SlideShare a Scribd company logo
ⓒ 2018 UEC Tokyo.
Conditional CycleGAN
† ††
††† †††	 †††
† 1
††	 3
†††
ⓒ 2018 UEC Tokyo.
• A
– ( ( ( ( (
– ( ( )(
2
Input
noise
vector
fake or
real
D
G
100
dim
Training
set
fake
image
real
image
ⓒ 2018 UEC Tokyo.
• A GI GI A
– 4 - 1 - 1- ( (
+ ( )
3
Input
noise
vector
fake or realD
G
100
dim
Training
set
fake
image
real
image
G D
G: N
A D
D: G
N (real)
G (fake)
ⓒ 2018 UEC Tokyo.
• 5 1
– 2 I 0 ( A (
0 5
– A 1 ) 2 2 1 (
1
– 1 5 2 0 81
4
ⓒ 2018 UEC Tokyo.
•
5
…
ⓒ 2018 UEC Tokyo. 6
ⓒ 2018 UEC Tokyo.
• :
– 2
• :
– 2 2 1
7
:
2
0 1
2
2
+++
+++
ⓒ 2018 UEC Tokyo.
• :
– 2
• :
– 2 2 1
8
:
2
0 1
2
2
+++
+++
ⓒ 2018 UEC Tokyo.
• . .
•
:
.
. :
9
Conditional CycleGAN
11
2
Image-to-Image
CycleGAN
:
ⓒ 2018 UEC Tokyo.
• 1 1 -( 2 )
– C I F I
10
D
+ 7
2
G
ⓒ 2018 UEC Tokyo. 11
• 1 ) + ( -
– A 7
ⓒ 2018 UEC Tokyo. 12
Cycle Consistency Loss
• 1 ) + ( -
– A 7
G CI
ⓒ 2018 UEC Tokyo. 13
Cycle Consistency Loss
• 1 ) + ( -
– A 7
G CI
ⓒ 2018 UEC Tokyo.
.
2
2 : .
14
to
1
to
to
1:n
ⓒ 2018 UEC Tokyo.
• StarGAN: Unified Generative Adversarial Networks for
Multi-Domain Image-to-Image Translation [Choi+ CVPR-18]
– :
–
– +1
15
ⓒ 2018 UEC Tokyo.
AC-GAN[Odena+ ICML-17]
• Conditional Image Synthesis With Auxiliary Classifier GANs
– ) (
)
1616
fake or real
one-hot vector
!
C[0, 1, 0…]
one-hot vector
"
#
$%
#
ⓒ 2018 UEC Tokyo.
Real Image
In domain
Real Image
In domain B
Fake Image
In domain
Reconstructed
Image
Domain
SelectC[0, 1]
fake or real class[1, 0]
Domain
Select
C[1, 0]
!
(G) (G)
17
•
– 3
ⓒ 2018 UEC Tokyo. 18
•
– 3
Real Image
In domain
Real Image
In domain B
Fake Image
In domain
Reconstructed
Image
Domain
SelectC[0, 1]
fake or real class[1, 0]
Domain
Select
C[1, 0]
!
(G) (G)
ⓒ 2018 UEC Tokyo.
• 1 6
+ B + 6
- [
S RTCP ]
– 1 L
1
– aL EV J
19
Conv(st=1)
7x7x64
Conv(st=2)
4x4x128
Conv(st=2)
4x4x256
ResBlock
ResBlock
ResBlock
ResBlock
ResBlock
ResBlock
Conv(st=1/2)
4x4x128
Conv(st=1/2)
4x4x64
Conv(st=1)
7x7x3
3x3Conv
InsNorm
LeakyReLU
3x3Conv
InsNorm
D
ⓒ 2018 UEC Tokyo.
• 1 0 1 1 0,
– 1 !"#"$%
20
!"$&''#(#%)
ⓒ 2018 UEC Tokyo.
• :
– 2
• :
– 2 2 1
21
:
2
0 1
2
2
+++
+++
ⓒ 2018 UEC Tokyo.
• 5 1
– 2 I 0 ( A (
0 5
– A 1 ) 2 2 1 (
1
– 1 5 2 0 81
22
( ) (
ⓒ 2018 UEC Tokyo.
-
• 0 2 20 610 P 6 +
– VT N
– 0 20 G
C S
– R
•
–
GP
– V
23
argmin '()(*+ = -'.)/(0/( + 2'3(4+0
'()(*+
'.)/(0/(
'3(4+0
0
0 0 0
20
input
conv3_1
conv1_1
conv2_1
conv4_1
conv5_1
conv4_2
) )(
5+ = 6789+ 6789+ :
U
⃗<
⃗=
⃗>
ⓒ 2018 UEC Tokyo.
•
– -
–
• 0 0 0
• ) ( 1 G1
•
– 1 1 J
• a0
• 1
G ( 1 G
24
!"
ⓒ 2018 UEC Tokyo.
•
– 1
– M
1,0 0 ,) ( )
[Tanno+ MMM2017]
S
3
ⓒ 2018 UEC Tokyo.
• T MN
– MN ) + 6 : + :
– MN ) - : 2 : 3 8
• P
– A 6 1 6 0
• P C
– + 6 : + : ) G O Q
– - : 2 : 3 8 ) -2 + + O(Q S
G : S
26
ⓒ 2018 UEC Tokyo.
• :
–
27
G )(
A N
Real Image
In domain
Real Image
In domain B
Fake Image
In domain
Reconstructed
Image
Domain
SelectC[0, 1]
fake or real class[1, 0]
C
Domain
Select
C[1, 0]
!
(G) (G)
ⓒ 2018 UEC Tokyo.
• N :
28
G ( ( )
A C
ⓒ 2018 UEC Tokyo.
•
– A N
29
)(
G
:
C
ⓒ 2018 UEC Tokyo. 30
)(
• 合計約23万枚を利用
– 学習用:9割
– テスト用:1割
:
74007
34216
27854
24760
21324
18396
13499
7138
5329
3530
230053
ⓒ 2018 UEC Tokyo.
• 1
31
2 ) (
1 …
ⓒ 2018 UEC Tokyo.
• 32 0 032 1 1
– G T
• 1 0 1 2
– a G A 1 f c S
32
dC il
: eN M
ⓒ 2018 UEC Tokyo.
•
33
: )(
33
ⓒ 2018 UEC Tokyo.
•
34
: )(
34
A
ⓒ 2018 UEC Tokyo.
• 1
35
) (
Content
Style
ⓒ 2018 UEC Tokyo.
cCycleGAN
Multi Style
Transfer
36
ⓒ 2018 UEC Tokyo. 37
ⓒ 2018 UEC Tokyo.
•
– lS e n i
• AC if
• ( ) 1 a
• c
– A a M Na
– T
– G S G
38
ⓒ 2018 UEC Tokyo.
•
–
•
–
•
–
39
ⓒ 2018 UEC Tokyo.
• a m A
– e A N A a e m
– gm C A tC r u
– a
• xf a a
– 1 A
- l n A
xf A 0 I pi
40
ⓒ 2018 UEC Tokyo.
• A ( (
– 8 1 2) 8
– 8
41
G
30%
8 G
32%
N
ⓒ 2018 UEC Tokyo.
•
– 0M e 2
– l 0M N T
2
• l A
– 2 0M b I
i 0S 0M N
– C 2 A
42
ⓒ 2018 UEC Tokyo.
•
43
: )(
43
A
ⓒ 2018 UEC Tokyo.
• 1
44
) (
Content
Style
ⓒ 2018 UEC Tokyo.
•
45
: )(
ⓒ 2018 UEC Tokyo. 46
2 ) (
•
–
ⓒ 2018 UEC Tokyo.
•
47
) (
Content
Style
ⓒ 2018 UEC Tokyo.
•
48
) (
Content
Style

More Related Content

PDF
SSII2019TS: Shall We GANs?​ ~GANの基礎から最近の研究まで~
PDF
Variational AutoEncoder
PDF
GAN(と強化学習との関係)
PDF
【DL輪読会】Drag Your GAN: Interactive Point-based Manipulation on the Generative ...
PDF
第52回SWO研究会チュートリアル資料
PDF
機械学習モデルのハイパパラメータ最適化
PPTX
[DL輪読会]GQNと関連研究,世界モデルとの関係について
PDF
深層学習による非滑らかな関数の推定
SSII2019TS: Shall We GANs?​ ~GANの基礎から最近の研究まで~
Variational AutoEncoder
GAN(と強化学習との関係)
【DL輪読会】Drag Your GAN: Interactive Point-based Manipulation on the Generative ...
第52回SWO研究会チュートリアル資料
機械学習モデルのハイパパラメータ最適化
[DL輪読会]GQNと関連研究,世界モデルとの関係について
深層学習による非滑らかな関数の推定

What's hot (20)

PDF
深層生成モデルと世界モデル
PPTX
深層学習を用いた服飾画像の印象推定に関する研究
PDF
[DL輪読会]Diffusion-based Voice Conversion with Fast Maximum Likelihood Samplin...
PPTX
【DL輪読会】High-Resolution Image Synthesis with Latent Diffusion Models
PPTX
PILCO - 第一回高橋研究室モデルベース強化学習勉強会
PDF
PR-231: A Simple Framework for Contrastive Learning of Visual Representations
PDF
平滑化処理の繰り返しによる画像セグメンテーションのためのグラフカット
PPTX
[DL輪読会]Graph Convolutional Policy Network for Goal-Directed Molecular Graph G...
PDF
(DL hacks輪読) Deep Kernel Learning
PPTX
Emily Denton - Unsupervised Learning of Disentangled Representations from Vid...
PPTX
強化学習初心者が強化学習でニューラルネットワークの設計を自動化してみたい
PDF
Neural scene representation and rendering の解説(第3回3D勉強会@関東)
PDF
【メタサーベイ】Video Transformer
PDF
ブラックボックス最適化とその応用
PDF
12. Diffusion Model の数学的基礎.pdf
PDF
Introduction to Prioritized Experience Replay
PDF
Irs gan doc
PDF
Skip Connection まとめ(Neural Network)
PPTX
[DL輪読会]Life-Long Disentangled Representation Learning with Cross-Domain Laten...
PDF
[GTCJ2018]CuPy -NumPy互換GPUライブラリによるPythonでの高速計算- PFN奥田遼介
深層生成モデルと世界モデル
深層学習を用いた服飾画像の印象推定に関する研究
[DL輪読会]Diffusion-based Voice Conversion with Fast Maximum Likelihood Samplin...
【DL輪読会】High-Resolution Image Synthesis with Latent Diffusion Models
PILCO - 第一回高橋研究室モデルベース強化学習勉強会
PR-231: A Simple Framework for Contrastive Learning of Visual Representations
平滑化処理の繰り返しによる画像セグメンテーションのためのグラフカット
[DL輪読会]Graph Convolutional Policy Network for Goal-Directed Molecular Graph G...
(DL hacks輪読) Deep Kernel Learning
Emily Denton - Unsupervised Learning of Disentangled Representations from Vid...
強化学習初心者が強化学習でニューラルネットワークの設計を自動化してみたい
Neural scene representation and rendering の解説(第3回3D勉強会@関東)
【メタサーベイ】Video Transformer
ブラックボックス最適化とその応用
12. Diffusion Model の数学的基礎.pdf
Introduction to Prioritized Experience Replay
Irs gan doc
Skip Connection まとめ(Neural Network)
[DL輪読会]Life-Long Disentangled Representation Learning with Cross-Domain Laten...
[GTCJ2018]CuPy -NumPy互換GPUライブラリによるPythonでの高速計算- PFN奥田遼介
Ad

Similar to Conditional CycleGANによる食事画像変換 (20)

PDF
敵対的生成ネットワークによる食事画像の変換に関する研究
PPTX
Watermarking in Source Code: Applications and Security Challenges
PDF
aiboのAI:DeepLearning認識
PDF
Differentiable Ray Sampling for Neural 3D Representation
PDF
DeepXplore: Automated Whitebox Testing of Deep Learning
PDF
Overview of Qiskit Ignis - Struggle with errors -
PDF
構文や語彙意味論の分析成果をプログラムとして具現化する言語 パターンマッチAPIの可能性
DOC
Ramco Sample Paper 2003
PDF
IIT JAM EN - Economics 2022 Question Paper | Sourav Sir's Classes
PDF
알고리즘 연합캠프 세미나 1-B (Bitwise DP)
PDF
LSGAN - SIMPle(Simple Idea Meaningful Performance Level up)
PDF
論文紹介:Retrieval-Augmented Layout Transformer for Content-Aware Layout Generation
PPTX
Test Driven Interviewing in C++
PDF
Security of Artificial Intelligence
PPTX
B. SC CSIT Computer Graphics Lab By Tekendra Nath Yogi
PDF
0580 s12 qp_41
PDF
Sesion de aprendizaje de logaritmos algebra pre u ccesa007
PDF
【論文読み】Learning to Structure an Image with Few Colors
PDF
Gems of GameplayKit. UA Mobile 2017.
PDF
Enhancing Partition Crossover with Articulation Points Analysis
敵対的生成ネットワークによる食事画像の変換に関する研究
Watermarking in Source Code: Applications and Security Challenges
aiboのAI:DeepLearning認識
Differentiable Ray Sampling for Neural 3D Representation
DeepXplore: Automated Whitebox Testing of Deep Learning
Overview of Qiskit Ignis - Struggle with errors -
構文や語彙意味論の分析成果をプログラムとして具現化する言語 パターンマッチAPIの可能性
Ramco Sample Paper 2003
IIT JAM EN - Economics 2022 Question Paper | Sourav Sir's Classes
알고리즘 연합캠프 세미나 1-B (Bitwise DP)
LSGAN - SIMPle(Simple Idea Meaningful Performance Level up)
論文紹介:Retrieval-Augmented Layout Transformer for Content-Aware Layout Generation
Test Driven Interviewing in C++
Security of Artificial Intelligence
B. SC CSIT Computer Graphics Lab By Tekendra Nath Yogi
0580 s12 qp_41
Sesion de aprendizaje de logaritmos algebra pre u ccesa007
【論文読み】Learning to Structure an Image with Few Colors
Gems of GameplayKit. UA Mobile 2017.
Enhancing Partition Crossover with Articulation Points Analysis
Ad

More from Ryosuke Tanno (16)

PDF
【2017年度】勉強会資料_学習に関するテクニック
PDF
【2016年度】勉強会資料_word2vec
PDF
【2016年度】勉強会資料_Chainer
PDF
MMM2017参加報告
PDF
ECCV2016, ACMMM2016参加報告
PDF
深層学習ネットワークのモバイル実装
PDF
研究紹介
PDF
第三回勉強会 Keras担当回
PDF
Deep Learning on the Mobile Devices
PDF
Introduction of Mobile CNN
PDF
複数スタイルの融合と 部分的適用を可能とする Multi-style Feed-forward Networkの提案
PDF
Caffe2C: A Framework for Easy Implementation of CNN-based Mobile Applications
PDF
モバイルOS上での深層学習による 画像認識システムの実装と比較分析
PDF
AR DeepCalorieCam: AR表示型食事カロリー量推定システム
PDF
CoreMLによるiOS深層学習アプリの実装と性能分析
PDF
OpenCV DNN module vs. Ours method
【2017年度】勉強会資料_学習に関するテクニック
【2016年度】勉強会資料_word2vec
【2016年度】勉強会資料_Chainer
MMM2017参加報告
ECCV2016, ACMMM2016参加報告
深層学習ネットワークのモバイル実装
研究紹介
第三回勉強会 Keras担当回
Deep Learning on the Mobile Devices
Introduction of Mobile CNN
複数スタイルの融合と 部分的適用を可能とする Multi-style Feed-forward Networkの提案
Caffe2C: A Framework for Easy Implementation of CNN-based Mobile Applications
モバイルOS上での深層学習による 画像認識システムの実装と比較分析
AR DeepCalorieCam: AR表示型食事カロリー量推定システム
CoreMLによるiOS深層学習アプリの実装と性能分析
OpenCV DNN module vs. Ours method

Recently uploaded (20)

PPTX
Internet of Things (IOT) - A guide to understanding
PDF
Operating System & Kernel Study Guide-1 - converted.pdf
PPT
Mechanical Engineering MATERIALS Selection
PDF
Enhancing Cyber Defense Against Zero-Day Attacks using Ensemble Neural Networks
PPTX
CARTOGRAPHY AND GEOINFORMATION VISUALIZATION chapter1 NPTE (2).pptx
PDF
BMEC211 - INTRODUCTION TO MECHATRONICS-1.pdf
PDF
R24 SURVEYING LAB MANUAL for civil enggi
DOCX
ASol_English-Language-Literature-Set-1-27-02-2023-converted.docx
PPTX
FINAL REVIEW FOR COPD DIANOSIS FOR PULMONARY DISEASE.pptx
PDF
keyrequirementskkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
DOCX
573137875-Attendance-Management-System-original
PDF
The CXO Playbook 2025 – Future-Ready Strategies for C-Suite Leaders Cerebrai...
PDF
PPT on Performance Review to get promotions
PPTX
UNIT-1 - COAL BASED THERMAL POWER PLANTS
PPT
CRASH COURSE IN ALTERNATIVE PLUMBING CLASS
PDF
Automation-in-Manufacturing-Chapter-Introduction.pdf
PDF
Evaluating the Democratization of the Turkish Armed Forces from a Normative P...
PPTX
MCN 401 KTU-2019-PPE KITS-MODULE 2.pptx
PPTX
IOT PPTs Week 10 Lecture Material.pptx of NPTEL Smart Cities contd
PPTX
Recipes for Real Time Voice AI WebRTC, SLMs and Open Source Software.pptx
Internet of Things (IOT) - A guide to understanding
Operating System & Kernel Study Guide-1 - converted.pdf
Mechanical Engineering MATERIALS Selection
Enhancing Cyber Defense Against Zero-Day Attacks using Ensemble Neural Networks
CARTOGRAPHY AND GEOINFORMATION VISUALIZATION chapter1 NPTE (2).pptx
BMEC211 - INTRODUCTION TO MECHATRONICS-1.pdf
R24 SURVEYING LAB MANUAL for civil enggi
ASol_English-Language-Literature-Set-1-27-02-2023-converted.docx
FINAL REVIEW FOR COPD DIANOSIS FOR PULMONARY DISEASE.pptx
keyrequirementskkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
573137875-Attendance-Management-System-original
The CXO Playbook 2025 – Future-Ready Strategies for C-Suite Leaders Cerebrai...
PPT on Performance Review to get promotions
UNIT-1 - COAL BASED THERMAL POWER PLANTS
CRASH COURSE IN ALTERNATIVE PLUMBING CLASS
Automation-in-Manufacturing-Chapter-Introduction.pdf
Evaluating the Democratization of the Turkish Armed Forces from a Normative P...
MCN 401 KTU-2019-PPE KITS-MODULE 2.pptx
IOT PPTs Week 10 Lecture Material.pptx of NPTEL Smart Cities contd
Recipes for Real Time Voice AI WebRTC, SLMs and Open Source Software.pptx

Conditional CycleGANによる食事画像変換

  • 1. ⓒ 2018 UEC Tokyo. Conditional CycleGAN † †† ††† ††† ††† † 1 †† 3 †††
  • 2. ⓒ 2018 UEC Tokyo. • A – ( ( ( ( ( – ( ( )( 2 Input noise vector fake or real D G 100 dim Training set fake image real image
  • 3. ⓒ 2018 UEC Tokyo. • A GI GI A – 4 - 1 - 1- ( ( + ( ) 3 Input noise vector fake or realD G 100 dim Training set fake image real image G D G: N A D D: G N (real) G (fake)
  • 4. ⓒ 2018 UEC Tokyo. • 5 1 – 2 I 0 ( A ( 0 5 – A 1 ) 2 2 1 ( 1 – 1 5 2 0 81 4
  • 5. ⓒ 2018 UEC Tokyo. • 5 …
  • 6. ⓒ 2018 UEC Tokyo. 6
  • 7. ⓒ 2018 UEC Tokyo. • : – 2 • : – 2 2 1 7 : 2 0 1 2 2 +++ +++
  • 8. ⓒ 2018 UEC Tokyo. • : – 2 • : – 2 2 1 8 : 2 0 1 2 2 +++ +++
  • 9. ⓒ 2018 UEC Tokyo. • . . • : . . : 9 Conditional CycleGAN 11 2 Image-to-Image CycleGAN :
  • 10. ⓒ 2018 UEC Tokyo. • 1 1 -( 2 ) – C I F I 10 D + 7 2 G
  • 11. ⓒ 2018 UEC Tokyo. 11 • 1 ) + ( - – A 7
  • 12. ⓒ 2018 UEC Tokyo. 12 Cycle Consistency Loss • 1 ) + ( - – A 7 G CI
  • 13. ⓒ 2018 UEC Tokyo. 13 Cycle Consistency Loss • 1 ) + ( - – A 7 G CI
  • 14. ⓒ 2018 UEC Tokyo. . 2 2 : . 14 to 1 to to 1:n
  • 15. ⓒ 2018 UEC Tokyo. • StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation [Choi+ CVPR-18] – : – – +1 15
  • 16. ⓒ 2018 UEC Tokyo. AC-GAN[Odena+ ICML-17] • Conditional Image Synthesis With Auxiliary Classifier GANs – ) ( ) 1616 fake or real one-hot vector ! C[0, 1, 0…] one-hot vector " # $% #
  • 17. ⓒ 2018 UEC Tokyo. Real Image In domain Real Image In domain B Fake Image In domain Reconstructed Image Domain SelectC[0, 1] fake or real class[1, 0] Domain Select C[1, 0] ! (G) (G) 17 • – 3
  • 18. ⓒ 2018 UEC Tokyo. 18 • – 3 Real Image In domain Real Image In domain B Fake Image In domain Reconstructed Image Domain SelectC[0, 1] fake or real class[1, 0] Domain Select C[1, 0] ! (G) (G)
  • 19. ⓒ 2018 UEC Tokyo. • 1 6 + B + 6 - [ S RTCP ] – 1 L 1 – aL EV J 19 Conv(st=1) 7x7x64 Conv(st=2) 4x4x128 Conv(st=2) 4x4x256 ResBlock ResBlock ResBlock ResBlock ResBlock ResBlock Conv(st=1/2) 4x4x128 Conv(st=1/2) 4x4x64 Conv(st=1) 7x7x3 3x3Conv InsNorm LeakyReLU 3x3Conv InsNorm D
  • 20. ⓒ 2018 UEC Tokyo. • 1 0 1 1 0, – 1 !"#"$% 20 !"$&''#(#%)
  • 21. ⓒ 2018 UEC Tokyo. • : – 2 • : – 2 2 1 21 : 2 0 1 2 2 +++ +++
  • 22. ⓒ 2018 UEC Tokyo. • 5 1 – 2 I 0 ( A ( 0 5 – A 1 ) 2 2 1 ( 1 – 1 5 2 0 81 22 ( ) (
  • 23. ⓒ 2018 UEC Tokyo. - • 0 2 20 610 P 6 + – VT N – 0 20 G C S – R • – GP – V 23 argmin '()(*+ = -'.)/(0/( + 2'3(4+0 '()(*+ '.)/(0/( '3(4+0 0 0 0 0 20 input conv3_1 conv1_1 conv2_1 conv4_1 conv5_1 conv4_2 ) )( 5+ = 6789+ 6789+ : U ⃗< ⃗= ⃗>
  • 24. ⓒ 2018 UEC Tokyo. • – - – • 0 0 0 • ) ( 1 G1 • – 1 1 J • a0 • 1 G ( 1 G 24 !"
  • 25. ⓒ 2018 UEC Tokyo. • – 1 – M 1,0 0 ,) ( ) [Tanno+ MMM2017] S 3
  • 26. ⓒ 2018 UEC Tokyo. • T MN – MN ) + 6 : + : – MN ) - : 2 : 3 8 • P – A 6 1 6 0 • P C – + 6 : + : ) G O Q – - : 2 : 3 8 ) -2 + + O(Q S G : S 26
  • 27. ⓒ 2018 UEC Tokyo. • : – 27 G )( A N Real Image In domain Real Image In domain B Fake Image In domain Reconstructed Image Domain SelectC[0, 1] fake or real class[1, 0] C Domain Select C[1, 0] ! (G) (G)
  • 28. ⓒ 2018 UEC Tokyo. • N : 28 G ( ( ) A C
  • 29. ⓒ 2018 UEC Tokyo. • – A N 29 )( G : C
  • 30. ⓒ 2018 UEC Tokyo. 30 )( • 合計約23万枚を利用 – 学習用:9割 – テスト用:1割 : 74007 34216 27854 24760 21324 18396 13499 7138 5329 3530 230053
  • 31. ⓒ 2018 UEC Tokyo. • 1 31 2 ) ( 1 …
  • 32. ⓒ 2018 UEC Tokyo. • 32 0 032 1 1 – G T • 1 0 1 2 – a G A 1 f c S 32 dC il : eN M
  • 33. ⓒ 2018 UEC Tokyo. • 33 : )( 33
  • 34. ⓒ 2018 UEC Tokyo. • 34 : )( 34 A
  • 35. ⓒ 2018 UEC Tokyo. • 1 35 ) ( Content Style
  • 36. ⓒ 2018 UEC Tokyo. cCycleGAN Multi Style Transfer 36
  • 37. ⓒ 2018 UEC Tokyo. 37
  • 38. ⓒ 2018 UEC Tokyo. • – lS e n i • AC if • ( ) 1 a • c – A a M Na – T – G S G 38
  • 39. ⓒ 2018 UEC Tokyo. • – • – • – 39
  • 40. ⓒ 2018 UEC Tokyo. • a m A – e A N A a e m – gm C A tC r u – a • xf a a – 1 A - l n A xf A 0 I pi 40
  • 41. ⓒ 2018 UEC Tokyo. • A ( ( – 8 1 2) 8 – 8 41 G 30% 8 G 32% N
  • 42. ⓒ 2018 UEC Tokyo. • – 0M e 2 – l 0M N T 2 • l A – 2 0M b I i 0S 0M N – C 2 A 42
  • 43. ⓒ 2018 UEC Tokyo. • 43 : )( 43 A
  • 44. ⓒ 2018 UEC Tokyo. • 1 44 ) ( Content Style
  • 45. ⓒ 2018 UEC Tokyo. • 45 : )(
  • 46. ⓒ 2018 UEC Tokyo. 46 2 ) ( • –
  • 47. ⓒ 2018 UEC Tokyo. • 47 ) ( Content Style
  • 48. ⓒ 2018 UEC Tokyo. • 48 ) ( Content Style