3
Most read
4
Most read
5
Most read
Shri S’ad Vidya Mandal Institute of Technology
Topic: APPLICATION OF CONTOUR INTEGRATION
GUJARAT TECHNOLOGICAL UNIVERSITY
Complex variables and numerical method
PREPARED BY :
1] Rana manthan - 170450119044
2] Shah jay - 170450119046
3] Shah rishabh - 170450119047
4] Shah sheril - 170450119048
CONTENT
• Defining Line Integrals in the Complex
Plane
• Equivalence Between Complex and Real
Line Integrals
• Review of Line Integral Evaluation
• Line Integral Example
• Application of counter integral
Defining Line Integrals in the Complex Plane
0a z
Nb z
1z
2z
1
3z
2
3
N
1Nz C
nz
n
x
y
  
 
 
  
1
1
1
1
1
1
0
lim
lim
n
n
n n n
z
N
N n n n
n
n n n
b
N
N
a
z
N
n n n
N
n
C z z
I f z z
N
z z z
I f z dz I
f z z













 
 



  

 





Define on between and
Consider the sums
Let the number of subdivisions
such that and define
(The result is independent of the
details of the path subdivision.)
3
 
b
a
I f z dz 
Equivalence Between Complex and Real Line
Integrals
       
   
 
 
   
 
 
0 0 0 0
N N N N
b b
a a
b x ,y b x ,y
a x ,y a x ,y
C C
I f z dz u x,y iv x,y dx idy
u x,y dx v x,y dy i v x,y dx u x,y dy
udx vdy i vdx udy
C
 
 
     
   
   
 
 
 
Note that
The line integralis equivalent to two line integrals on .complex real
4
Review of Line Integral Evaluation
   
   
0
0
f
C
t
t
f
u x,y dx v x,y dy
dx dy
u v dt
dt dt
C
C : x x t , y y t , t t t
t

 
 
 
   


A line integral written as
is really a shorthand for
where is some parameterization of :
t
t
-a a
t-a a
1t
2t 3t
1Nt C
nt
x
y
0t
f Nt t
 ( ), ( )x t y t
1t 2t 3t 1Nt nt… …0t f Nt t
t
2 2 2
2 2
0
2 2
0
cos sin 0 2
f
f
x y a
x a t, y a t, t
x t , y a t , t a, t a,
x t , y a t , t a, t a,
 
  
    
     
      
parameterizations of the circle
1) (
Examp
)
2)
l
and
e :
5
The path C goes
counterclockwise
around the circle.
Line Integral Example
1
cos sin 0
C
I dz
z
C : x a , y a ,   

   
Evaluate : where
  2 2 2 2 2 2
1 1 1 x iy x y x y
f z i i
z x iy x iy x iy x y x y a a
         
                           
Consider
x
y
C

a
z
 
 
2
2
x
u z
a
y
v z
a



Hence
1 2 2
( )
a
a
xx y
I i dx
a a

   
    
  

   
1 2
C C
C C
I udx vdy i vdx udy
u iv dx v iu dy
I I
   
    
 
 
 
0
2 2 2
0
( )y x
I i dy
y
a a
  
    
  

6
The red color denotes functional dependence.
Line Integral Example (cont.)
Consider
x
y
C

a
z
 
0
2 2 2
0
0
2
0
0
2 2 2 2
2 2
0
2 2
2
0
2 2 2
1
2
0 2 2
0
( )
( )0
2
2 sin
2 2
2
a
a
a
a
y x
I i dy
a a
i
x dy
a
i i
a y dy a y dy
a a
i
a y dy
a
y a yi a
a
y
y
a
y
    

   
  
    
  
 
    
 
       
   



 

2
i
a
2
a
2
1
sin
2
a
a
i


  
  
   
 
  
 
7
Line Integral Example (cont.)
Consider
x
y
C

a
z 1 2
2 2
I I I i i
    
      
   
I i
Hence
Note: By symmetry (compare z and –z), we
also have:
1
2
C
dz i
z

x
y
C

a
z
8
Line Integral Example
Consider
x
y
C

r
z z
cos sin 0 2
cos sin
n
C
i
i
z dz
C : x r , y r ,
z r i r re ,
dz rie d ,


   
 

   
  



 Evalua : wherete
 
 
2
0
2
11
0
n
n i i
C
nn i
z dz re rie d
ir e d i

 





 

 

 1
1
ni
n e
r
i
 

 
 
 
2
0
12
1
( 1)
1
0 11
2 11
ni
n
n
n
, ne
r
i, nn





 

 
  
  
This is a useful result and it is
used to prove the “residue
theorem”.
9
Note: For n = -1, we can use the result on slide 9 (or just evaluate the integral directly).
10
Application of counter integral
• Oceanography
• Geology
• Environmental science
• Statistics
• Electrostatics
• meterology
THANK YOU

More Related Content

PPTX
Linear differential equation of second order
PPTX
Linear differential equation
PPT
systems of linear equations & matrices
PPT
Laplace transforms
PPTX
Matrices and System of Linear Equations ppt
PPTX
Engineering mathematics presentation
PPTX
Partial Differentiation
PDF
Gauss Seidel Method of Power Flow
Linear differential equation of second order
Linear differential equation
systems of linear equations & matrices
Laplace transforms
Matrices and System of Linear Equations ppt
Engineering mathematics presentation
Partial Differentiation
Gauss Seidel Method of Power Flow

What's hot (20)

PDF
Integration in the complex plane
PPTX
Numerical solutions of algebraic equations
PPTX
Line integeral
PDF
First order circuits
PDF
Complex analysis notes
PPTX
Gauss jordan method.pptx
PPT
CONVERGENCE.ppt
PPT
Unit 4 twoportnetwork
PDF
Polar plot
PPT
Vector calculus
PPT
Vector calculus
PPT
Partial Differentiation & Application
PPT
linear transformation
PPTX
Differential calculus maxima minima
PPTX
First order linear differential equation
PPTX
Series R-L Circuits
PPTX
Maxima & Minima of Calculus
PPTX
Multiple integral(tripple integral)
PPTX
Differential equations of first order
PPTX
Gaussian Elimination Method
Integration in the complex plane
Numerical solutions of algebraic equations
Line integeral
First order circuits
Complex analysis notes
Gauss jordan method.pptx
CONVERGENCE.ppt
Unit 4 twoportnetwork
Polar plot
Vector calculus
Vector calculus
Partial Differentiation & Application
linear transformation
Differential calculus maxima minima
First order linear differential equation
Series R-L Circuits
Maxima & Minima of Calculus
Multiple integral(tripple integral)
Differential equations of first order
Gaussian Elimination Method
Ad

Similar to countor integral (20)

PPTX
15.2_Line Integrals.pptx
PPT
Line integral.ppt
PPTX
GTU LAVC Line Integral,Green Theorem in the Plane, Surface And Volume Integra...
PDF
Solved exercises line integral
PDF
MA101-Lecturenotes(2019-20)-Module 13 (1).pdf
PDF
MA101-Lecturenotes(2019-20)-Module 13 (1).pdf
PDF
SMT1105-1.pdf
PDF
engineeringmathematics-iv_unit-ii
PDF
Engineering Mathematics-IV_B.Tech_Semester-IV_Unit-II
PPTX
2112033_Yoses Manuel_Tugas 5a Matematika Teknik.pptx
PDF
Integración variable compleja. Integral de Cauchy
PDF
Definite Integral
PDF
Principle of Definite Integra - Integral Calculus - by Arun Umrao
PPT
Line integrals and method of evaluation.
PDF
Complex Integral
PPTX
Line integral & ML inequality
PDF
integration in maths pdf mathematics integration
PDF
Line Integral Multivariable Caclulus great slides
PPTX
INTEGRATION BY PARTS ,TRIPLE INTEGRAL ,CHANGE THE ORDER OF INTEGRATION,BETA ...
PDF
2. Definite Int. Theory Module-5.pdf
15.2_Line Integrals.pptx
Line integral.ppt
GTU LAVC Line Integral,Green Theorem in the Plane, Surface And Volume Integra...
Solved exercises line integral
MA101-Lecturenotes(2019-20)-Module 13 (1).pdf
MA101-Lecturenotes(2019-20)-Module 13 (1).pdf
SMT1105-1.pdf
engineeringmathematics-iv_unit-ii
Engineering Mathematics-IV_B.Tech_Semester-IV_Unit-II
2112033_Yoses Manuel_Tugas 5a Matematika Teknik.pptx
Integración variable compleja. Integral de Cauchy
Definite Integral
Principle of Definite Integra - Integral Calculus - by Arun Umrao
Line integrals and method of evaluation.
Complex Integral
Line integral & ML inequality
integration in maths pdf mathematics integration
Line Integral Multivariable Caclulus great slides
INTEGRATION BY PARTS ,TRIPLE INTEGRAL ,CHANGE THE ORDER OF INTEGRATION,BETA ...
2. Definite Int. Theory Module-5.pdf
Ad

Recently uploaded (20)

PDF
distributed database system" (DDBS) is often used to refer to both the distri...
PDF
Soil Improvement Techniques Note - Rabbi
PDF
Human-AI Collaboration: Balancing Agentic AI and Autonomy in Hybrid Systems
PPTX
ASME PCC-02 TRAINING -DESKTOP-NLE5HNP.pptx
PDF
August 2025 - Top 10 Read Articles in Network Security & Its Applications
PPTX
Information Storage and Retrieval Techniques Unit III
PDF
UNIT no 1 INTRODUCTION TO DBMS NOTES.pdf
PPTX
AUTOMOTIVE ENGINE MANAGEMENT (MECHATRONICS).pptx
PPT
INTRODUCTION -Data Warehousing and Mining-M.Tech- VTU.ppt
PPTX
Fundamentals of Mechanical Engineering.pptx
PDF
Accra-Kumasi Expressway - Prefeasibility Report Volume 1 of 7.11.2018.pdf
PDF
Improvement effect of pyrolyzed agro-food biochar on the properties of.pdf
PDF
Visual Aids for Exploratory Data Analysis.pdf
PPTX
tack Data Structure with Array and Linked List Implementation, Push and Pop O...
PPTX
Current and future trends in Computer Vision.pptx
PPT
Total quality management ppt for engineering students
PDF
Categorization of Factors Affecting Classification Algorithms Selection
PDF
Design Guidelines and solutions for Plastics parts
PPTX
Feature types and data preprocessing steps
PDF
III.4.1.2_The_Space_Environment.p pdffdf
distributed database system" (DDBS) is often used to refer to both the distri...
Soil Improvement Techniques Note - Rabbi
Human-AI Collaboration: Balancing Agentic AI and Autonomy in Hybrid Systems
ASME PCC-02 TRAINING -DESKTOP-NLE5HNP.pptx
August 2025 - Top 10 Read Articles in Network Security & Its Applications
Information Storage and Retrieval Techniques Unit III
UNIT no 1 INTRODUCTION TO DBMS NOTES.pdf
AUTOMOTIVE ENGINE MANAGEMENT (MECHATRONICS).pptx
INTRODUCTION -Data Warehousing and Mining-M.Tech- VTU.ppt
Fundamentals of Mechanical Engineering.pptx
Accra-Kumasi Expressway - Prefeasibility Report Volume 1 of 7.11.2018.pdf
Improvement effect of pyrolyzed agro-food biochar on the properties of.pdf
Visual Aids for Exploratory Data Analysis.pdf
tack Data Structure with Array and Linked List Implementation, Push and Pop O...
Current and future trends in Computer Vision.pptx
Total quality management ppt for engineering students
Categorization of Factors Affecting Classification Algorithms Selection
Design Guidelines and solutions for Plastics parts
Feature types and data preprocessing steps
III.4.1.2_The_Space_Environment.p pdffdf

countor integral

  • 1. Shri S’ad Vidya Mandal Institute of Technology Topic: APPLICATION OF CONTOUR INTEGRATION GUJARAT TECHNOLOGICAL UNIVERSITY Complex variables and numerical method PREPARED BY : 1] Rana manthan - 170450119044 2] Shah jay - 170450119046 3] Shah rishabh - 170450119047 4] Shah sheril - 170450119048
  • 2. CONTENT • Defining Line Integrals in the Complex Plane • Equivalence Between Complex and Real Line Integrals • Review of Line Integral Evaluation • Line Integral Example • Application of counter integral
  • 3. Defining Line Integrals in the Complex Plane 0a z Nb z 1z 2z 1 3z 2 3 N 1Nz C nz n x y           1 1 1 1 1 1 0 lim lim n n n n n z N N n n n n n n n b N N a z N n n n N n C z z I f z z N z z z I f z dz I f z z                                Define on between and Consider the sums Let the number of subdivisions such that and define (The result is independent of the details of the path subdivision.) 3   b a I f z dz 
  • 4. Equivalence Between Complex and Real Line Integrals                         0 0 0 0 N N N N b b a a b x ,y b x ,y a x ,y a x ,y C C I f z dz u x,y iv x,y dx idy u x,y dx v x,y dy i v x,y dx u x,y dy udx vdy i vdx udy C                         Note that The line integralis equivalent to two line integrals on .complex real 4
  • 5. Review of Line Integral Evaluation         0 0 f C t t f u x,y dx v x,y dy dx dy u v dt dt dt C C : x x t , y y t , t t t t              A line integral written as is really a shorthand for where is some parameterization of : t t -a a t-a a 1t 2t 3t 1Nt C nt x y 0t f Nt t  ( ), ( )x t y t 1t 2t 3t 1Nt nt… …0t f Nt t t 2 2 2 2 2 0 2 2 0 cos sin 0 2 f f x y a x a t, y a t, t x t , y a t , t a, t a, x t , y a t , t a, t a,                        parameterizations of the circle 1) ( Examp ) 2) l and e : 5 The path C goes counterclockwise around the circle.
  • 6. Line Integral Example 1 cos sin 0 C I dz z C : x a , y a ,         Evaluate : where   2 2 2 2 2 2 1 1 1 x iy x y x y f z i i z x iy x iy x iy x y x y a a                                       Consider x y C  a z     2 2 x u z a y v z a    Hence 1 2 2 ( ) a a xx y I i dx a a                   1 2 C C C C I udx vdy i vdx udy u iv dx v iu dy I I                0 2 2 2 0 ( )y x I i dy y a a             6 The red color denotes functional dependence.
  • 7. Line Integral Example (cont.) Consider x y C  a z   0 2 2 2 0 0 2 0 0 2 2 2 2 2 2 0 2 2 2 0 2 2 2 1 2 0 2 2 0 ( ) ( )0 2 2 sin 2 2 2 a a a a y x I i dy a a i x dy a i i a y dy a y dy a a i a y dy a y a yi a a y y a y                                                 2 i a 2 a 2 1 sin 2 a a i                    7
  • 8. Line Integral Example (cont.) Consider x y C  a z 1 2 2 2 I I I i i                 I i Hence Note: By symmetry (compare z and –z), we also have: 1 2 C dz i z  x y C  a z 8
  • 9. Line Integral Example Consider x y C  r z z cos sin 0 2 cos sin n C i i z dz C : x r , y r , z r i r re , dz rie d ,                     Evalua : wherete     2 0 2 11 0 n n i i C nn i z dz re rie d ir e d i                1 1 ni n e r i          2 0 12 1 ( 1) 1 0 11 2 11 ni n n n , ne r i, nn                 This is a useful result and it is used to prove the “residue theorem”. 9 Note: For n = -1, we can use the result on slide 9 (or just evaluate the integral directly).
  • 10. 10 Application of counter integral • Oceanography • Geology • Environmental science • Statistics • Electrostatics • meterology