powers of i: 1 1 2     i i i    1 1 1 2 2 4       i i i   i i i i i       1 2 3 1 2   i            1 1 1 1 1 1 1 1 4 4 8 3 4 7 2 4 6 4 5                     i i i i i i i i i i i i i i i i
  • 22.  41 i   i i  10 4 i i   1  15 i   3 3 4 i i  i i     1 i    1 1 1 2 2 4       i i i   i i i i i       1 2 3 1 2   i Powers of i: Powers of i: