SlideShare a Scribd company logo
Complex Numbers
10.7
1. Write imaginary numbers using i.
2. Perform arithmetic operations with complex numbers.
3. Raise i to powers.
In mathematics, a complex variable opens a doorway
Imaginary unit:
Imaginary number: A number that can be expressed
in the form bi, where b is a real number and i is the
imaginary unit.
i
3 i
9
 i
5
2
1


i
1
2


i
16

21

32

1 16
   4
i
  4i

1 21
   21
i

1 32
   16 2
i
  4 2
i

1
1
2




i
i
Complex number: A number that can be expressed in
the form a + bi, where a and b are real numbers and i
is the imaginary unit.
i
3
4  i
5
7  i
5
4
3
2

Examples:
Complex Numbers: a + bi
b = 0: Real numbers
a = 0: Imaginary numbers
real imaginary
Add Complex Numbers
   
i
i 5
4
3
5 


1
1
2




i
i
i
i 5
4
3
5 


Add the real parts – add the imaginary parts
i
8
9 
Subtract Complex Numbers
   
i
i 2
1
3
8 



1
1
2




i
i
i
i 2
1
3
8 


i

9
Slide 10- 9
Copyright © 2011 Pearson Education, Inc.
Simplify. (4 + 7i) – (2 + i)
a) 2 + 7i2
b) 2 + 8i
c) 6 + 6i
d) 6 + 8i
Slide 10- 10
Copyright © 2011 Pearson Education, Inc.
Simplify. (4 + 7i) – (2 + i)
a) 2 + 7i2
b) 2 + 8i
c) 6 + 6i
d) 6 + 8i
Multiply Complex Numbers
  
i
i 7
4 
1
1
2




i
i
2
28i

 
1
28 

28
Multiply Complex Numbers
 
i
i 8
5
7 

1
1
2




i
i
2
56
35 i
i 

 
1
56
35 

 i
56
35 
 i
i
35
56 

standard a + bi form
Multiply Complex Numbers
  
i
i 
 4
2
5
1
1
2




i
i
2
2
8
5
20 i
i
i 


2
2
3
20 i
i 

 
1
2
3
20 

 i
2
3
20 
 i
i
3
22 
Multiply Complex Numbers
 2
3
5 i

1
1
2




i
i
2
9
15
15
25 i
i
i 


 
1
9
30
25 

 i
9
30
25 
 i
i
30
16 
Rewrite & Foil
  
i
i 3
5
3
5 

Slide 10- 15
Copyright © 2011 Pearson Education, Inc.
Multiply. (4 + 7i)(2 + i)
a) 15 + 10i
b) 1 + 10i
c) 15 + 18i
d) 15 + 18i
Slide 10- 16
Copyright © 2011 Pearson Education, Inc.
Multiply. (4 + 7i)(2 + i)
a) 15 + 10i
b) 1 + 10i
c) 15 + 18i
d) 15 + 18i
Divide Complex Numbers
i
7
6
1
1
2




i
i
i
i
i

7
6
2
7
6
i
i

 
1
7
6


i
7
6


i
7
6i


7
6i


Binomial denominator conjugate
Divide Complex Numbers
i

6
5
1
1
2




i
i
 
 
 
i
i
i 


 6
6
6
5
2
36
5
30
i
i



 
1
36
5
30




i
i
37
5
37
30

standard a + bi form
37
5
30 i


Slide 10- 19
Copyright © 2011 Pearson Education, Inc.
Write in standard form.
a)
b)
c)
d)
4
2 3
i
i


5 14
13 13
i

5 14
13 13
i

11 14
13 13
i

11 14
13 13
i

Slide 10- 20
Copyright © 2011 Pearson Education, Inc.
Write in standard form.
a)
b)
c)
d)
4
2 3
i
i


5 14
13 13
i

5 14
13 13
i

11 14
13 13
i

11 14
13 13
i

Powers of i:
1
1
2




i
i
i
   1
1
1
2
2
4





 i
i
i
  i
i
i
i
i 




 1
2
3
1
2


i
 
  
  
   1
1
1
1
1
1
1
1
4
4
8
3
4
7
2
4
6
4
5




















i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i

41
i   i
i 
10
4
i
i 

 1

15
i   3
3
4
i
i  i
i 



 1
i
   1
1
1
2
2
4





 i
i
i
  i
i
i
i
i 




 1
2
3
1
2


i
Powers of i:
4
3
2
i
i
i
i 


Simplify:
In mathematics, a complex variable opens a doorway

More Related Content

PPT
A presentation on complex numbers of mathematics
PDF
2.4 Complex Numbers
PDF
1.3 Complex Numbers
PDF
1.3 Complex Numbers
PPT
5.9 Complex Numbers 2.ppt
PPTX
MIT Math Syllabus 10-3 Lesson 5: Complex numbers
PPT
Complex Numbers part12345678tttttttttttt
PPTX
1.4 complex numbers t
A presentation on complex numbers of mathematics
2.4 Complex Numbers
1.3 Complex Numbers
1.3 Complex Numbers
5.9 Complex Numbers 2.ppt
MIT Math Syllabus 10-3 Lesson 5: Complex numbers
Complex Numbers part12345678tttttttttttt
1.4 complex numbers t

Similar to In mathematics, a complex variable opens a doorway (20)

PPTX
PowerPoint on Complex Number, Digital unit
PPTX
1 lesson 7 introduction to complex numbers
PPTX
1 lesson 7 introduction to complex numbers
PPTX
Complex operations
PPSX
LECTURE 18 MARCH 2024- LEVEL 3 -2 Complex Numbers.ppsx
PPT
Lesson5.1 complexnumbers
PDF
ملزمة الرياضيات للصف السادس العلمي الاحيائي - التطبيقي
PPT
Lesson5.1 complexnumbers demo
PPT
Complex Numbers
PPTX
Complex-numbers.pptx tutorial for further maths
PPTX
9 Arithmetic Operations on Complex Numbers.pptx
PDF
Math1000 section1.6
PPTX
1.4 complex numbers
PPTX
5 complex numbers y
DOCX
009 chapter ii
PPT
Introduction to imaginary numbers.ppt
PPTX
5.4 Complex Numbers
PPT
Introduction to imaginary numbers.ppt
PPTX
Complex numbers math 2
PPTX
complex numbers
PowerPoint on Complex Number, Digital unit
1 lesson 7 introduction to complex numbers
1 lesson 7 introduction to complex numbers
Complex operations
LECTURE 18 MARCH 2024- LEVEL 3 -2 Complex Numbers.ppsx
Lesson5.1 complexnumbers
ملزمة الرياضيات للصف السادس العلمي الاحيائي - التطبيقي
Lesson5.1 complexnumbers demo
Complex Numbers
Complex-numbers.pptx tutorial for further maths
9 Arithmetic Operations on Complex Numbers.pptx
Math1000 section1.6
1.4 complex numbers
5 complex numbers y
009 chapter ii
Introduction to imaginary numbers.ppt
5.4 Complex Numbers
Introduction to imaginary numbers.ppt
Complex numbers math 2
complex numbers
Ad

Recently uploaded (20)

PDF
O7-L3 Supply Chain Operations - ICLT Program
PPTX
Introduction-to-Literarature-and-Literary-Studies-week-Prelim-coverage.pptx
PDF
102 student loan defaulters named and shamed – Is someone you know on the list?
PDF
Chapter 2 Heredity, Prenatal Development, and Birth.pdf
PPTX
Microbial diseases, their pathogenesis and prophylaxis
PDF
OBE - B.A.(HON'S) IN INTERIOR ARCHITECTURE -Ar.MOHIUDDIN.pdf
PDF
Chinmaya Tiranga quiz Grand Finale.pdf
PPTX
Cell Types and Its function , kingdom of life
PPTX
human mycosis Human fungal infections are called human mycosis..pptx
PPTX
IMMUNITY IMMUNITY refers to protection against infection, and the immune syst...
PDF
Classroom Observation Tools for Teachers
PPTX
Institutional Correction lecture only . . .
PDF
The Lost Whites of Pakistan by Jahanzaib Mughal.pdf
PDF
Supply Chain Operations Speaking Notes -ICLT Program
PDF
VCE English Exam - Section C Student Revision Booklet
PDF
3rd Neelam Sanjeevareddy Memorial Lecture.pdf
PPTX
GDM (1) (1).pptx small presentation for students
PDF
GENETICS IN BIOLOGY IN SECONDARY LEVEL FORM 3
PPTX
Pharma ospi slides which help in ospi learning
PDF
Black Hat USA 2025 - Micro ICS Summit - ICS/OT Threat Landscape
O7-L3 Supply Chain Operations - ICLT Program
Introduction-to-Literarature-and-Literary-Studies-week-Prelim-coverage.pptx
102 student loan defaulters named and shamed – Is someone you know on the list?
Chapter 2 Heredity, Prenatal Development, and Birth.pdf
Microbial diseases, their pathogenesis and prophylaxis
OBE - B.A.(HON'S) IN INTERIOR ARCHITECTURE -Ar.MOHIUDDIN.pdf
Chinmaya Tiranga quiz Grand Finale.pdf
Cell Types and Its function , kingdom of life
human mycosis Human fungal infections are called human mycosis..pptx
IMMUNITY IMMUNITY refers to protection against infection, and the immune syst...
Classroom Observation Tools for Teachers
Institutional Correction lecture only . . .
The Lost Whites of Pakistan by Jahanzaib Mughal.pdf
Supply Chain Operations Speaking Notes -ICLT Program
VCE English Exam - Section C Student Revision Booklet
3rd Neelam Sanjeevareddy Memorial Lecture.pdf
GDM (1) (1).pptx small presentation for students
GENETICS IN BIOLOGY IN SECONDARY LEVEL FORM 3
Pharma ospi slides which help in ospi learning
Black Hat USA 2025 - Micro ICS Summit - ICS/OT Threat Landscape
Ad

In mathematics, a complex variable opens a doorway

  • 1. Complex Numbers 10.7 1. Write imaginary numbers using i. 2. Perform arithmetic operations with complex numbers. 3. Raise i to powers.
  • 3. Imaginary unit: Imaginary number: A number that can be expressed in the form bi, where b is a real number and i is the imaginary unit. i 3 i 9  i 5 2 1   i 1 2   i
  • 4. 16  21  32  1 16    4 i   4i  1 21    21 i  1 32    16 2 i   4 2 i  1 1 2     i i
  • 5. Complex number: A number that can be expressed in the form a + bi, where a and b are real numbers and i is the imaginary unit. i 3 4  i 5 7  i 5 4 3 2  Examples:
  • 6. Complex Numbers: a + bi b = 0: Real numbers a = 0: Imaginary numbers real imaginary
  • 7. Add Complex Numbers     i i 5 4 3 5    1 1 2     i i i i 5 4 3 5    Add the real parts – add the imaginary parts i 8 9 
  • 8. Subtract Complex Numbers     i i 2 1 3 8     1 1 2     i i i i 2 1 3 8    i  9
  • 9. Slide 10- 9 Copyright © 2011 Pearson Education, Inc. Simplify. (4 + 7i) – (2 + i) a) 2 + 7i2 b) 2 + 8i c) 6 + 6i d) 6 + 8i
  • 10. Slide 10- 10 Copyright © 2011 Pearson Education, Inc. Simplify. (4 + 7i) – (2 + i) a) 2 + 7i2 b) 2 + 8i c) 6 + 6i d) 6 + 8i
  • 11. Multiply Complex Numbers    i i 7 4  1 1 2     i i 2 28i    1 28   28
  • 12. Multiply Complex Numbers   i i 8 5 7   1 1 2     i i 2 56 35 i i     1 56 35    i 56 35   i i 35 56   standard a + bi form
  • 13. Multiply Complex Numbers    i i   4 2 5 1 1 2     i i 2 2 8 5 20 i i i    2 2 3 20 i i     1 2 3 20    i 2 3 20   i i 3 22 
  • 14. Multiply Complex Numbers  2 3 5 i  1 1 2     i i 2 9 15 15 25 i i i      1 9 30 25    i 9 30 25   i i 30 16  Rewrite & Foil    i i 3 5 3 5  
  • 15. Slide 10- 15 Copyright © 2011 Pearson Education, Inc. Multiply. (4 + 7i)(2 + i) a) 15 + 10i b) 1 + 10i c) 15 + 18i d) 15 + 18i
  • 16. Slide 10- 16 Copyright © 2011 Pearson Education, Inc. Multiply. (4 + 7i)(2 + i) a) 15 + 10i b) 1 + 10i c) 15 + 18i d) 15 + 18i
  • 17. Divide Complex Numbers i 7 6 1 1 2     i i i i i  7 6 2 7 6 i i    1 7 6   i 7 6   i 7 6i   7 6i  
  • 18. Binomial denominator conjugate Divide Complex Numbers i  6 5 1 1 2     i i       i i i     6 6 6 5 2 36 5 30 i i      1 36 5 30     i i 37 5 37 30  standard a + bi form 37 5 30 i  
  • 19. Slide 10- 19 Copyright © 2011 Pearson Education, Inc. Write in standard form. a) b) c) d) 4 2 3 i i   5 14 13 13 i  5 14 13 13 i  11 14 13 13 i  11 14 13 13 i 
  • 20. Slide 10- 20 Copyright © 2011 Pearson Education, Inc. Write in standard form. a) b) c) d) 4 2 3 i i   5 14 13 13 i  5 14 13 13 i  11 14 13 13 i  11 14 13 13 i 
  • 21. Powers of i: 1 1 2     i i i    1 1 1 2 2 4       i i i   i i i i i       1 2 3 1 2   i            1 1 1 1 1 1 1 1 4 4 8 3 4 7 2 4 6 4 5                     i i i i i i i i i i i i i i i i
  • 22.  41 i   i i  10 4 i i    1  15 i   3 3 4 i i  i i      1 i    1 1 1 2 2 4       i i i   i i i i i       1 2 3 1 2   i Powers of i: