Size Matters: Cardinality-Constrained
Clustering & Outlier Detection
Napat RUJEERAPAIBOON
Department of Industrial Systems Engineering & Management
National University of Singapore
k–Means Clustering
Ÿ k–means clustering is NP-hard1
.
min
°n
i1
°k
j1 πij }ξi ¡ζj }2
s. t. πij € t0, 1u, ζj € Rd
°k
j1 πij  1 di  1, . . . , n
Ÿ In practice, k–means heuristic2
produce solutions quickly.
Fix πij ùñ ζj  average of ξi with πij  1
Fix ζj ùñ πij  1 if ζj is the closest center to ξi
1
Aloise et al. (2009)
2
Arthur  Vassilvitskii (2007)
Challenges
Ÿ k–means heuristics suffers from several shortcomings.
Technical challenges
1 Slow runtime.3
2 Unknown suboptimality.
Practical challenges
1 Skewed clustering.4
2 Sensitivity to outliers.5
Ÿ Skewed clustering is unfavorable in many applications.
3
Arthur  Vassilvitskii (2006)
4
Bennett et al. (2000)
5
Chawla  Gionis (2013)
Cardinality Constraints
Implicit Cdn.
Market Segmentation
Distributed Computing
Explicit Cdn.
Category Management
Vehicle Routing
Outlier Det.
Fraud Detection
Medical Diagnosis
Outlier Detection
Ÿ k–means (25.21)
Ÿ Balanced k–means (54.27)
Ÿ Balanced k–means + Outlier detection (1.97)
Cardinality Constraints
Ÿ Introduce dummy (0th
cluster) for outliers.
Ÿ tnj uk
j1 and n0 denote sizes of regular and dummy clusters.
Ÿ Cardinality–constrained k–means clustering.
min
°n
i1
°k
j1 πij }ξi ¡ζj }2
s. t. πij € t0, 1u, ζj € Rd
°k
j0 πij  1 di  1, . . . , n
°n
i1 πij  nj dj  0, . . . , k
Cardinality Constraints
Ÿ Introduce dummy (0th
cluster) for outliers.
Ÿ tnj uk
j1 and n0 denote sizes of regular and dummy clusters.
Ÿ Cardinality–constrained k–means clustering.
min
°n
i1
°k
j1 πij }ξi ¡ζj }2
s. t. πij € t0, 1u, ζj € Rd
°k
j0 πij  1 di  1, . . . , n
°n
i1 πij  nj dj  0, . . . , k
Ÿ A remedy for the practical challenges .
Cardinality Constraints
Ÿ Introduce dummy (0th
cluster) for outliers.
Ÿ tnj uk
j1 and n0 denote sizes of regular and dummy clusters.
Ÿ Cardinality–constrained k–means clustering.
min
°n
i1
°k
j1 πij }ξi ¡ζj }2
s. t. πij € t0, 1u, ζj € Rd
°k
j0 πij  1 di  1, . . . , n
°n
i1 πij  nj dj  0, . . . , k
Ÿ A remedy for the practical challenges .
Ÿ What about the technical challenges?
Linearization  Convexification
min
°n
i1
°k
j1 πij }ξi ¡ζj }2
s. t. πij € t0, 1u, ζj € Rd
°k
j0 πij  1 di  1, . . . , n
°n
i1 πij  nj dj  0, . . . , k
Ÿ The problem is NP-hard.
Ÿ Heuristics for biconvex optimization can still be used.6
Ÿ No runtime/optimality guarantees.
6
Bennett et al. (2000)
Linearization  Convexification
Conic Relaxations MILP Feasible Solution
enlarge feasible set
rounding algorithm
recovery
guarantee
Ÿ The problem is NP-hard.
Ÿ Heuristics for biconvex optimization can still be used.6
Ÿ No runtime/optimality guarantees.
Ÿ We propose a convex relaxation that comes with guarantees.
6
Bennett et al. (2000)
Linearization
Ÿ Equivalent MINLP reformulation.
min
°k
j1
°n
i,i1
1
1
2nj
πij πi1
j }ξi ¡ξi1 }2
r costpπqs
s. t. πij € t0, 1u
°k
j0 πij  1 di  1, . . . , n
°n
i1 πij  nj dj  0, . . . , k
(P)
Ÿ The products πij πi1
j can be linearized, resulting in an MILP.
Zha et al. (2001)
Convex Relaxation
Ÿ Apply the following variable transformations:
xj : 2πj ¡1, D  rdii1 s :

}ξi ¡ξi1 }2

.
Ÿ The MILP admits an equivalent non-linear reformulation.
min
°k
j1
1
8nj
p1  xj qp1  xj q , D
s. t. xj € t¡1,  1un
°k
j0 xj  p1 ¡kq1
1 xj  2nj ¡n dj  0, . . . , k
Ÿ Introduce Mj  xj xj to linearize the objective function
°k
j1
1
8nj
11  1xj  xj 1  Mj , D .
Convex Relaxation
Ÿ In doing so, non-convexity is relegated to the constraints
xj € t¡1,  1un
, Mj  xj xj .
Ÿ The resulting MINLP can be relaxed to an SDP (RSDP)
min
°k
j1
1
8nj
11  1xj  xj 1  Mj , D
s. t. xj € Rn
, Mj € Sn
°k
j0 xj  p1 ¡kq1
1 xj  2nj ¡n dj  0, . . . , k
diagpMj q  1, Mj © xj xj dj  0, . . . , k
(RSDP)
Goemans  Williamson (1995)
Convex Relaxation
Ÿ In doing so, non-convexity is relegated to the constraints
xj € t¡1,  1un
, Mj  xj xj .
Ÿ The resulting MINLP can be relaxed to an SDP (RSDP)
min
°k
j1
1
8nj
11  1xj  xj 1  Mj , D
s. t. xj € Rn
, Mj € Sn
°k
j0 xj  p1 ¡kq1
1 xj  2nj ¡n dj  0, . . . , k
diagpMj q  1, Mj © xj xj dj  0, . . . , k
(RSDP)
Ÿ Unfortunately, this SDP relaxation is very weak.
Goemans  Williamson (1995)
Valid Inequalities
Ÿ Strengthen RSDP with the valid cuts.
Mj 

1 γ
γ 1

, xj 

α
β

Ex. γ  0.4
Mj  xj xj Mj © xj xj Mj © xj xj + VCs
Anstreicher (2009)
Valid Inequalities
Ÿ Strengthen RSDP with the valid cuts.
Mj 

1 γ
γ 1

, xj 

α
β

Ex. γ  0.4
Mj  xj xj Mj © xj xj Mj © xj xj + VCs
Ÿ These cuts are instrumental to proving optimality guarantees.
Ÿ As a by-product, we also have an LP relaxation RLP.
Anstreicher (2009)
Convex Relaxation
Theorem 1
We have min RLP ¤ min RSDP ¤ min P.
Ÿ RLP  RSDP are polynomial-time solvable, whereas P is not.
Next Steps:
Ÿ How to construct ˜π
ij € t0, 1u feasible in P from x
ij ?
Ÿ How to gauge the quality of the obtained ˜π
ij ?
Rounding Algorithm
Ÿ Recall that x
ij € r¡1, 1s:
1
2 p1  x
ij q  P pξi € CLj q
Ÿ Solve the following linear assignment problem to retrieve ˜π.
max
°n
i1
°k
j1 πij

1
2 p1  x
ij q

s. t. πij € t0, 1u
°k
j0 πij  1 di  1, . . . , n
°n
i1 πij  nj dj  0, . . . , k
Ÿ LAP7
is an MILP with totally unimodular matrix (4 tractable).
7
Burkard et al. (2009)
Optimality Gap
Ÿ Our approach gives an a posteriori estimate of optimality gap.
min RLP ¤ min RSDP ¤ min P  costpπ
q ¤ costp˜π
q
Ÿ Under perfect separation condition, the optimality gap vanishes.
Elhamifar et al. (2012)
Recovery Guarantee
Theorem 2 (Perfect Separation)
We have
tightness
hkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkj
min RLP  min RSDP  min P  costpπ
q  costp˜π
qloooooooooooooooooomoooooooooooooooooon
LAP-recovery
.
Proof Sketch (Tightness):
1 Distinguish outlier (M
0) and regular (M
j ) clusters.
2 The RLP/RSDP can be solved analytically.
Recovery Guarantee
Theorem 2 (Perfect Separation)
We have
tightness
hkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkj
min RLP  min RSDP  min P  costpπ
q  costp˜π
qloooooooooooooooooomoooooooooooooooooon
LAP-recovery
.
Proof Sketch (Tightness):
M
0 M
j
Recovery Guarantee
Theorem 2 (Perfect Separation)
We have
tightness
hkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkj
min RLP  min RSDP  min P  costpπ
q  costp˜π
qloooooooooooooooooomoooooooooooooooooon
LAP-recovery
.
Proof Sketch (Recovery):
1 Distinguish outlier (M
0) and regular (M
j ) clusters.
2 The RLP/RSDP can be solved analytically.
3 The LAP exploits strong signal in M
0 and M
j .
Recovery Guarantee
Theorem 2 (Perfect Separation)
We have
tightness
hkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkj
min RLP  min RSDP  min P  costpπ
q  costp˜π
qloooooooooooooooooomoooooooooooooooooon
LAP-recovery
.
Proof Sketch (Recovery):
M
0 M
j
Numerical Experiments I
Ÿ Perform cardinality-constrained clustering on classification
datasets8
.
Ÿ tnj uk
j1 : the number of true class occurrences.
Ÿ Compare our SDP/LP+LAP approach with biconvex heuristic9
.
Ÿ Optimality gaps yielded by the LP+LAP approach are À 20.6%.
Ÿ Optimality gaps yielded by the SDP+LAP approach are À 2.9%.
Ÿ The SDP approach is competitive with the biconvex heuristic.
8
UCI repository
9
Bennett, K. et al. (2000)
Numerical Experiments II
Ÿ Perform outlier detection on the breast cancer dataset10
.
Ÿ Varying the number of malignant cancers n0.
Ÿ Calculate prediction accuracy, false positives  false negatives.
0 50 100 150 200 250 300 350 400
0
10
20
30
40
50
60
70
80
90
100
Á 80% prediction accuracy, À 3.3% optimality gap.
10
UCI repository
References
Ÿ Arthur, D. and Vassilvitskii, S.
K-means++: the advantages of careful seeding.
Proceedings of ACM-SIAM Symposium on Discrete Algorithms, 2007.
Ÿ Bennett, K., Bradley, P., Demiriz, A.
Constrained k–Means Clustering.
Microsoft Technical Report, 2000.
Ÿ Rujeerapaiboon, N., Schindler, K., Kuhn, D., Wiesemann, W.
Size matters: Cardinality-constrained clustering and outlier detection
via conic optimization.
SIAM Journal on Optimization 29(2), 2019.
napat.rujeerapaiboon@nus.edu.sg
Special thanks to artwork from tPopcorns Arts, Maxim Basinski, Business strategy,
Freepik, Prosymbols, Vectors Market, Madebyoliver, Alfredo Hernandez, Devil,
Roundiconsu@Flaticon.

More Related Content

PDF
CMA-ES with local meta-models
PDF
Benchmark Calculations of Atomic Data for Modelling Applications
PDF
Polarization and charge transfer in classical molecular dynamics
PDF
PAC-Bayesian Bound for Gaussian Process Regression and Multiple Kernel Additi...
PDF
Principal component analysis and matrix factorizations for learning (part 2) ...
PDF
Recent progresses in the variational reduced-density-matrix method
PDF
Representing molecules as atomic-scale electrical circuits with fluctuating-c...
PDF
Introduction to harmonic analysis on groups, links with spatial correlation.
CMA-ES with local meta-models
Benchmark Calculations of Atomic Data for Modelling Applications
Polarization and charge transfer in classical molecular dynamics
PAC-Bayesian Bound for Gaussian Process Regression and Multiple Kernel Additi...
Principal component analysis and matrix factorizations for learning (part 2) ...
Recent progresses in the variational reduced-density-matrix method
Representing molecules as atomic-scale electrical circuits with fluctuating-c...
Introduction to harmonic analysis on groups, links with spatial correlation.

Similar to Conic Clustering (20)

PPTX
Global optimization
PPT
Lecture 1
PDF
Mixed-integer and Disjunctive Programming - Ignacio E. Grossmann
DOCX
Solving Optimization Problems using the Matlab Optimization.docx
PDF
bv_cvxslides (1).pdf
PDF
Convex optimization methods
PPTX
Decision making
PDF
Linear Programming
PDF
35000120030_Aritra Kundu_Operations Research.pdf
PPTX
MATHEMATICS PROJECT R31 like so annoying
PDF
MATHEMATICS PROJECT R311 something on godf
PDF
A Novel Approach to Mathematical Concepts in Data Mining
PPTX
Linear programming
PDF
Mathematical linear programming notes
PPT
Vcs slides on or 2014
PDF
A General Purpose Exact Solution Method For Mixed Integer Concave Minimizatio...
PDF
Linear programming class 12 investigatory project
PDF
Spreadsheet Modeling and Decision Analysis A Practical Introduction to Busine...
PPTX
Simplex method material for operation .pptx
PDF
An algorithm for solving integer linear programming problems
Global optimization
Lecture 1
Mixed-integer and Disjunctive Programming - Ignacio E. Grossmann
Solving Optimization Problems using the Matlab Optimization.docx
bv_cvxslides (1).pdf
Convex optimization methods
Decision making
Linear Programming
35000120030_Aritra Kundu_Operations Research.pdf
MATHEMATICS PROJECT R31 like so annoying
MATHEMATICS PROJECT R311 something on godf
A Novel Approach to Mathematical Concepts in Data Mining
Linear programming
Mathematical linear programming notes
Vcs slides on or 2014
A General Purpose Exact Solution Method For Mixed Integer Concave Minimizatio...
Linear programming class 12 investigatory project
Spreadsheet Modeling and Decision Analysis A Practical Introduction to Busine...
Simplex method material for operation .pptx
An algorithm for solving integer linear programming problems
Ad

Recently uploaded (20)

PPTX
TNA_Presentation-1-Final(SAVE)) (1).pptx
PDF
Empowerment Technology for Senior High School Guide
PDF
Weekly quiz Compilation Jan -July 25.pdf
PDF
Trump Administration's workforce development strategy
PPTX
Onco Emergencies - Spinal cord compression Superior vena cava syndrome Febr...
PDF
medical_surgical_nursing_10th_edition_ignatavicius_TEST_BANK_pdf.pdf
PDF
OBE - B.A.(HON'S) IN INTERIOR ARCHITECTURE -Ar.MOHIUDDIN.pdf
PDF
احياء السادس العلمي - الفصل الثالث (التكاثر) منهج متميزين/كلية بغداد/موهوبين
PDF
Practical Manual AGRO-233 Principles and Practices of Natural Farming
PPTX
History, Philosophy and sociology of education (1).pptx
PPTX
202450812 BayCHI UCSC-SV 20250812 v17.pptx
PDF
BP 704 T. NOVEL DRUG DELIVERY SYSTEMS (UNIT 2).pdf
PPTX
20th Century Theater, Methods, History.pptx
PDF
BP 704 T. NOVEL DRUG DELIVERY SYSTEMS (UNIT 1)
PDF
FOISHS ANNUAL IMPLEMENTATION PLAN 2025.pdf
PDF
IGGE1 Understanding the Self1234567891011
PPTX
Computer Architecture Input Output Memory.pptx
PDF
What if we spent less time fighting change, and more time building what’s rig...
PDF
advance database management system book.pdf
PDF
Paper A Mock Exam 9_ Attempt review.pdf.
TNA_Presentation-1-Final(SAVE)) (1).pptx
Empowerment Technology for Senior High School Guide
Weekly quiz Compilation Jan -July 25.pdf
Trump Administration's workforce development strategy
Onco Emergencies - Spinal cord compression Superior vena cava syndrome Febr...
medical_surgical_nursing_10th_edition_ignatavicius_TEST_BANK_pdf.pdf
OBE - B.A.(HON'S) IN INTERIOR ARCHITECTURE -Ar.MOHIUDDIN.pdf
احياء السادس العلمي - الفصل الثالث (التكاثر) منهج متميزين/كلية بغداد/موهوبين
Practical Manual AGRO-233 Principles and Practices of Natural Farming
History, Philosophy and sociology of education (1).pptx
202450812 BayCHI UCSC-SV 20250812 v17.pptx
BP 704 T. NOVEL DRUG DELIVERY SYSTEMS (UNIT 2).pdf
20th Century Theater, Methods, History.pptx
BP 704 T. NOVEL DRUG DELIVERY SYSTEMS (UNIT 1)
FOISHS ANNUAL IMPLEMENTATION PLAN 2025.pdf
IGGE1 Understanding the Self1234567891011
Computer Architecture Input Output Memory.pptx
What if we spent less time fighting change, and more time building what’s rig...
advance database management system book.pdf
Paper A Mock Exam 9_ Attempt review.pdf.
Ad

Conic Clustering

  • 1. Size Matters: Cardinality-Constrained Clustering & Outlier Detection Napat RUJEERAPAIBOON Department of Industrial Systems Engineering & Management National University of Singapore
  • 2. k–Means Clustering Ÿ k–means clustering is NP-hard1 . min °n i1 °k j1 πij }ξi ¡ζj }2 s. t. πij € t0, 1u, ζj € Rd °k j1 πij 1 di 1, . . . , n Ÿ In practice, k–means heuristic2 produce solutions quickly. Fix πij ùñ ζj average of ξi with πij 1 Fix ζj ùñ πij 1 if ζj is the closest center to ξi 1 Aloise et al. (2009) 2 Arthur Vassilvitskii (2007)
  • 3. Challenges Ÿ k–means heuristics suffers from several shortcomings. Technical challenges 1 Slow runtime.3 2 Unknown suboptimality. Practical challenges 1 Skewed clustering.4 2 Sensitivity to outliers.5 Ÿ Skewed clustering is unfavorable in many applications. 3 Arthur Vassilvitskii (2006) 4 Bennett et al. (2000) 5 Chawla Gionis (2013)
  • 4. Cardinality Constraints Implicit Cdn. Market Segmentation Distributed Computing Explicit Cdn. Category Management Vehicle Routing Outlier Det. Fraud Detection Medical Diagnosis
  • 5. Outlier Detection Ÿ k–means (25.21) Ÿ Balanced k–means (54.27) Ÿ Balanced k–means + Outlier detection (1.97)
  • 6. Cardinality Constraints Ÿ Introduce dummy (0th cluster) for outliers. Ÿ tnj uk j1 and n0 denote sizes of regular and dummy clusters. Ÿ Cardinality–constrained k–means clustering. min °n i1 °k j1 πij }ξi ¡ζj }2 s. t. πij € t0, 1u, ζj € Rd °k j0 πij 1 di 1, . . . , n °n i1 πij nj dj 0, . . . , k
  • 7. Cardinality Constraints Ÿ Introduce dummy (0th cluster) for outliers. Ÿ tnj uk j1 and n0 denote sizes of regular and dummy clusters. Ÿ Cardinality–constrained k–means clustering. min °n i1 °k j1 πij }ξi ¡ζj }2 s. t. πij € t0, 1u, ζj € Rd °k j0 πij 1 di 1, . . . , n °n i1 πij nj dj 0, . . . , k Ÿ A remedy for the practical challenges .
  • 8. Cardinality Constraints Ÿ Introduce dummy (0th cluster) for outliers. Ÿ tnj uk j1 and n0 denote sizes of regular and dummy clusters. Ÿ Cardinality–constrained k–means clustering. min °n i1 °k j1 πij }ξi ¡ζj }2 s. t. πij € t0, 1u, ζj € Rd °k j0 πij 1 di 1, . . . , n °n i1 πij nj dj 0, . . . , k Ÿ A remedy for the practical challenges . Ÿ What about the technical challenges?
  • 9. Linearization Convexification min °n i1 °k j1 πij }ξi ¡ζj }2 s. t. πij € t0, 1u, ζj € Rd °k j0 πij 1 di 1, . . . , n °n i1 πij nj dj 0, . . . , k Ÿ The problem is NP-hard. Ÿ Heuristics for biconvex optimization can still be used.6 Ÿ No runtime/optimality guarantees. 6 Bennett et al. (2000)
  • 10. Linearization Convexification Conic Relaxations MILP Feasible Solution enlarge feasible set rounding algorithm recovery guarantee Ÿ The problem is NP-hard. Ÿ Heuristics for biconvex optimization can still be used.6 Ÿ No runtime/optimality guarantees. Ÿ We propose a convex relaxation that comes with guarantees. 6 Bennett et al. (2000)
  • 11. Linearization Ÿ Equivalent MINLP reformulation. min °k j1 °n i,i1 1 1 2nj πij πi1 j }ξi ¡ξi1 }2 r costpπqs s. t. πij € t0, 1u °k j0 πij 1 di 1, . . . , n °n i1 πij nj dj 0, . . . , k (P) Ÿ The products πij πi1 j can be linearized, resulting in an MILP. Zha et al. (2001)
  • 12. Convex Relaxation Ÿ Apply the following variable transformations: xj : 2πj ¡1, D rdii1 s : }ξi ¡ξi1 }2 . Ÿ The MILP admits an equivalent non-linear reformulation. min °k j1 1 8nj p1  xj qp1  xj q , D s. t. xj € t¡1,  1un °k j0 xj p1 ¡kq1 1 xj 2nj ¡n dj 0, . . . , k Ÿ Introduce Mj xj xj to linearize the objective function °k j1 1 8nj 11  1xj  xj 1  Mj , D .
  • 13. Convex Relaxation Ÿ In doing so, non-convexity is relegated to the constraints xj € t¡1,  1un , Mj xj xj . Ÿ The resulting MINLP can be relaxed to an SDP (RSDP) min °k j1 1 8nj 11  1xj  xj 1  Mj , D s. t. xj € Rn , Mj € Sn °k j0 xj p1 ¡kq1 1 xj 2nj ¡n dj 0, . . . , k diagpMj q 1, Mj © xj xj dj 0, . . . , k (RSDP) Goemans Williamson (1995)
  • 14. Convex Relaxation Ÿ In doing so, non-convexity is relegated to the constraints xj € t¡1,  1un , Mj xj xj . Ÿ The resulting MINLP can be relaxed to an SDP (RSDP) min °k j1 1 8nj 11  1xj  xj 1  Mj , D s. t. xj € Rn , Mj € Sn °k j0 xj p1 ¡kq1 1 xj 2nj ¡n dj 0, . . . , k diagpMj q 1, Mj © xj xj dj 0, . . . , k (RSDP) Ÿ Unfortunately, this SDP relaxation is very weak. Goemans Williamson (1995)
  • 15. Valid Inequalities Ÿ Strengthen RSDP with the valid cuts. Mj 1 γ γ 1 , xj α β Ex. γ 0.4 Mj xj xj Mj © xj xj Mj © xj xj + VCs Anstreicher (2009)
  • 16. Valid Inequalities Ÿ Strengthen RSDP with the valid cuts. Mj 1 γ γ 1 , xj α β Ex. γ 0.4 Mj xj xj Mj © xj xj Mj © xj xj + VCs Ÿ These cuts are instrumental to proving optimality guarantees. Ÿ As a by-product, we also have an LP relaxation RLP. Anstreicher (2009)
  • 17. Convex Relaxation Theorem 1 We have min RLP ¤ min RSDP ¤ min P. Ÿ RLP RSDP are polynomial-time solvable, whereas P is not. Next Steps: Ÿ How to construct ˜π ij € t0, 1u feasible in P from x ij ? Ÿ How to gauge the quality of the obtained ˜π ij ?
  • 18. Rounding Algorithm Ÿ Recall that x ij € r¡1, 1s: 1 2 p1  x ij q P pξi € CLj q Ÿ Solve the following linear assignment problem to retrieve ˜π. max °n i1 °k j1 πij 1 2 p1  x ij q s. t. πij € t0, 1u °k j0 πij 1 di 1, . . . , n °n i1 πij nj dj 0, . . . , k Ÿ LAP7 is an MILP with totally unimodular matrix (4 tractable). 7 Burkard et al. (2009)
  • 19. Optimality Gap Ÿ Our approach gives an a posteriori estimate of optimality gap. min RLP ¤ min RSDP ¤ min P costpπ q ¤ costp˜π q Ÿ Under perfect separation condition, the optimality gap vanishes. Elhamifar et al. (2012)
  • 20. Recovery Guarantee Theorem 2 (Perfect Separation) We have tightness hkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkj min RLP min RSDP min P costpπ q costp˜π qloooooooooooooooooomoooooooooooooooooon LAP-recovery . Proof Sketch (Tightness): 1 Distinguish outlier (M 0) and regular (M j ) clusters. 2 The RLP/RSDP can be solved analytically.
  • 21. Recovery Guarantee Theorem 2 (Perfect Separation) We have tightness hkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkj min RLP min RSDP min P costpπ q costp˜π qloooooooooooooooooomoooooooooooooooooon LAP-recovery . Proof Sketch (Tightness): M 0 M j
  • 22. Recovery Guarantee Theorem 2 (Perfect Separation) We have tightness hkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkj min RLP min RSDP min P costpπ q costp˜π qloooooooooooooooooomoooooooooooooooooon LAP-recovery . Proof Sketch (Recovery): 1 Distinguish outlier (M 0) and regular (M j ) clusters. 2 The RLP/RSDP can be solved analytically. 3 The LAP exploits strong signal in M 0 and M j .
  • 23. Recovery Guarantee Theorem 2 (Perfect Separation) We have tightness hkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkj min RLP min RSDP min P costpπ q costp˜π qloooooooooooooooooomoooooooooooooooooon LAP-recovery . Proof Sketch (Recovery): M 0 M j
  • 24. Numerical Experiments I Ÿ Perform cardinality-constrained clustering on classification datasets8 . Ÿ tnj uk j1 : the number of true class occurrences. Ÿ Compare our SDP/LP+LAP approach with biconvex heuristic9 . Ÿ Optimality gaps yielded by the LP+LAP approach are À 20.6%. Ÿ Optimality gaps yielded by the SDP+LAP approach are À 2.9%. Ÿ The SDP approach is competitive with the biconvex heuristic. 8 UCI repository 9 Bennett, K. et al. (2000)
  • 25. Numerical Experiments II Ÿ Perform outlier detection on the breast cancer dataset10 . Ÿ Varying the number of malignant cancers n0. Ÿ Calculate prediction accuracy, false positives false negatives. 0 50 100 150 200 250 300 350 400 0 10 20 30 40 50 60 70 80 90 100 Á 80% prediction accuracy, À 3.3% optimality gap. 10 UCI repository
  • 26. References Ÿ Arthur, D. and Vassilvitskii, S. K-means++: the advantages of careful seeding. Proceedings of ACM-SIAM Symposium on Discrete Algorithms, 2007. Ÿ Bennett, K., Bradley, P., Demiriz, A. Constrained k–Means Clustering. Microsoft Technical Report, 2000. Ÿ Rujeerapaiboon, N., Schindler, K., Kuhn, D., Wiesemann, W. Size matters: Cardinality-constrained clustering and outlier detection via conic optimization. SIAM Journal on Optimization 29(2), 2019. napat.rujeerapaiboon@nus.edu.sg Special thanks to artwork from tPopcorns Arts, Maxim Basinski, Business strategy, Freepik, Prosymbols, Vectors Market, Madebyoliver, Alfredo Hernandez, Devil, Roundiconsu@Flaticon.