SlideShare a Scribd company logo
2
Most read
3
Most read
6
Most read
Continuity of fluid flow
&
Bernoulli’s PrinCiPle
The Flow of a Fluid
The flow of a fluid is very complicated. Many aspects of fluid flow are not
well understood yet. We will limit our study to these three assumptions:
1) Incompressible fluids – this means the fluid does not change its density.
2) Steady (laminar) flow – this means the fluid flows in layers (streamlines) rather
than in a chaotic fashion as in turbulent flow.
3) Non-viscous fluids – this means there is no friction in the fluid. A non-
viscous fluid would be like water as opposed to pancake
batter.
Mass Flow RateMass Flow Rate
(kg/s)(kg/s)
Volume Flow RateVolume Flow Rate
(m(m33
/s)/s)
A ≡ Cross-sectional Area
(m2
)
m ≡ mass (kg)
t ≡ time (s)
v ≡ velocity (m/s)
V ≡ volume (m3
)
ρ ≡ density (kg/m3
)
Continuity of Fluid FlowContinuity of Fluid Flow
As a fluid flows through a pipe which changes its
cross-sectional area, its mass flow rate must remain
constant.
If the fluid is incompressible, then the volume flow rate must remain constant.
Relates the pressure (Pa), the height of the fluid
(m) and flow speed of the fluid (m/s) at one
point in a laminar flow to another point in a
laminar flow.
A special case of Bernoulli’s Principle occurs
when the flow speed of a fluid is zero at one
point in the flow and the pressure at two points
is the same. In this case Toricelli’s Equation
gives the speed of the fluid at the other point.
Momentum & Energy Example 29: Fluid Velocity & Pressure in a Pipe
 
Water is flowing through a 19-cm diameter pipe at 75-m/s.  The pipe’s diameter decreases 
to 10-cm.  The pipe is level.
 
a)What is the speed of the air in the 10-cm diameter pipe?
I’m baaaaaaaaaaack!!!!!!!
First, draw a picture of the pipe and
label it. Don’t forget to convert the
diameters to meters.
D1 = 0.19-m D2 = 0.10-m
v1 = 75-m/s v2
Now apply continuity of fluid flow
and solve for v2, just like all good
AP Physics students do!!!
Calculate the areas, A1 & A2. Remember to use
the radius of each rather than the diameter.
Finally, substitute into the equation for
v2 and simplify.
Change this
Momentum & Energy Example 29: Fluid Velocity & Pressure in a Pipe
 
Water is flowing through a 19-cm diameter pipe at 75-m/s.  The pipe’s diameter decreases 
to 10-cm.  The pipe is level.
 
b)If you wanted the airflow to reach the speed of sound (345-m/s), what would the 
diameter of the smaller pipe need to be?
Draw and label the picture!!
D1 = 0.19-m D2
v1 = 75-m/s v2=345-m/s
Apply continuity of fluid flow and solve for
the area at point 2, A2.
Calculate A1, and substitute into the
equation to find A2.
Now find the radius and then the diameter.
Momentum & Energy Example 29: Fluid Velocity & Pressure in a Pipe
 
Water is flowing through a 19-cm diameter pipe at 75-m/s.  The pipe’s diameter decreases 
to 10-cm.  The pipe is level.
 
c)The pressure in the large diameter pipe is 1.2-atm.  If the 10-cm pipe is placed 1.5-m 
above the 19-cm diameter pipe, what will the pressure in the 10-cm pipe be?
Draw and label the diagram. Continuity of
fluid flow still gives you a speed of 270-m/s
at the 10-cm end.
h =1.5-mv1 = 75-m/s
v2 = 270-m/s
Convert the pressure to Pa.
P1 = 1.2 X 105
-Pa
Write out Bernoulli’s Equation. We will
assume the density of the water remains
constant. (1000-kg/m3
)
Since h1 = 0, we can drop this term
as we solve for P2.
Substitute in and simplify.
Momentum & Energy Example 30: Water Flow from a Tank
A water tank with a valve at the bottom is shown below.  Assume the cross-sectional area 
at A is very large compared with that at B, and the acceleration of gravity is 9.81-m/s2
.
a) What is the speed the water leaves the spigot at B after the valve is opened?
Apply Bernoulli’s principle.
At A & B, the pressure is the same so we
can eliminate these terms.
We need to find hB using a bit of
trigonometry.
We can also assume the speed at
A is zero.
vA = 0-m/s
Solve the equation for vB.This is Torricelli’s Equation.Substitute and find vB.
Momentum & Energy Example 30: Water Flow from a Tank
A water tank with a valve at the bottom is shown below.  Assume the cross-sectional area 
at A is very large compared with that at B, and the acceleration of gravity is 9.81-m/s2
.
b) What is the maximum height above the opening of the spigot (∆ymax
) attained 
by the water stream coming out of the spigot at B after the valve is opened?
This is just a projectile motion problem.
So we can use our equations of motion.
At maximum height vy = 0, so solving
for ∆ymax we get this equation.
We need to use trigonometry, to find
voy. then substitute to find the
solution.
10-m/s
voy = 10sin(49) = 7.5-m/s)
Momentum & Energy Example 30: Water Flow from a Tank
A water tank with a valve at the bottom is shown below. Assume the cross-sectional area
at A is very large compared with that at B, and the acceleration of gravity is 9.81-m/s2
.
b) What is the maximum height above the opening of the spigot (∆ymax
) attained
by the water stream coming out of the spigot at B after the valve is opened?
This is just a projectile motion problem.
So we can use our equations of motion.
At maximum height vy = 0, so solving
for ∆ymax we get this equation.
We need to use trigonometry, to find
voy. then substitute to find the
solution.
10-m/s
voy = 10sin(49) = 7.5-m/s)

More Related Content

PDF
Cu06997 lecture 9-10_exercises
PDF
Computation exam
PPTX
Continuity Equation
PDF
1 open channel problems 2
PPT
Ideal flow
PDF
Qb103351
PDF
Pressure vs rate of flow
Cu06997 lecture 9-10_exercises
Computation exam
Continuity Equation
1 open channel problems 2
Ideal flow
Qb103351
Pressure vs rate of flow

What's hot (20)

PPTX
Equation of continuity
PDF
EJERCICIO 2
PPTX
Ecuación de continuidad
PDF
Diapositivas ecuación de continuidad
PDF
Homework transport phenomena
DOCX
Cuestionario n° 5 dinámica de los fluidos
PDF
أسئلة 1
PDF
51495
PDF
Ostwald
PDF
Ejercicio 4. Ecuación diferencial
PDF
Volume flow rate_measurement
PPTX
Laminar flow
PDF
Problema 5
DOCX
Practica 4 medición_de_caudal_
PPTX
Flow through circular tube
PPTX
Fluid dynamics 1
PDF
Qb103354
PDF
KINEMATICS OF FLUIDS (Chapter 3)
PDF
TWO-DIMENSIONAL IDEAL FLOW (Chapter 6)
PDF
Fluid kinematics
Equation of continuity
EJERCICIO 2
Ecuación de continuidad
Diapositivas ecuación de continuidad
Homework transport phenomena
Cuestionario n° 5 dinámica de los fluidos
أسئلة 1
51495
Ostwald
Ejercicio 4. Ecuación diferencial
Volume flow rate_measurement
Laminar flow
Problema 5
Practica 4 medición_de_caudal_
Flow through circular tube
Fluid dynamics 1
Qb103354
KINEMATICS OF FLUIDS (Chapter 3)
TWO-DIMENSIONAL IDEAL FLOW (Chapter 6)
Fluid kinematics
Ad

Viewers also liked (20)

PDF
Introduction to Computational Fluid Dynamics
PDF
Natalini nse slide_giu2013
PPTX
Momentum2
PPT
Transformer
PPTX
Pratik Vadher - Fluid Mechanics
PDF
6. balance laws jan 2013
PDF
Module4 s dynamics- rajesh sir
PPT
PPT
Properties of fluids
PPT
6 7 irrotational flow
PPTX
Study of fluids
PDF
Basiceqs3
PPTX
Fluids and their properties
PDF
Transport phenomena
PPT
Application of Fluid Dynamics In Traffic Management
PPTX
Continuity equation1
PPT
Fluid properties
PPTX
Fluid Properties Density , Viscosity , Surface tension & Capillarity
PDF
Essential fluids
Introduction to Computational Fluid Dynamics
Natalini nse slide_giu2013
Momentum2
Transformer
Pratik Vadher - Fluid Mechanics
6. balance laws jan 2013
Module4 s dynamics- rajesh sir
Properties of fluids
6 7 irrotational flow
Study of fluids
Basiceqs3
Fluids and their properties
Transport phenomena
Application of Fluid Dynamics In Traffic Management
Continuity equation1
Fluid properties
Fluid Properties Density , Viscosity , Surface tension & Capillarity
Essential fluids
Ad

Similar to Continuity of fluid flow & bernoulli's principle (20)

PPTX
Impact of Fluid flow measurement in food industry
PDF
Pharmaceutical Engineering: Flow of fluids
PDF
Flow of Fluids
PDF
Fluidflowsb-160915165853 (1).pdf
PPTX
Fluid mechanics-ppt
PDF
Introduction to Fluid MAchinery_March 11,2023.pdf
PPTX
001 FLUID_MECHANICS.pptx basic of fluid mechnanics
PDF
Bernoulli's principle
PPTX
Flow of fluid- Pharmaceutical Engineering
PPTX
Fluid flow parameter by VADURLE ROHAN BHARAT
PPT
Lecture in open channel flow
PPTX
Bernoulli’s equation
PPTX
Basic equation of fluid flow mechan.pptx
PDF
2 Pergerakan fluida fisika aplikasi yagesyaaaa
PPTX
fluid machanics 2(chemical engineering).pptx
PPTX
Flow of Fluids Pharmaceutical Engineering
PPTX
Pertemuan 14.pptx. Bbbbbbbbbbbbbbbbbbbbbbb
PDF
class 11 physics project on bernoulli's principle
PPTX
Chapt 1 flow of fluid lect 1st 2 nd.pptx
PPTX
Fluid dynamics
Impact of Fluid flow measurement in food industry
Pharmaceutical Engineering: Flow of fluids
Flow of Fluids
Fluidflowsb-160915165853 (1).pdf
Fluid mechanics-ppt
Introduction to Fluid MAchinery_March 11,2023.pdf
001 FLUID_MECHANICS.pptx basic of fluid mechnanics
Bernoulli's principle
Flow of fluid- Pharmaceutical Engineering
Fluid flow parameter by VADURLE ROHAN BHARAT
Lecture in open channel flow
Bernoulli’s equation
Basic equation of fluid flow mechan.pptx
2 Pergerakan fluida fisika aplikasi yagesyaaaa
fluid machanics 2(chemical engineering).pptx
Flow of Fluids Pharmaceutical Engineering
Pertemuan 14.pptx. Bbbbbbbbbbbbbbbbbbbbbbb
class 11 physics project on bernoulli's principle
Chapt 1 flow of fluid lect 1st 2 nd.pptx
Fluid dynamics

More from POLITEKNIK NEGERI BALI (11)

PDF
PPT
PPT
10 fluid dynamics
PDF
Aliran dan penurunan tek...resistensi dan diameter
PDF
Bagaimana tidak untuk he...tware basis pengetahuana
PDF
Lesson 4 bernoulli's theorem
PPTX
Presentation g pita
PDF
Cooling system idiosyncrasies 2006
10 fluid dynamics
Aliran dan penurunan tek...resistensi dan diameter
Bagaimana tidak untuk he...tware basis pengetahuana
Lesson 4 bernoulli's theorem
Presentation g pita
Cooling system idiosyncrasies 2006

Continuity of fluid flow & bernoulli's principle

  • 1. Continuity of fluid flow & Bernoulli’s PrinCiPle
  • 2. The Flow of a Fluid The flow of a fluid is very complicated. Many aspects of fluid flow are not well understood yet. We will limit our study to these three assumptions: 1) Incompressible fluids – this means the fluid does not change its density. 2) Steady (laminar) flow – this means the fluid flows in layers (streamlines) rather than in a chaotic fashion as in turbulent flow. 3) Non-viscous fluids – this means there is no friction in the fluid. A non- viscous fluid would be like water as opposed to pancake batter.
  • 3. Mass Flow RateMass Flow Rate (kg/s)(kg/s) Volume Flow RateVolume Flow Rate (m(m33 /s)/s) A ≡ Cross-sectional Area (m2 ) m ≡ mass (kg) t ≡ time (s) v ≡ velocity (m/s) V ≡ volume (m3 ) ρ ≡ density (kg/m3 ) Continuity of Fluid FlowContinuity of Fluid Flow As a fluid flows through a pipe which changes its cross-sectional area, its mass flow rate must remain constant. If the fluid is incompressible, then the volume flow rate must remain constant.
  • 4. Relates the pressure (Pa), the height of the fluid (m) and flow speed of the fluid (m/s) at one point in a laminar flow to another point in a laminar flow. A special case of Bernoulli’s Principle occurs when the flow speed of a fluid is zero at one point in the flow and the pressure at two points is the same. In this case Toricelli’s Equation gives the speed of the fluid at the other point.
  • 5. Momentum & Energy Example 29: Fluid Velocity & Pressure in a Pipe   Water is flowing through a 19-cm diameter pipe at 75-m/s.  The pipe’s diameter decreases  to 10-cm.  The pipe is level.   a)What is the speed of the air in the 10-cm diameter pipe? I’m baaaaaaaaaaack!!!!!!! First, draw a picture of the pipe and label it. Don’t forget to convert the diameters to meters. D1 = 0.19-m D2 = 0.10-m v1 = 75-m/s v2 Now apply continuity of fluid flow and solve for v2, just like all good AP Physics students do!!! Calculate the areas, A1 & A2. Remember to use the radius of each rather than the diameter. Finally, substitute into the equation for v2 and simplify. Change this
  • 6. Momentum & Energy Example 29: Fluid Velocity & Pressure in a Pipe   Water is flowing through a 19-cm diameter pipe at 75-m/s.  The pipe’s diameter decreases  to 10-cm.  The pipe is level.   b)If you wanted the airflow to reach the speed of sound (345-m/s), what would the  diameter of the smaller pipe need to be? Draw and label the picture!! D1 = 0.19-m D2 v1 = 75-m/s v2=345-m/s Apply continuity of fluid flow and solve for the area at point 2, A2. Calculate A1, and substitute into the equation to find A2. Now find the radius and then the diameter.
  • 7. Momentum & Energy Example 29: Fluid Velocity & Pressure in a Pipe   Water is flowing through a 19-cm diameter pipe at 75-m/s.  The pipe’s diameter decreases  to 10-cm.  The pipe is level.   c)The pressure in the large diameter pipe is 1.2-atm.  If the 10-cm pipe is placed 1.5-m  above the 19-cm diameter pipe, what will the pressure in the 10-cm pipe be? Draw and label the diagram. Continuity of fluid flow still gives you a speed of 270-m/s at the 10-cm end. h =1.5-mv1 = 75-m/s v2 = 270-m/s Convert the pressure to Pa. P1 = 1.2 X 105 -Pa Write out Bernoulli’s Equation. We will assume the density of the water remains constant. (1000-kg/m3 ) Since h1 = 0, we can drop this term as we solve for P2. Substitute in and simplify.
  • 8. Momentum & Energy Example 30: Water Flow from a Tank A water tank with a valve at the bottom is shown below.  Assume the cross-sectional area  at A is very large compared with that at B, and the acceleration of gravity is 9.81-m/s2 . a) What is the speed the water leaves the spigot at B after the valve is opened? Apply Bernoulli’s principle. At A & B, the pressure is the same so we can eliminate these terms. We need to find hB using a bit of trigonometry. We can also assume the speed at A is zero. vA = 0-m/s Solve the equation for vB.This is Torricelli’s Equation.Substitute and find vB.
  • 9. Momentum & Energy Example 30: Water Flow from a Tank A water tank with a valve at the bottom is shown below.  Assume the cross-sectional area  at A is very large compared with that at B, and the acceleration of gravity is 9.81-m/s2 . b) What is the maximum height above the opening of the spigot (∆ymax ) attained  by the water stream coming out of the spigot at B after the valve is opened? This is just a projectile motion problem. So we can use our equations of motion. At maximum height vy = 0, so solving for ∆ymax we get this equation. We need to use trigonometry, to find voy. then substitute to find the solution. 10-m/s voy = 10sin(49) = 7.5-m/s)
  • 10. Momentum & Energy Example 30: Water Flow from a Tank A water tank with a valve at the bottom is shown below. Assume the cross-sectional area at A is very large compared with that at B, and the acceleration of gravity is 9.81-m/s2 . b) What is the maximum height above the opening of the spigot (∆ymax ) attained by the water stream coming out of the spigot at B after the valve is opened? This is just a projectile motion problem. So we can use our equations of motion. At maximum height vy = 0, so solving for ∆ymax we get this equation. We need to use trigonometry, to find voy. then substitute to find the solution. 10-m/s voy = 10sin(49) = 7.5-m/s)