SlideShare a Scribd company logo
Convergence:	
  Shared	
  
Mobility,	
  EVs	
  &	
  Automation
Susan	
  Shaheen,	
  Ph.D.
Co-­‐Director,	
  Transportation	
  Sustainability	
  Research	
  Center
Adjunct	
  Professor,	
  University	
  of	
  California,	
  Berkeley
Presentation	
  Overview
• Convergence
• AV	
  Pros	
  and	
  Cons
• Existing	
  Literature
• Opportunities	
  and	
  Challenges	
  SAVs
• Cost	
  savings
• Safety	
  and	
  cost	
  savings
• Parking
• SAV	
  impacts
Convergence
Shared	
  
Mobility
Automation
Electrification
SAVs
Source:	
  engadget
A V :	
   P r os 	
   a nd	
   C ons
L A R G E R 	
   C ON T E X T
Non-­‐Energy	
  Benefits:
• Greatly	
  increased	
  safety
• Frees	
  driver	
  to	
  perform	
  other	
  
tasks
• Reduction	
  or	
  elimination	
  of	
  
parking	
  space
• Lower	
  costs,	
  e.g.,	
  reduced	
  
insurance,	
  parking,	
  etc.
Greenblatt,	
  2016
A V :	
   P r os 	
   a nd	
   C ons
L A R G E R 	
   C ON T E X T
Energy-­‐Saving	
  Effects:
• Smoother	
  acceleration/braking
• Optimal	
  trip	
  planning
• Slower	
  speeds	
  (if	
  driver	
  permits)
• Reduced	
  congestion	
  due	
  to	
  cooperative	
  
behavior	
  (in	
  large	
  numbers)	
  
• Reduced	
  mass	
  due	
  to	
  enhanced	
  safety	
  (in	
  
large	
  numbers)	
  
Effects	
  That Could	
  Increase	
  Energy	
  Use:
• Longer	
  driving	
  distances/more	
  frequent	
  
trips	
  (possible	
  rebound	
  effect)
• Increased	
  speeds	
  (maybe)
• Larger	
  vehicles	
  =	
  “mobile	
  
offices/bedrooms/restaurants”
• Vehicle	
  “cruising”	
  to	
  avoid	
  parking
Greenblatt,2016
SAV	
  Opportunities
Potential	
  Benefits:	
  
• Reduce	
  GHG	
  emissions
• Increase	
  capacity	
  (smaller	
  vehicles,	
  
closer	
  spacing,	
  shared	
  rides,	
  etc.)	
  
• Increased	
  auto	
  sales	
  (higher	
  fleet	
  
turnover	
  from	
  increased	
  vehicle	
  use)
• Reduce	
  per	
  mile	
  cost	
  (over	
  
privately-­‐ owned	
  vehicles)
• Opportunity	
  to	
  add	
  density	
  through	
  
redevelopment
• Downsize	
  the	
  number	
  of	
  privately	
  
owned	
  household	
  vehicles	
  	
  
E X I S T I N G 	
  L I T E R AT U R E
SAV	
  Challenges
Potential	
  Challenges:	
  
• Higher	
  upfront	
  vehicle	
  costs	
  
• Increased	
  VMT	
  (due	
  to	
  lower	
  costs,	
  increased	
  use,	
  
modal	
  shift	
  away	
  from	
  public	
  transit,	
  longer	
  commutes,	
  
roaming	
  AVs,	
  etc.)
• Will	
  people	
  give	
  up	
  private	
  ownership?	
  
E X I S T I N G 	
  L I T E R AT U R E
Fagnant and	
  Kockelman,	
  2014
Methods:
• Developed	
  trip	
  generation	
  and	
  distribution	
  model
• Asserts	
  SAVs	
  have	
  potential	
  to	
  mitigate	
  
environmental	
  impacts	
  of	
  private	
  auto	
  travel	
  but	
  
more	
  research	
  needed	
  
• Modeled	
  daylong	
  SAV	
  passenger	
  pick-­‐up	
  and	
  
drop-­‐off	
  scenarios	
  within	
  a	
  10-­‐by-­‐10-­‐mile	
  radius	
  in	
  
Austin,	
  TX
• Represented	
  ~3.5%	
  of	
  all	
  trips	
  on	
  a	
  given	
  day
• Does	
  not	
  account	
  for	
  shared	
  rides
E X I S T I N G 	
  L I T E R AT U R E
Fagnant and	
  Kockelman,	
  2014
Key	
  Findings:
• Sample	
  population	
  served	
  by	
  ~20,000	
  
vehicles	
  could	
  be	
  served	
  with	
  1,700	
  SAVs
• Each	
  SAV	
  removes	
  up	
  to	
  12	
  vehicles	
  from	
  
the	
  road
• Average	
  wait	
  time	
  20	
  seconds	
  
• 31-­‐41	
  travelers	
  per	
  day	
  per	
  SAV
• 5.6%	
  lower	
  GHGs	
  (metric	
  tons)
E X I S T I N G 	
  L I T E R AT U R E
Greenblatt	
  and	
  Saxena,	
  2015
Methods:
Estimated	
  2014	
  and	
  2030	
  GHG	
  emissions	
  and	
  costs	
  
of	
  automated	
  taxis
Documented:
• Decreases	
  in	
  GHG	
  emissions	
  and	
  smaller	
  vehicle	
  
sizes	
  through	
  right	
  sizing,	
  
• Increases	
  in	
  VMT	
  (latent	
  demand),	
  
• Increased	
  vehicle	
  efficiency,	
  and	
  
• Improvements	
  in	
  cost	
  effectiveness	
  	
  
E X I S T I N G 	
  L I T E R AT U R E
Greenblatt	
  and	
  Saxena,	
  2015
Key	
  Findings:
• Per-­‐mile	
  GHG	
  emissions	
  of	
  an	
  SAV	
  (electric)	
  would	
  
be	
  63-­‐82%	
  lower	
  than	
  a	
  privately-­‐owned	
  hybrid	
  
vehicle	
  
• Half	
  of	
  savings	
  attributable	
  to	
  “right-­‐sized”	
  vehicle	
  
based	
  on	
  trip	
  needs
• Economic	
  analysis	
  concluded	
  that	
  private	
  
ownership	
  of	
  EVs	
  more	
  expensive	
  than	
  a	
  gasoline	
  
vehicle	
  in	
  2030	
  (based	
  on	
  12,000	
  miles/year)
• For	
  taxis	
  (40-­‐70,000	
  miles/year),	
  fuel	
  cell	
  or	
  
electric	
  battery	
  most	
  cost	
  effective
E X I S T I N G 	
  L I T E R AT U R E
Private	
  Vehicle	
  Costs	
  vs.	
  SAVs
Average	
  5-­‐Year	
  Per	
  Mile	
  Driving	
  Cost:	
  2030
Private	
  Vehicle:
• Human	
  Driven	
  -­‐ $0.59	
  per	
  mile	
  (HEV)
• Automated	
  -­‐ $0.70	
  per	
  mile	
  (HEV)
Shared	
  Taxi	
  (based	
  on	
  70,000	
  annual	
  
miles):
• Human	
  Driven	
  – $0.34	
  per	
  mile	
  (HEV)
• Automated	
  -­‐ $0.29	
  -­‐ $0.34	
  per	
  mile	
  
(BEV)
Greenblatt	
  and	
  Saxena,	
  2015
Safety	
  and	
  Cost	
  Savings
• 93%	
  of	
  crashes	
  between	
  2005	
  and	
  2007	
  were	
  
human	
  caused	
  (NHTSA)
• NYDMV	
  estimates	
  78%	
  attributable	
  to	
  human	
  
error
• Reduction	
  in	
  vehicle	
  accidents	
  could	
  save	
  $280	
  
billion	
  annually	
  (NHTSA,	
  DOE)
• Parking,	
  insurance,	
  and	
  foregone	
  congestion	
  
could	
  save	
  between	
  $2,960	
  and	
  $3,900	
  per	
  vehicle	
  
annually	
  (Eno Transportation	
  Foundation)
E X I S T I N G 	
  L I T E R AT U R E
Parking	
  Impacts	
  
• Fagnant and	
  Kockelman found	
  each	
  
SAVs	
  can	
  replace	
  11	
  parking	
  spaces
• Potential	
  impacts	
  on	
  land	
  use	
  
through	
  increased	
  road	
  use	
  and	
  
reduced	
  parking	
  (e.g.,	
  conversion	
  of	
  
on-­‐street	
  parking	
  to	
  other	
  uses)
• Parking	
  adds	
  1.3	
  to	
  25	
  grams	
  of	
  CO2	
  
equivalent/	
  passenger-­‐km	
  to	
  total	
  
lifecycle	
  GHG	
  emissions	
  of	
  vehicle	
  
transport	
  (Chester	
  et.	
  al.)
E X I S T I N G 	
  L I T E R AT U R E
SAV	
  Impacts
• Fagnant and	
  Kockelman found	
  each	
  SAV	
  can	
  replace	
  up	
  
to	
  12	
  privately-­‐owned	
  vehicles	
  and	
  up	
  to	
  11	
  parking	
  
spaces
• Greenblatt	
  and	
  Saxena found	
  relying	
  on	
  small	
  vehicles	
  
for	
  87%	
  of	
  US	
  trips	
  taken	
  by	
  1	
  or	
  2 people	
  could	
  reduce	
  
fleet	
  average	
  energy	
  consumption	
  by	
  almost	
  a	
  factor	
  of	
  
two	
  
• SAV	
  lifecycle	
  GHG	
  emissions	
  per	
  mile	
  or	
  km	
  could	
  fall	
  by	
  
roughly	
  90%	
  relative	
  to	
  today’s	
  average	
  passenger	
  
vehicle
E X I S T I N G 	
  L I T E R AT U R E
Key	
  References
Fagnant,	
  D.	
  and	
  K.	
  Kockelman“The	
  travel	
  and	
  environmental	
  
implications	
  of	
  shared	
  autonomous	
  vehicles,	
  using	
  agent-­‐based	
  
model	
  scenarios,”	
  Transportation	
  Research	
  Part	
  C.	
  March,	
  2014.	
  
doi:10.1016/j.trc.2013.12.001
Greenblatt,	
  J.	
  and	
  S.	
  Saxena “Autonomous	
  taxis	
  could	
  greatly	
  
reduce	
  greenhouse-­‐gas	
  emissions	
  of	
  US	
  light-­‐duty	
  vehicles,”	
  
Nature	
  Climate	
  Change.	
  July	
  6,	
  2015.	
  doi:10.1038/nclimate2685
Chester,	
  M.,	
  A.	
  Horvath,	
  and	
  S.	
  Madanat.	
  “Parking	
  
infrastructure:	
  energy,	
  emissions,	
  and	
  automobile	
  life-­‐cycle	
  
environmental	
  accounting,”	
  Environmental	
  Research	
  Letters.	
  July	
  
29,	
  2010.	
  doi:10.1088/1748-­‐9326/5/3/034001
Website:	
  http://tsrc.berkeley.edu
Email:	
  sshaheen@berkeley.edu
Twitter:	
  SusanShaheen1
LinkedIn	
  SusanShaheen

More Related Content

PDF
Environmental Impacts of Shared Mobility: Insights from North America
PDF
Bikesharing & The Sharing Economy: Market Trends, Highlights & Impacts
PDF
Shared Mobility: Reshaping America's Travel Patterns Keynote Speech at Nation...
PDF
Worldwide Carsharing Trends and Research Highlights
PDF
Business Carsharing Models: History & Understanding
PDF
Shared Mobility: Reshaping America's Travel Patterns
PDF
TRB 2016: Shared Mobiliity Trends
PDF
Role of Research in Shared Mobility and Public Policy
Environmental Impacts of Shared Mobility: Insights from North America
Bikesharing & The Sharing Economy: Market Trends, Highlights & Impacts
Shared Mobility: Reshaping America's Travel Patterns Keynote Speech at Nation...
Worldwide Carsharing Trends and Research Highlights
Business Carsharing Models: History & Understanding
Shared Mobility: Reshaping America's Travel Patterns
TRB 2016: Shared Mobiliity Trends
Role of Research in Shared Mobility and Public Policy

What's hot (20)

PPTX
Susan Shaheen - Worldwide Carsharing Trends and Research Highlights
PDF
Keynote Speech at International Sharing Economy Symposium in Utrecht on June ...
PDF
Shared Mobility Services and Vehicle Automation
PDF
Scaling the Carsharing Market: Keynote Speech in Utrecht, Netherlands
PPTX
Shared Mobility & BRT
PPTX
Susan Shaheen, Co-Director, Transportation Sustainability Research Center, Un...
PDF
Carsharing Trends and Research Highlights
PDF
The Future of Mobility & Carsharing
PDF
Car sharing in Australia - strategic overview
PPTX
John Stonier, Founder & CEO - VELOMETRO
PPTX
Bodo Schwieger, Team Red - Effects of Second Generation Car Sharing on Public...
PDF
COVID-19: Shifting Gears in Mobility
PPT
Carsharing Presentation
PDF
Sharing enquiry – a week in the life of a car
PDF
DfT evidence on public attitudes to sharing
PPTX
Car-sharing in developing countries
PPTX
EVs in Carsharing
PPTX
Chris Morgan, Group Manager Strategic Development, Auckland Transport - Car S...
PPTX
Susan Shaheen, Co-Director, Transportation Sustainability Research Center, Un...
PDF
Human factors, user requirements and user acceptance of Shared Automated Vehi...
Susan Shaheen - Worldwide Carsharing Trends and Research Highlights
Keynote Speech at International Sharing Economy Symposium in Utrecht on June ...
Shared Mobility Services and Vehicle Automation
Scaling the Carsharing Market: Keynote Speech in Utrecht, Netherlands
Shared Mobility & BRT
Susan Shaheen, Co-Director, Transportation Sustainability Research Center, Un...
Carsharing Trends and Research Highlights
The Future of Mobility & Carsharing
Car sharing in Australia - strategic overview
John Stonier, Founder & CEO - VELOMETRO
Bodo Schwieger, Team Red - Effects of Second Generation Car Sharing on Public...
COVID-19: Shifting Gears in Mobility
Carsharing Presentation
Sharing enquiry – a week in the life of a car
DfT evidence on public attitudes to sharing
Car-sharing in developing countries
EVs in Carsharing
Chris Morgan, Group Manager Strategic Development, Auckland Transport - Car S...
Susan Shaheen, Co-Director, Transportation Sustainability Research Center, Un...
Human factors, user requirements and user acceptance of Shared Automated Vehi...
Ad

Similar to Convergence: Shared Mobility, EVs & Automation (20)

PPTX
Roundabouts on the road to sustainability
PDF
STEP Summer Seminar 2017 - Jillian Anable, University of Leeds - Influencing ...
PDF
Impact of the penetration rate of ecodriving on fuel consumption and traffic ...
PPTX
Presentation e rickshaw
PDF
Improving Energy Efficiency of Transport – Lessons from ESOS
PPT
Transportation, Electric Vehicles and the Environment
PPTX
Driving alone versus riding together - How shared autonomous vehicles can cha...
PDF
Can technology supprt eco-driving
PPTX
Todd Litman, Victoria Transport Policy Institute - Use of Public Space for S...
PPT
Transport Issues in Adelaide | Biocity Studio
PDF
Mobility and Energy Futures Series - Self Driving Cars
PPTX
Green Transportation and Climate Change
PPTX
Green transportation and climate change
PPTX
How to get the most out of plugging in: Lessons from early adopters on how to...
PPTX
Traffic Forecasting and Emission Mitigation Strategies via Traffic Flow and F...
PDF
Danfavamasccc2014
PDF
1.8 Joaquin decision support tool (C.Stroobants)
PPT
[English]sae convergence2010 final2
PPT
Counting Future Carbs and Decarbs: How to Know You are on a Carbon Diet
PPT
[English]sae convergence2010 final2
Roundabouts on the road to sustainability
STEP Summer Seminar 2017 - Jillian Anable, University of Leeds - Influencing ...
Impact of the penetration rate of ecodriving on fuel consumption and traffic ...
Presentation e rickshaw
Improving Energy Efficiency of Transport – Lessons from ESOS
Transportation, Electric Vehicles and the Environment
Driving alone versus riding together - How shared autonomous vehicles can cha...
Can technology supprt eco-driving
Todd Litman, Victoria Transport Policy Institute - Use of Public Space for S...
Transport Issues in Adelaide | Biocity Studio
Mobility and Energy Futures Series - Self Driving Cars
Green Transportation and Climate Change
Green transportation and climate change
How to get the most out of plugging in: Lessons from early adopters on how to...
Traffic Forecasting and Emission Mitigation Strategies via Traffic Flow and F...
Danfavamasccc2014
1.8 Joaquin decision support tool (C.Stroobants)
[English]sae convergence2010 final2
Counting Future Carbs and Decarbs: How to Know You are on a Carbon Diet
[English]sae convergence2010 final2
Ad

Recently uploaded (20)

PPTX
Plant_Cell_Presentation.pptx.com learning purpose
PPT
Compliance Monitoring report CMR presentation.ppt
PPTX
Biodiversity.udfnfndrijfreniufrnsiufnriufrenfuiernfuire
PPTX
"One Earth Celebrating World Environment Day"
PDF
Global Natural Disasters in H1 2025 by Beinsure
PDF
Effective factors on adoption of intercropping and it’s role on development o...
PPTX
NOISE-MITIGATION.-pptxnaksnsbaksjvdksbsksk
PDF
Urban Hub 50: Spirits of Place - & the Souls' of Places
PPTX
Delivery census may 2025.pptxMNNN HJTDV U
PDF
Earthquake, learn from the past and do it now.pdf
PPTX
Arugula. Crop used for medical plant in kurdistant
PPTX
UN Environmental Inventory User Training 2021.pptx
PPTX
Concept of Safe and Wholesome Water.pptx
PDF
Effect of salinity on biochimical and anatomical characteristics of sweet pep...
PDF
Tree Biomechanics, a concise presentation
PPTX
FIRE SAFETY SEMINAR SAMPLE FOR EVERYONE.pptx
PPTX
Making GREEN and Sustainable Urban Spaces
PPTX
sustainable-development in tech-ppt[1].pptx
PDF
PET Hydrolysis (polyethylene terepthalate Hydrolysis)
PPTX
Green and Cream Aesthetic Group Project Presentation.pptx
Plant_Cell_Presentation.pptx.com learning purpose
Compliance Monitoring report CMR presentation.ppt
Biodiversity.udfnfndrijfreniufrnsiufnriufrenfuiernfuire
"One Earth Celebrating World Environment Day"
Global Natural Disasters in H1 2025 by Beinsure
Effective factors on adoption of intercropping and it’s role on development o...
NOISE-MITIGATION.-pptxnaksnsbaksjvdksbsksk
Urban Hub 50: Spirits of Place - & the Souls' of Places
Delivery census may 2025.pptxMNNN HJTDV U
Earthquake, learn from the past and do it now.pdf
Arugula. Crop used for medical plant in kurdistant
UN Environmental Inventory User Training 2021.pptx
Concept of Safe and Wholesome Water.pptx
Effect of salinity on biochimical and anatomical characteristics of sweet pep...
Tree Biomechanics, a concise presentation
FIRE SAFETY SEMINAR SAMPLE FOR EVERYONE.pptx
Making GREEN and Sustainable Urban Spaces
sustainable-development in tech-ppt[1].pptx
PET Hydrolysis (polyethylene terepthalate Hydrolysis)
Green and Cream Aesthetic Group Project Presentation.pptx

Convergence: Shared Mobility, EVs & Automation

  • 1. Convergence:  Shared   Mobility,  EVs  &  Automation Susan  Shaheen,  Ph.D. Co-­‐Director,  Transportation  Sustainability  Research  Center Adjunct  Professor,  University  of  California,  Berkeley
  • 2. Presentation  Overview • Convergence • AV  Pros  and  Cons • Existing  Literature • Opportunities  and  Challenges  SAVs • Cost  savings • Safety  and  cost  savings • Parking • SAV  impacts
  • 5. A V :   P r os   a nd   C ons L A R G E R   C ON T E X T Non-­‐Energy  Benefits: • Greatly  increased  safety • Frees  driver  to  perform  other   tasks • Reduction  or  elimination  of   parking  space • Lower  costs,  e.g.,  reduced   insurance,  parking,  etc. Greenblatt,  2016
  • 6. A V :   P r os   a nd   C ons L A R G E R   C ON T E X T Energy-­‐Saving  Effects: • Smoother  acceleration/braking • Optimal  trip  planning • Slower  speeds  (if  driver  permits) • Reduced  congestion  due  to  cooperative   behavior  (in  large  numbers)   • Reduced  mass  due  to  enhanced  safety  (in   large  numbers)   Effects  That Could  Increase  Energy  Use: • Longer  driving  distances/more  frequent   trips  (possible  rebound  effect) • Increased  speeds  (maybe) • Larger  vehicles  =  “mobile   offices/bedrooms/restaurants” • Vehicle  “cruising”  to  avoid  parking Greenblatt,2016
  • 7. SAV  Opportunities Potential  Benefits:   • Reduce  GHG  emissions • Increase  capacity  (smaller  vehicles,   closer  spacing,  shared  rides,  etc.)   • Increased  auto  sales  (higher  fleet   turnover  from  increased  vehicle  use) • Reduce  per  mile  cost  (over   privately-­‐ owned  vehicles) • Opportunity  to  add  density  through   redevelopment • Downsize  the  number  of  privately   owned  household  vehicles     E X I S T I N G  L I T E R AT U R E
  • 8. SAV  Challenges Potential  Challenges:   • Higher  upfront  vehicle  costs   • Increased  VMT  (due  to  lower  costs,  increased  use,   modal  shift  away  from  public  transit,  longer  commutes,   roaming  AVs,  etc.) • Will  people  give  up  private  ownership?   E X I S T I N G  L I T E R AT U R E
  • 9. Fagnant and  Kockelman,  2014 Methods: • Developed  trip  generation  and  distribution  model • Asserts  SAVs  have  potential  to  mitigate   environmental  impacts  of  private  auto  travel  but   more  research  needed   • Modeled  daylong  SAV  passenger  pick-­‐up  and   drop-­‐off  scenarios  within  a  10-­‐by-­‐10-­‐mile  radius  in   Austin,  TX • Represented  ~3.5%  of  all  trips  on  a  given  day • Does  not  account  for  shared  rides E X I S T I N G  L I T E R AT U R E
  • 10. Fagnant and  Kockelman,  2014 Key  Findings: • Sample  population  served  by  ~20,000   vehicles  could  be  served  with  1,700  SAVs • Each  SAV  removes  up  to  12  vehicles  from   the  road • Average  wait  time  20  seconds   • 31-­‐41  travelers  per  day  per  SAV • 5.6%  lower  GHGs  (metric  tons) E X I S T I N G  L I T E R AT U R E
  • 11. Greenblatt  and  Saxena,  2015 Methods: Estimated  2014  and  2030  GHG  emissions  and  costs   of  automated  taxis Documented: • Decreases  in  GHG  emissions  and  smaller  vehicle   sizes  through  right  sizing,   • Increases  in  VMT  (latent  demand),   • Increased  vehicle  efficiency,  and   • Improvements  in  cost  effectiveness     E X I S T I N G  L I T E R AT U R E
  • 12. Greenblatt  and  Saxena,  2015 Key  Findings: • Per-­‐mile  GHG  emissions  of  an  SAV  (electric)  would   be  63-­‐82%  lower  than  a  privately-­‐owned  hybrid   vehicle   • Half  of  savings  attributable  to  “right-­‐sized”  vehicle   based  on  trip  needs • Economic  analysis  concluded  that  private   ownership  of  EVs  more  expensive  than  a  gasoline   vehicle  in  2030  (based  on  12,000  miles/year) • For  taxis  (40-­‐70,000  miles/year),  fuel  cell  or   electric  battery  most  cost  effective E X I S T I N G  L I T E R AT U R E
  • 13. Private  Vehicle  Costs  vs.  SAVs Average  5-­‐Year  Per  Mile  Driving  Cost:  2030 Private  Vehicle: • Human  Driven  -­‐ $0.59  per  mile  (HEV) • Automated  -­‐ $0.70  per  mile  (HEV) Shared  Taxi  (based  on  70,000  annual   miles): • Human  Driven  – $0.34  per  mile  (HEV) • Automated  -­‐ $0.29  -­‐ $0.34  per  mile   (BEV) Greenblatt  and  Saxena,  2015
  • 14. Safety  and  Cost  Savings • 93%  of  crashes  between  2005  and  2007  were   human  caused  (NHTSA) • NYDMV  estimates  78%  attributable  to  human   error • Reduction  in  vehicle  accidents  could  save  $280   billion  annually  (NHTSA,  DOE) • Parking,  insurance,  and  foregone  congestion   could  save  between  $2,960  and  $3,900  per  vehicle   annually  (Eno Transportation  Foundation) E X I S T I N G  L I T E R AT U R E
  • 15. Parking  Impacts   • Fagnant and  Kockelman found  each   SAVs  can  replace  11  parking  spaces • Potential  impacts  on  land  use   through  increased  road  use  and   reduced  parking  (e.g.,  conversion  of   on-­‐street  parking  to  other  uses) • Parking  adds  1.3  to  25  grams  of  CO2   equivalent/  passenger-­‐km  to  total   lifecycle  GHG  emissions  of  vehicle   transport  (Chester  et.  al.) E X I S T I N G  L I T E R AT U R E
  • 16. SAV  Impacts • Fagnant and  Kockelman found  each  SAV  can  replace  up   to  12  privately-­‐owned  vehicles  and  up  to  11  parking   spaces • Greenblatt  and  Saxena found  relying  on  small  vehicles   for  87%  of  US  trips  taken  by  1  or  2 people  could  reduce   fleet  average  energy  consumption  by  almost  a  factor  of   two   • SAV  lifecycle  GHG  emissions  per  mile  or  km  could  fall  by   roughly  90%  relative  to  today’s  average  passenger   vehicle E X I S T I N G  L I T E R AT U R E
  • 17. Key  References Fagnant,  D.  and  K.  Kockelman“The  travel  and  environmental   implications  of  shared  autonomous  vehicles,  using  agent-­‐based   model  scenarios,”  Transportation  Research  Part  C.  March,  2014.   doi:10.1016/j.trc.2013.12.001 Greenblatt,  J.  and  S.  Saxena “Autonomous  taxis  could  greatly   reduce  greenhouse-­‐gas  emissions  of  US  light-­‐duty  vehicles,”   Nature  Climate  Change.  July  6,  2015.  doi:10.1038/nclimate2685 Chester,  M.,  A.  Horvath,  and  S.  Madanat.  “Parking   infrastructure:  energy,  emissions,  and  automobile  life-­‐cycle   environmental  accounting,”  Environmental  Research  Letters.  July   29,  2010.  doi:10.1088/1748-­‐9326/5/3/034001