SlideShare a Scribd company logo
SIMPLe : Simple Idea Meaningful Performance Level up*
ISL Lab Seminar
Hansol Kang
* Mao, Xudong, et al. "Least squares generative adversarial networks." Proceedings of the IEEE International Conference on Computer Vision. 2017.
Contents
2019-04-09
2
Introduction
Research Trend
Review
LSGAN
Concept
Objective Function
Global Optimality
Parameter Selection
Results Experiment
Source Code
Celeb-A(DCGAN, LSGAN)
Summary
I. Introduction
Introduction
Research Trend, Review(Concept, Vanilla GAN, DCGAN, InfoGAN)
Introduction
• Research Trend
2019-04-09
4
Introduction
• Research Trend
2019-04-09
5
• 70,000 high-quality PNG images at 1024×1024 resolution
• Considerable variation in terms of age, ethnicity and image background
• Good coverage of accessories such as eyeglasses, sunglasses, hats, etc.
Flickr-Faces-HQ (FFHQ)
Introduction
• Research Trend
2019-04-09
6
Introduction
• Concept of GAN
2019-04-09
7
VsD
GF1
F1
F1
F1
FakeR1
Introduction
• Concept of GAN
2019-04-09
8
VsD
G
Fake?R1
@
F1
Introduction
• Vanilla GAN : Adversarial Nets
2019-04-09
9
)))]((1[log()]([log),(maxmin )(~)(~ zGDExDEGDV zpzxpx
DG zdata

Smart D
)))]((1[log()]([log )(~)(~ zGDExDE zpzxpx zdata
Real case
Fake case
1
)))]((1[log()]([log )(~)(~ zGDExDE zpzxpx zdata

0
should be 0
should be 0
1
Log(x)
cf.
Stupid D
)))]((1[log()]([log )(~)(~ zGDExDE zpzxpx zdata
Real case
Fake case
0
)))]((1[log()]([log )(~)(~ zGDExDE zpzxpx zdata

1
should be negative infinity
should be negative infinity
D perspective,
it should be maximum.
Introduction
• Vanilla GAN : Adversarial Nets
2019-04-09
10
)))]((1[log()]([log),(maxmin )(~)(~ zGDExDEGDV zpzxpx
DG zdata

Generator
)))]((1[log()]([log )(~)(~ zGDExDE zpzxpx zdata

1
should be negative infinity
1
Log(x)
cf.
G perspective,
it should be minimum.
Smart G
Stupid G )))]((1[log()]([log )(~)(~ zGDExDE zpzxpx zdata

0
should be 0
Introduction
2019-04-09
11
• Vanilla GAN : Mathematical Proof
1) Global Optimality of datag pp 
2) Convergence of Algorithm
D GVs
x
)(xpdata
“Generative Adversarial Networks”
Goal Method
Introduction
2019-04-09
12
• DCGAN : Network
D
G
“쟤들 뭐하냐?”
“CNN이 MLP보다 훨씬 낫지롱”
D
“우리가 짱이야”
G
Vanilla GAN DCGAN
“VAE 죽어요 ㅠㅠ”
Introduction
2019-04-09
13
• DCGAN : Latent Space
0 1
0.1
0.15
0.18
0.143
0.5
0.45
0.47
0.473
0.9
0.95
0.96
0.937
0.607±
고차원(Image)에서 의미 x
저차원(Latent code)에서 의미 o
Introduction
2019-04-09
14
• InfoGAN - Network
D
“우리가 짱이야”
G D
DCGAN InfoGAN
Gz“나도 신경 써줘…”
zc
z
“우리는 Z(Latent code)를 더 세분화
해서 조작이 가능해!”
Introduction
2019-04-09
15
• InfoGAN - Latent Code
GNoise
Latent code
0.001
0.008
1.000
0.007
…
0.005
? : 실제 latent code의 구조는 복잡하여
해석이 어려움(entangled).
Let's make the latent code simple.
The proper generation is difficult.
[0.001, 0.008, …, 0.005] c
Latent code
0.001
0.008
1.000
0.007
…
0.005
0
0
0
0
…
1
Z C
Z C : Condition
How about adding latent code?
해석이 가능한 Condition을 제공.
Idea
Introduction
2019-04-09
16
• InfoGAN - Latent Code
G
Latent code
Z C
“뭐야? 그러면 C를 Z 옆에 바로
붙이면 되는 거야?”
[0.001, 0.008, …, 005 | 0, 0, … 1]
z c
[0.001, 0.008, …, 005 | 1, 0, … 0]
z c
[0.001, 0.008, …, 005 ]
z
[0.001, 0.008, …, 005 ]
z
Ignore the additional latent code c
Cost function을 수정하여 c의 영향을 만듦.),(maxmin GDV
DG
(Mutual Information)
Introduction
2019-04-09
17
• InfoGAN - Latent Code
: Generator와 c 사이의 연관성을 cost로 정의 ),(;),(),(maxmin czGcIGDVGDVI
DG

Maximize
Hard to maximize directly as it requires access to the posterior )|( xcP
    )(||)|()(|log),,( )|( zpxzqKLzgxExL xzq 
 
),,(min xL 
Reconstruction Error Regularization
VAE Seminar (18.07.23)
Introduction
2019-04-09
18
• InfoGAN - Results
Introduction
2019-04-09
19
GAN
Concept
Performance
Manipulability
Stability
Concept
• GAN
Performance
• DCGAN, LSGAN
Stability
• DCGAN, LSGAN
Manipulability
• DCGAN, InfoGAN
II. LSGAN
LSGAN
Concept, Objective Function, Global Optimality, Parameter Selection, Results
LSGAN
2019-04-09
21
• Concept
D학습이 잘되었다
(=50:50)
학습이 잘되었다
(=Good representation)
G
Real
Fake
F5
R1
R2
R5
F1
F5
R1
F1
여전히 너무나도 가짜
같은 데이터가 존재
If 60:40 then stupid G
If 40:60 then stupid D
LSGAN
2019-04-09
22
• Concept
G
Real
Fake
F5
R1
R2
R5
F1
F5
R1
F1
경계 근처 ≈ Real? Fake?
Fake -> 경계 근처
F5
F1
훨씬 헷갈리는(Real에 가까운)
데이터 생성
LSGAN
2019-04-09
23
• Concept
LSGAN
• Objective function
2019-04-09
24
     2
)(~
2
~ ))((
2
1
)(
2
1
)(min )(
azGDEbxDEDV zpxpxLSGAN
D zxdata

Smart D
     2
)(~
2
~ ))((
2
1
)(
2
1
)(
azGDEbxDE zpxpx zxdata

     2
)(~
2
~ ))((
2
1
)(
2
1
)(
azGDEbxDE zpxpx zxdata
Real case
Fake case
1
0
(b=1), should be 0
(a=0), should be 0
Stupid D
D perspective,
it should be minimum.
     2
)(~
2
~ ))((
2
1
)(
2
1
)(
azGDEbxDE zpxpx zxdata

     2
)(~
2
~ ))((
2
1
)(
2
1
)(
azGDEbxDE zpxpx zxdata
Real case
Fake case
0 1
(b=1), should be 1
(a=0), should be 1
a : fake label.
b : real label.
c : G wants to make D believe for fake data
  2
~ ))((
2
1
)(min )(
czGDEGV zzpzLSGAN
G

LSGAN
• Objective function
2019-04-09
25
     2
)(~
2
~ ))((
2
1
)(
2
1
)(min )(
azGDEbxDEDV zpxpxLSGAN
D zxdata

Generator
  2
~ ))((
2
1
)(
czGDE zzpz Smart G
Stupid G
1
(c=1), should be 0
(c=1), should be 1  2
~ ))((
2
1
)(
czGDE zzpz 
0
G perspective,
it should be minimum.
  2
~ ))((
2
1
)(min )(
czGDEGV zzpzLSGAN
G

a : fake label.
b : real label.
c : G wants to make D believe for fake data
LSGAN
• Objective function
2019-04-09
26
a : fake label.
b : real label.
c : G wants to make D believe for fake data
조금 더 직관적으로 생각해보면,
D = Classifier
     2
)(~
2
~ ))((
2
1
)(
2
1
)(min )(
azGDEbxDEDV zpxpxLSGAN
D zxdata
   2
~ ))((
2
1
)(min )(
czGDEGV zzpzLSGAN
G

Prediction - Label
LSGAN
2019-04-09
27
• Global Optimality – Vanilla GAN
LSGAN : 𝝌 𝑷𝒆𝒂𝒓𝒔𝒐𝒏
𝟐
를 통한 증명
Vanilla GAN : JSD를 통한 증명
LSGAN
2019-04-09
28
• Global Optimality – LSGAN
     2*
~
2*
~ )()()(2 cxDEcxDEGC gd pxpx 
     2
)(~
2
~ ))((
2
1
)(
2
1
)(min )(
azGDEbxDEDV zpxpxLSGAN
D zxdata

  2
~ ))((
2
1
)(min )(
czGDEGV zzpzLSGAN
G

)()(
)()(
)(*
xpxp
xapxbp
xD
gdata
gdata











































2
~
2
~
)()(
)()(
)()(
)()(
c
xpxp
xapxbp
Ec
xpxp
xapxbp
E
gdata
gdata
px
gdata
gdata
px gd
  2
~ )(
2
1
)(
cxDE xdatapx  This term does not contain parameters of G
LSGAN
2019-04-09
29
• Global Optimality – LSGAN
22
)()(
)()()()(
)(
)()(
)()()()(
)(





















  xpxp
xpcaxpcb
xpdx
xpxp
xpcaxpcb
xp
gdata
gdata
x
g
gdata
gdata
x
data








































2
~
2
~
)()(
)()(
)()(
)()(
c
xpxp
xapxbp
Ec
xpxp
xapxbp
E
gdata
gdata
px
gdata
gdata
px gd
gdata
gdata
gdata
gdata
gdata
gdata
pp
xpcapcb
xpxp
xcpxcp
xpxp
xapxbp







 )()()(
)()(
)()(
)()(
)()(
 
 


x gdata
gdata
dx
xpxp
xpcaxpcb
)()(
)()()()(
2
  










x gdata
gdata
gdata dx
xpxp
xpcaxpcb
xpxp
2
)()(
)()()()(
)()(
  
 


x gdata
ggdata
dx
xpxp
xpabxpxpcb
)()(
)()()()()(
2
LSGAN
2019-04-09
30
• Global Optimality – LSGAN
  
 


x gdata
ggdata
dx
xpxp
xpabxpxpcb
)()(
)()()()()(
2
  dx
xpxp
xpxpxp
GC
x gdata
gdatag
 


)()(
))()(()(2
)(2
2
)2||(2
ggdataPearson ppp 
datag pp 
 
)(
)()(
2
2
xp
xpxq
Pearson


21  abandcbIf we set
If minimum
LSGAN
2019-04-09
31
• Parameters Selection
21  abandcb
01,1  candba
     2
)(~
2
~ ))((
2
1
)(
2
1
)(min )(
azGDEbxDEDV zpxpxLSGAN
D zxdata
   2
~ ))((
2
1
)(min )(
czGDEGV zzpzLSGAN
G

     2
)(~
2
~ 1))((
2
1
1)(
2
1
)(min )(
 zGDExDEDV zpxpxLSGAN
D zxdata
i)
  2
~ ))((
2
1
)(min )(
zGDEGV zzpzLSGAN
G

bcandba  1,0
     2
)(~
2
~ 1))((
2
1
1)(
2
1
)(min )(
 zGDExDEDV zpxpxLSGAN
D zxdata
ii)
  2
~ ))((
2
1
)(min )(
zGDEGV zzpzLSGAN
G

->조건을 따르지 않는 경우
성능은 비슷하며, 큰 차이가 없음!
LSGAN
2019-04-09
32
• Results
LSGAN
2019-04-09
33
• Results
LSGAN
2019-04-09
34
• Results
Example of mode collapse
LSGAN
2019-04-09
35
• Results
III. Experiment
Experiment
Source Code, Celeb-A, Korean Idol
Experiment
• Source Code
2019-04-09
37
https://github.com/messy-snail/GAN_PyTorch
Experiment
• Celeb-A
2019-04-09
38
DCGAN LSGAN
ep=1
ep=2
ep=10
ep=16
Experiment
• Celeb-A(without BN)
2019-04-09
39
DCGAN LSGAN
ep=1
ep=2
ep=3
ep=5
Experiment
2019-04-09
40
• Korean Idol(DCGAN)
ep 1 ep 6
ep 51ep 21
ep 201ep 101
Experiment
2019-04-09
41
• Korean Idol(LSGAN)
ep 1 ep 6
ep 51ep 21
ep 201ep 101
Experiment
2019-04-09
42
• Gueess#1 Optimizer problem?
Experiment
2019-04-09
43
• Gueess#2 Domain problem?
Experiment
• Celeb-A
2019-04-09
44
https://www.slideshare.net/NaverEngineering/1-gangenerative-adversarial-network
“저자들이 source code를 공개했으면 한다.”
“같은 구조라면, LSGAN이 훨씬 잘 동작한다.”
IV. Summary
Summary
Summary, Future Work
Summary
2019-04-09
46
• 기존의 GAN보다 Real에 가까운 데이터를 생성하고, 안정성도 확보함.
• Pearson Chi square divergence으로 global optimality를 증명함. (기존 GAN은 JSD로 증명)
• 클래스가 많은 데이터에 대해서도 정상적으로 데이터를 생성함.
• 기존의 코드에서 단순히 loss만을 변경하기에 손쉽게 적용이 가능함.
GAN Research
Vanilla GAN
DCGAN
InfoGAN
LSGAN
BEGAN
Cycle GAN
Style GAN
SRGAN
Tools
Document
Programming
PyTorch
Python executable & UI
I Know What You Did
Last Faculty
C++ Coding Standard
Mathematical theory
LSM applications
Other Research
Level Processor
Ice Propagation
Future work
2019-04-09
47
&

More Related Content

PDF
Computer Graphics - Lecture 03 - Virtual Cameras and the Transformation Pipeline
PDF
A Walk in the GAN Zoo
PPTX
Greed is Good: 劣モジュラ関数最大化とその発展
PDF
Python
PDF
Deferred rendering in Dying Light
PDF
Introduction to data visualisation with D3
PDF
Conditional CycleGANによる食事画像変換
PPTX
Introduction to D3.js
Computer Graphics - Lecture 03 - Virtual Cameras and the Transformation Pipeline
A Walk in the GAN Zoo
Greed is Good: 劣モジュラ関数最大化とその発展
Python
Deferred rendering in Dying Light
Introduction to data visualisation with D3
Conditional CycleGANによる食事画像変換
Introduction to D3.js

What's hot (20)

PDF
QGIS講習会【印刷編】
PDF
GraphSage vs Pinsage #InsideArangoDB
PDF
Linear algebra
PDF
QGISセミナー中級編(V2.4)
PPTX
Graph Representation Learning
PDF
死にたくない
PDF
DeepLearningTutorial
PDF
1시간만에 GAN(Generative Adversarial Network) 완전 정복하기
PDF
오픈드론맵 한국어 사용자 지침서
PDF
論文紹介 Pixel Recurrent Neural Networks
PDF
[MIRU2018] Global Average Poolingの特性を用いたAttention Branch Network
PDF
アプリのバックグラウンド処理 | iOS 7エンジニア勉強会
PDF
GANs and Applications
PDF
平滑化処理の繰り返しによる画像セグメンテーションのためのグラフカット
PDF
Deep Learningを用いた教師なし画像検査の論文調査 GAN/SVM/Autoencoderとか .pdf
PPTX
Diffusion models beat gans on image synthesis
PDF
Generative Adversarial Network (+Laplacian Pyramid GAN)
PDF
210110 deformable detr
PDF
FineDiving: A Fine-grained Dataset for Procedure-aware Action Quality Assessm...
PPTX
リアルタイムPoint cloudデータのビジュアライゼーションについて
QGIS講習会【印刷編】
GraphSage vs Pinsage #InsideArangoDB
Linear algebra
QGISセミナー中級編(V2.4)
Graph Representation Learning
死にたくない
DeepLearningTutorial
1시간만에 GAN(Generative Adversarial Network) 완전 정복하기
오픈드론맵 한국어 사용자 지침서
論文紹介 Pixel Recurrent Neural Networks
[MIRU2018] Global Average Poolingの特性を用いたAttention Branch Network
アプリのバックグラウンド処理 | iOS 7エンジニア勉強会
GANs and Applications
平滑化処理の繰り返しによる画像セグメンテーションのためのグラフカット
Deep Learningを用いた教師なし画像検査の論文調査 GAN/SVM/Autoencoderとか .pdf
Diffusion models beat gans on image synthesis
Generative Adversarial Network (+Laplacian Pyramid GAN)
210110 deformable detr
FineDiving: A Fine-grained Dataset for Procedure-aware Action Quality Assessm...
リアルタイムPoint cloudデータのビジュアライゼーションについて
Ad

Similar to LSGAN - SIMPle(Simple Idea Meaningful Performance Level up) (20)

PDF
Introduction of DiscoGAN
PDF
From Flat to Stacked - Alicia C Newberry - City of Milton
PDF
eel6935_ch2.pdf
PDF
クラウドDWHとしても進化を続けるPivotal Greenplumご紹介
PDF
Spark Streaming Tips for Devs and Ops by Fran perez y federico fernández
PDF
Spark Streaming Tips for Devs and Ops
PDF
Displaying Animated Images on GLCD display with LPC2148 Microcontroller
PPTX
LalitBDA2015V3
PDF
[系列活動] Data exploration with modern R
PDF
OpenGL L02-Transformations
PDF
[AWS Dev Day] 인공지능 / 기계 학습 | 개발자를 위한 수백만 사용자 대상 기계 학습 서비스 확장 하기 - 윤석찬 AWS 수석테...
PDF
[CB20] DeClang: Anti-hacking compiler by Mengyuan Wan
PDF
“COVID-19 Safe Distancing Measures in Public Spaces with Edge AI,” a Presenta...
PDF
Image-to-Image Translation
PDF
A 3D printing programming API
PDF
VitaFlow | Mageswaran Dhandapani [Pramati]
PDF
JAWS DAYS 2018
PDF
Embedded systems
PDF
201707 SER332 Lecture 07
PDF
Вивисекция: анатомия ботнета из маршрутизаторов
Introduction of DiscoGAN
From Flat to Stacked - Alicia C Newberry - City of Milton
eel6935_ch2.pdf
クラウドDWHとしても進化を続けるPivotal Greenplumご紹介
Spark Streaming Tips for Devs and Ops by Fran perez y federico fernández
Spark Streaming Tips for Devs and Ops
Displaying Animated Images on GLCD display with LPC2148 Microcontroller
LalitBDA2015V3
[系列活動] Data exploration with modern R
OpenGL L02-Transformations
[AWS Dev Day] 인공지능 / 기계 학습 | 개발자를 위한 수백만 사용자 대상 기계 학습 서비스 확장 하기 - 윤석찬 AWS 수석테...
[CB20] DeClang: Anti-hacking compiler by Mengyuan Wan
“COVID-19 Safe Distancing Measures in Public Spaces with Edge AI,” a Presenta...
Image-to-Image Translation
A 3D printing programming API
VitaFlow | Mageswaran Dhandapani [Pramati]
JAWS DAYS 2018
Embedded systems
201707 SER332 Lecture 07
Вивисекция: анатомия ботнета из маршрутизаторов
Ad

More from Hansol Kang (20)

PDF
이 세계로의 전송_파이썬과 함께하는 궤도모험.pdf
PDF
Support Vector Machine - 기본 이해와 OpenCV 실습.pdf
PDF
ROS 시작하기(Getting Started with ROS:: Your First Steps in Robot Programming )
PPTX
관측 임무스케줄링 (Selecting and scheduling observations of agile satellites)
PDF
알아두면 쓸모있는 깃허브 2
PDF
알아두면 쓸모있는 깃허브 1
PDF
FPN 리뷰
PDF
R-FCN 리뷰
PDF
basic of deep learning
PDF
파이썬 제대로 활용하기
PPTX
모던 C++ 정리
PDF
Photo-realistic Single Image Super-resolution using a Generative Adversarial ...
PDF
InfoGAN : Interpretable Representation Learning by Information Maximizing Gen...
PDF
딥러닝 중급 - AlexNet과 VggNet (Basic of DCNN : AlexNet and VggNet)
PDF
PyTorch 튜토리얼 (Touch to PyTorch)
PDF
Deep Convolutional GANs - meaning of latent space
PDF
쉽게 설명하는 GAN (What is this? Gum? It's GAN.)
PDF
문서와 개발에 필요한 간단한 팁들(Too easy, but important things - document, development)
PDF
신뢰 전파 기법을 이용한 스테레오 정합(Stereo matching using belief propagation algorithm)
PDF
HSV 컬러 공간에서의 레티넥스와 채도 보정을 이용한 화질 개선 기법
이 세계로의 전송_파이썬과 함께하는 궤도모험.pdf
Support Vector Machine - 기본 이해와 OpenCV 실습.pdf
ROS 시작하기(Getting Started with ROS:: Your First Steps in Robot Programming )
관측 임무스케줄링 (Selecting and scheduling observations of agile satellites)
알아두면 쓸모있는 깃허브 2
알아두면 쓸모있는 깃허브 1
FPN 리뷰
R-FCN 리뷰
basic of deep learning
파이썬 제대로 활용하기
모던 C++ 정리
Photo-realistic Single Image Super-resolution using a Generative Adversarial ...
InfoGAN : Interpretable Representation Learning by Information Maximizing Gen...
딥러닝 중급 - AlexNet과 VggNet (Basic of DCNN : AlexNet and VggNet)
PyTorch 튜토리얼 (Touch to PyTorch)
Deep Convolutional GANs - meaning of latent space
쉽게 설명하는 GAN (What is this? Gum? It's GAN.)
문서와 개발에 필요한 간단한 팁들(Too easy, but important things - document, development)
신뢰 전파 기법을 이용한 스테레오 정합(Stereo matching using belief propagation algorithm)
HSV 컬러 공간에서의 레티넥스와 채도 보정을 이용한 화질 개선 기법

Recently uploaded (20)

PDF
7 ChatGPT Prompts to Help You Define Your Ideal Customer Profile.pdf
PDF
Machine learning based COVID-19 study performance prediction
PDF
MIND Revenue Release Quarter 2 2025 Press Release
PDF
NewMind AI Weekly Chronicles - August'25 Week I
PDF
Reach Out and Touch Someone: Haptics and Empathic Computing
PPTX
sap open course for s4hana steps from ECC to s4
PPTX
Big Data Technologies - Introduction.pptx
PDF
How UI/UX Design Impacts User Retention in Mobile Apps.pdf
PPTX
Effective Security Operations Center (SOC) A Modern, Strategic, and Threat-In...
PDF
Per capita expenditure prediction using model stacking based on satellite ima...
PDF
Encapsulation theory and applications.pdf
PPTX
Detection-First SIEM: Rule Types, Dashboards, and Threat-Informed Strategy
PDF
Build a system with the filesystem maintained by OSTree @ COSCUP 2025
PDF
Profit Center Accounting in SAP S/4HANA, S4F28 Col11
PDF
Diabetes mellitus diagnosis method based random forest with bat algorithm
PDF
Chapter 3 Spatial Domain Image Processing.pdf
DOCX
The AUB Centre for AI in Media Proposal.docx
PPTX
ACSFv1EN-58255 AWS Academy Cloud Security Foundations.pptx
PDF
Unlocking AI with Model Context Protocol (MCP)
PDF
Dropbox Q2 2025 Financial Results & Investor Presentation
7 ChatGPT Prompts to Help You Define Your Ideal Customer Profile.pdf
Machine learning based COVID-19 study performance prediction
MIND Revenue Release Quarter 2 2025 Press Release
NewMind AI Weekly Chronicles - August'25 Week I
Reach Out and Touch Someone: Haptics and Empathic Computing
sap open course for s4hana steps from ECC to s4
Big Data Technologies - Introduction.pptx
How UI/UX Design Impacts User Retention in Mobile Apps.pdf
Effective Security Operations Center (SOC) A Modern, Strategic, and Threat-In...
Per capita expenditure prediction using model stacking based on satellite ima...
Encapsulation theory and applications.pdf
Detection-First SIEM: Rule Types, Dashboards, and Threat-Informed Strategy
Build a system with the filesystem maintained by OSTree @ COSCUP 2025
Profit Center Accounting in SAP S/4HANA, S4F28 Col11
Diabetes mellitus diagnosis method based random forest with bat algorithm
Chapter 3 Spatial Domain Image Processing.pdf
The AUB Centre for AI in Media Proposal.docx
ACSFv1EN-58255 AWS Academy Cloud Security Foundations.pptx
Unlocking AI with Model Context Protocol (MCP)
Dropbox Q2 2025 Financial Results & Investor Presentation

LSGAN - SIMPle(Simple Idea Meaningful Performance Level up)