SlideShare a Scribd company logo
William Stallings
Data and Computer
Communications
7th
Edition
Chapter 10
Circuit Switching and Packet
Switching
Switching Networks
• Long distance transmission is typically done
over a network of switched nodes
• Nodes not concerned with content of data
• End devices are stations
—Computer, terminal, phone, etc.
• A collection of nodes and connections is a
communications network
• Data routed by being switched from node to
node
Nodes
• Nodes may connect to other nodes only, or to
stations and other nodes
• Node to node links usually multiplexed
• Network is usually partially connected
—Some redundant connections are desirable for
reliability
• Two different switching technologies
—Circuit switching
—Packet switching
Simple Switched Network
Circuit Switching
• Dedicated communication path between two
stations
• Three phases
—Establish
—Transfer
—Disconnect
• Must have switching capacity and channel
capacity to establish connection
• Must have intelligence to work out routing
Circuit Switching - Applications
• Inefficient
—Channel capacity dedicated for duration of
connection
—If no data, capacity wasted
• Set up (connection) takes time
• Once connected, transfer is transparent
• Developed for voice traffic (phone)
Public Circuit Switched
Network
Telecomms Components
• Subscriber
—Devices attached to network
• Subscriber line
—Local Loop
—Subscriber loop
—Connection to network
—Few km up to few tens of km
• Exchange
—Switching centers
—End office - supports subscribers
• Trunks
—Branches between exchanges
—Multiplexed
Circuit Establishment
Circuit Switch Elements
Circuit Switching Concepts
• Digital Switch
—Provide transparent signal path between devices
• Network Interface
• Control Unit
—Establish connections
• Generally on demand
• Handle and acknowledge requests
• Determine if destination is free
• construct path
—Maintain connection
—Disconnect
Blocking or Non-blocking
• Blocking
—A network is unable to connect stations because
all paths are in use
—A blocking network allows this
—Used on voice systems
• Short duration calls
• Non-blocking
—Permits all stations to connect (in pairs) at once
—Used for some data connections
Space Division Switching
• Developed for analog environment
• Separate physical paths
• Crossbar switch
—Number of crosspoints grows as square of
number of stations
—Loss of crosspoint prevents connection
—Inefficient use of crosspoints
• All stations connected, only a few crosspoints in use
—Non-blocking
Space Division Switch
Multistage Switch
• Reduced number of crosspoints
• More than one path through network
—Increased reliability
• More complex control
• May be blocking
Three Stage Space Division
Switch
Time Division Switching
• Modern digital systems rely on intelligent
control of space and time division elements
• Use digital time division techniques to set up
and maintain virtual circuits
• Partition low speed bit stream into pieces
that share higher speed stream
Control Signaling Functions
• Audible communication with subscriber
• Transmission of dialed number
• Call can not be completed indication
• Call ended indication
• Signal to ring phone
• Billing info
• Equipment and trunk status info
• Diagnostic info
• Control of specialist equipment
Control Signal Sequence
• Both phones on hook
• Subscriber lifts receiver (off hook)
• End office switch signaled
• Switch responds with dial tone
• Caller dials number
• If target not busy, send ringer signal to target subscriber
• Feedback to caller
—Ringing tone, engaged tone, unobtainable
• Target accepts call by lifting receiver
• Switch terminates ringing signal and ringing tone
• Switch establishes connection
• Connection release when Source subscriber hangs up
Switch to Switch Signaling
• Subscribers connected to different switches
• Originating switch seizes interswitch trunk
• Send off hook signal on trunk, requesting
digit register at target switch (for address)
• Terminating switch sends off hook followed
by on hook (wink) to show register ready
• Originating switch sends address
Location of Signaling
• Subscriber to network
—Depends on subscriber device and switch
• Within network
—Management of subscriber calls and network
—ore complex
In Channel Signaling
• Use same channel for signaling and call
—Requires no additional transmission facilities
• Inband
—Uses same frequencies as voice signal
—Can go anywhere a voice signal can
—Impossible to set up a call on a faulty speech path
• Out of band
—Voice signals do not use full 4kHz bandwidth
—Narrow signal band within 4kHz used for control
—Can be sent whether or not voice signals are present
—Need extra electronics
—Slower signal rate (narrow bandwidth)
Drawbacks of In Channel
Signaling
• Limited transfer rate
• Delay between entering address (dialing) and
connection
• Overcome by use of common channel
signaling
Common Channel Signaling
• Control signals carried over paths independent of
voice channel
• One control signal channel can carry signals for a
number of subscriber channels
• Common control channel for these subscriber lines
• Associated Mode
—Common channel closely tracks interswitch trunks
• Disassociated Mode
—Additional nodes (signal transfer points)
—Effectively two separate networks
Common v. In Channel
Signaling
Common
Channel
Signaling
Modes
Signaling System Number 7
• SS7
• Common channel signaling scheme
• ISDN
• Optimized for 64k digital channel network
• Call control, remote control, management
and maintenance
• Reliable means of transfer of info in sequence
• Will operate over analog and below 64k
• Point to point terrestrial and satellite links
SS7
Signaling Network Elements
• Signaling point (SP)
—Any point in the network capable of handling SS7
control message
• Signal transfer point (STP)
—A signaling point capable of routing control
messages
• Control plane
—Responsible for establishing and managing
connections
• Information plane
—Once a connection is set up, info is transferred in
the information plane
Transfer
Points
Signaling Network Structures
• STP capacities
—Number of signaling links that can be handled
—Message transfer time
—Throughput capacity
• Network performance
—Number of SPs
—Signaling delays
• Availability and reliability
—Ability of network to provide services in the face of
STP failures
Softswitch Architecture
• General purpose computer running software to make it a smart
phone switch
• Lower costs
• Greater functionality
— Packetizing of digitized voice data
— Allowing voice over IP
• Most complex part of telephone network switch is software
controlling call process
— Call routing
— Call processing logic
— Typically running on proprietary processor
• Separate call processing from hardware function of switch
• Physical switching done by media gateway
• Call processing done by media gateway controller
Traditional Circuit Switching
Softswitch
Packet Switching Principles
• Circuit switching designed for voice
—Resources dedicated to a particular call
—Much of the time a data connection is idle
—Data rate is fixed
• Both ends must operate at the same rate
Basic Operation
• Data transmitted in small packets
—Typically 1000 octets
—Longer messages split into series of packets
—Each packet contains a portion of user data plus
some control info
• Control info
—Routing (addressing) info
• Packets are received, stored briefly (buffered)
and past on to the next node
—Store and forward
Use of Packets
Advantages
• Line efficiency
—Single node to node link can be shared by many packets
over time
—Packets queued and transmitted as fast as possible
• Data rate conversion
—Each station connects to the local node at its own speed
—Nodes buffer data if required to equalize rates
• Packets are accepted even when network is busy
—Delivery may slow down
• Priorities can be used
Switching Technique
• Station breaks long message into packets
• Packets sent one at a time to the network
• Packets handled in two ways
—Datagram
—Virtual circuit
Datagram
• Each packet treated independently
• Packets can take any practical route
• Packets may arrive out of order
• Packets may go missing
• Up to receiver to re-order packets and
recover from missing packets
Datagram
Diagram
Virtual Circuit
• Preplanned route established before any
packets sent
• Call request and call accept packets establish
connection (handshake)
• Each packet contains a virtual circuit identifier
instead of destination address
• No routing decisions required for each packet
• Clear request to drop circuit
• Not a dedicated path
Virtual
Circuit
Diagram
Virtual Circuits v Datagram
• Virtual circuits
—Network can provide sequencing and error control
—Packets are forwarded more quickly
• No routing decisions to make
—Less reliable
• Loss of a node looses all circuits through that node
• Datagram
—No call setup phase
• Better if few packets
—More flexible
• Routing can be used to avoid congested parts of the
network
Packet Size
Circuit v Packet Switching
• Performance
—Propagation delay
—Transmission time
—Node delay
Event Timing
X.25
• 1976
• Interface between host and packet switched
network
• Almost universal on packet switched
networks and packet switching in ISDN
• Defines three layers
—Physical
—Link
—Packet
X.25 - Physical
• Interface between attached station and link
to node
• Data terminal equipment DTE (user
equipment)
• Data circuit terminating equipment DCE
(node)
• Uses physical layer specification X.21
• Reliable transfer across physical link
• Sequence of frames
X.25 - Link
• Link Access Protocol Balanced (LAPB)
—Subset of HDLC
—see chapter 7
X.25 - Packet
• External virtual circuits
• Logical connections (virtual circuits) between
subscribers
X.25 Use of Virtual Circuits
Virtual Circuit Service
• Logical connection between two stations
—External virtual circuit
• Specific preplanned route through network
—Internal virtual circuit
• Typically one to one relationship between
external and internal virtual circuits
• Can employ X.25 with datagram style network
• External virtual circuits require logical channel
—All data considered part of stream
X.25 Levels
• User data passes to X.25 level 3
• X.25 appends control information
—Header
—Identifies virtual circuit
—Provides sequence numbers for flow and error
control
• X.25 packet passed down to LAPB entity
• LAPB appends further control information
User Data and X.25 Protocol
Control Information
Frame Relay
• Designed to be more efficient than X.25
• Developed before ATM
• Larger installed base than ATM
• ATM now of more interest on high speed
networks
Frame Relay Background - X.25
• Call control packets, in band signaling
• Multiplexing of virtual circuits at layer 3
• Layer 2 and 3 include flow and error control
• Considerable overhead
• Not appropriate for modern digital systems
with high reliability
Frame Relay - Differences
• Call control carried in separate logical
connection
• Multiplexing and switching at layer 2
—Eliminates one layer of processing
• No hop by hop error or flow control
• End to end flow and error control (if used) are
done by higher layer
• Single user data frame sent from source to
destination and ACK (from higher layer) sent
back
Advantages and Disadvantages
• Lost link by link error and flow control
—Increased reliability makes this less of a problem
• Streamlined communications process
—Lower delay
—Higher throughput
• ITU-T recommend frame relay above 2Mbps
Protocol Architecture
Control Plane
• Between subscriber and network
• Separate logical channel used
—Similar to common channel signaling for circuit
switching services
• Data link layer
—LAPD (Q.921)
—Reliable data link control
—Error and flow control
—Between user (TE) and network (NT)
—Used for exchange of Q.933 control signal messages
User Plane
• End to end functionality
• Transfer of info between ends
• LAPF (Link Access Procedure for Frame Mode
Bearer Services) Q.922
—Frame delimiting, alignment and transparency
—Frame mux and demux using addressing field
—Ensure frame is integral number of octets (zero bit
insertion/extraction)
—Ensure frame is neither too long nor short
—Detection of transmission errors
—Congestion control functions
User Data Transfer
• One frame type
—User data
—No control frame
• No inband signaling
• No sequence numbers
—No flow nor error control
Required Reading
• Stallings Chapter 10
• ITU-T web site
• Telephone company web sites (not much
technical info - mostly marketing)
• X.25 info from ITU-T web site
• Frame Relay forum

More Related Content

PPT
Circuit and Packet Switching Methods Presentation
PPT
Chapter 2 Switches in network.ppt
PPT
Circuit switching in operational research
PPT
Switching
PPT
DCCN S1.ppt
PPT
Wan technologies
PPTX
PPT
Chapter 4
Circuit and Packet Switching Methods Presentation
Chapter 2 Switches in network.ppt
Circuit switching in operational research
Switching
DCCN S1.ppt
Wan technologies
Chapter 4

Similar to CS553_ST7_Ch10-CircuitandPacketSwitch.ppt (20)

PPT
CS553_ST7_Ch15-LANOverview.ppt
PPT
CS553_ST7_Ch15-LANOverview (1).ppt
PPT
CS553_ST7_Ch15-LANOverview.ppt
PPTX
CISSP - Chapter 4 - Intranet and extranets
PDF
ITFT_Switching
PPT
NETWORK DESIGN.ppt
PPTX
unit 3 computer networks-switching,packet switching,internet protocol.
PPTX
MOBILE COMPUTING Unit 4.pptx
PPT
Circuit Packet
PPTX
DATA COMMUNICATION BY BP. ...
PPT
switching.ppt
PPT
switchingtechniquesin computer trams.ppt
PPTX
Switching Techniques - Unit 3 notes aktu.pptx
PPT
switchingtechniques.ppt
PPT
SwitchingTechniques.ppt
PPT
12 ipt 0303 transmitting and receiving
PDF
Unit 5 Switching.pdf
PPT
Switching techniques
PPT
Switching Techniques, Circiut switching.ppt
CS553_ST7_Ch15-LANOverview.ppt
CS553_ST7_Ch15-LANOverview (1).ppt
CS553_ST7_Ch15-LANOverview.ppt
CISSP - Chapter 4 - Intranet and extranets
ITFT_Switching
NETWORK DESIGN.ppt
unit 3 computer networks-switching,packet switching,internet protocol.
MOBILE COMPUTING Unit 4.pptx
Circuit Packet
DATA COMMUNICATION BY BP. ...
switching.ppt
switchingtechniquesin computer trams.ppt
Switching Techniques - Unit 3 notes aktu.pptx
switchingtechniques.ppt
SwitchingTechniques.ppt
12 ipt 0303 transmitting and receiving
Unit 5 Switching.pdf
Switching techniques
Switching Techniques, Circiut switching.ppt
Ad

More from TIKMAN3KEDIRI (9)

PPTX
Artificial Intelligence .pptx
PPTX
3. Perencanaan Pembelajaran .pptx
PPTX
Informatika 1 Kelas XI .pptx
PPTX
BERPIKIR_KOMPUTASIONAL .pptx
PPTX
Ketrampilan Berfikir Kritis .pptx
PPT
Packet switching paradigms Computer Networks: A Systems Approach.ppt
PPT
Data Comunication and networking XI .ppt
PPTX
MATERI PEMBUKAAN MGMP TIK KOTA KEDIRI_26-9-2024.pptx
PPT
Struktur Sistem Komputer: Penyusun Komponen Utama
Artificial Intelligence .pptx
3. Perencanaan Pembelajaran .pptx
Informatika 1 Kelas XI .pptx
BERPIKIR_KOMPUTASIONAL .pptx
Ketrampilan Berfikir Kritis .pptx
Packet switching paradigms Computer Networks: A Systems Approach.ppt
Data Comunication and networking XI .ppt
MATERI PEMBUKAAN MGMP TIK KOTA KEDIRI_26-9-2024.pptx
Struktur Sistem Komputer: Penyusun Komponen Utama
Ad

Recently uploaded (20)

PDF
Computing-Curriculum for Schools in Ghana
PDF
Chapter 2 Heredity, Prenatal Development, and Birth.pdf
PPTX
1st Inaugural Professorial Lecture held on 19th February 2020 (Governance and...
PPTX
PPT- ENG7_QUARTER1_LESSON1_WEEK1. IMAGERY -DESCRIPTIONS pptx.pptx
PPTX
Final Presentation General Medicine 03-08-2024.pptx
PDF
Module 4: Burden of Disease Tutorial Slides S2 2025
PPTX
BOWEL ELIMINATION FACTORS AFFECTING AND TYPES
PDF
Complications of Minimal Access Surgery at WLH
PPTX
Pharma ospi slides which help in ospi learning
PPTX
Renaissance Architecture: A Journey from Faith to Humanism
PDF
VCE English Exam - Section C Student Revision Booklet
PDF
Microbial disease of the cardiovascular and lymphatic systems
PDF
Black Hat USA 2025 - Micro ICS Summit - ICS/OT Threat Landscape
PPTX
master seminar digital applications in india
PPTX
IMMUNITY IMMUNITY refers to protection against infection, and the immune syst...
PDF
TR - Agricultural Crops Production NC III.pdf
PDF
RMMM.pdf make it easy to upload and study
PPTX
school management -TNTEU- B.Ed., Semester II Unit 1.pptx
PDF
Supply Chain Operations Speaking Notes -ICLT Program
PPTX
GDM (1) (1).pptx small presentation for students
Computing-Curriculum for Schools in Ghana
Chapter 2 Heredity, Prenatal Development, and Birth.pdf
1st Inaugural Professorial Lecture held on 19th February 2020 (Governance and...
PPT- ENG7_QUARTER1_LESSON1_WEEK1. IMAGERY -DESCRIPTIONS pptx.pptx
Final Presentation General Medicine 03-08-2024.pptx
Module 4: Burden of Disease Tutorial Slides S2 2025
BOWEL ELIMINATION FACTORS AFFECTING AND TYPES
Complications of Minimal Access Surgery at WLH
Pharma ospi slides which help in ospi learning
Renaissance Architecture: A Journey from Faith to Humanism
VCE English Exam - Section C Student Revision Booklet
Microbial disease of the cardiovascular and lymphatic systems
Black Hat USA 2025 - Micro ICS Summit - ICS/OT Threat Landscape
master seminar digital applications in india
IMMUNITY IMMUNITY refers to protection against infection, and the immune syst...
TR - Agricultural Crops Production NC III.pdf
RMMM.pdf make it easy to upload and study
school management -TNTEU- B.Ed., Semester II Unit 1.pptx
Supply Chain Operations Speaking Notes -ICLT Program
GDM (1) (1).pptx small presentation for students

CS553_ST7_Ch10-CircuitandPacketSwitch.ppt

  • 1. William Stallings Data and Computer Communications 7th Edition Chapter 10 Circuit Switching and Packet Switching
  • 2. Switching Networks • Long distance transmission is typically done over a network of switched nodes • Nodes not concerned with content of data • End devices are stations —Computer, terminal, phone, etc. • A collection of nodes and connections is a communications network • Data routed by being switched from node to node
  • 3. Nodes • Nodes may connect to other nodes only, or to stations and other nodes • Node to node links usually multiplexed • Network is usually partially connected —Some redundant connections are desirable for reliability • Two different switching technologies —Circuit switching —Packet switching
  • 5. Circuit Switching • Dedicated communication path between two stations • Three phases —Establish —Transfer —Disconnect • Must have switching capacity and channel capacity to establish connection • Must have intelligence to work out routing
  • 6. Circuit Switching - Applications • Inefficient —Channel capacity dedicated for duration of connection —If no data, capacity wasted • Set up (connection) takes time • Once connected, transfer is transparent • Developed for voice traffic (phone)
  • 8. Telecomms Components • Subscriber —Devices attached to network • Subscriber line —Local Loop —Subscriber loop —Connection to network —Few km up to few tens of km • Exchange —Switching centers —End office - supports subscribers • Trunks —Branches between exchanges —Multiplexed
  • 11. Circuit Switching Concepts • Digital Switch —Provide transparent signal path between devices • Network Interface • Control Unit —Establish connections • Generally on demand • Handle and acknowledge requests • Determine if destination is free • construct path —Maintain connection —Disconnect
  • 12. Blocking or Non-blocking • Blocking —A network is unable to connect stations because all paths are in use —A blocking network allows this —Used on voice systems • Short duration calls • Non-blocking —Permits all stations to connect (in pairs) at once —Used for some data connections
  • 13. Space Division Switching • Developed for analog environment • Separate physical paths • Crossbar switch —Number of crosspoints grows as square of number of stations —Loss of crosspoint prevents connection —Inefficient use of crosspoints • All stations connected, only a few crosspoints in use —Non-blocking
  • 15. Multistage Switch • Reduced number of crosspoints • More than one path through network —Increased reliability • More complex control • May be blocking
  • 16. Three Stage Space Division Switch
  • 17. Time Division Switching • Modern digital systems rely on intelligent control of space and time division elements • Use digital time division techniques to set up and maintain virtual circuits • Partition low speed bit stream into pieces that share higher speed stream
  • 18. Control Signaling Functions • Audible communication with subscriber • Transmission of dialed number • Call can not be completed indication • Call ended indication • Signal to ring phone • Billing info • Equipment and trunk status info • Diagnostic info • Control of specialist equipment
  • 19. Control Signal Sequence • Both phones on hook • Subscriber lifts receiver (off hook) • End office switch signaled • Switch responds with dial tone • Caller dials number • If target not busy, send ringer signal to target subscriber • Feedback to caller —Ringing tone, engaged tone, unobtainable • Target accepts call by lifting receiver • Switch terminates ringing signal and ringing tone • Switch establishes connection • Connection release when Source subscriber hangs up
  • 20. Switch to Switch Signaling • Subscribers connected to different switches • Originating switch seizes interswitch trunk • Send off hook signal on trunk, requesting digit register at target switch (for address) • Terminating switch sends off hook followed by on hook (wink) to show register ready • Originating switch sends address
  • 21. Location of Signaling • Subscriber to network —Depends on subscriber device and switch • Within network —Management of subscriber calls and network —ore complex
  • 22. In Channel Signaling • Use same channel for signaling and call —Requires no additional transmission facilities • Inband —Uses same frequencies as voice signal —Can go anywhere a voice signal can —Impossible to set up a call on a faulty speech path • Out of band —Voice signals do not use full 4kHz bandwidth —Narrow signal band within 4kHz used for control —Can be sent whether or not voice signals are present —Need extra electronics —Slower signal rate (narrow bandwidth)
  • 23. Drawbacks of In Channel Signaling • Limited transfer rate • Delay between entering address (dialing) and connection • Overcome by use of common channel signaling
  • 24. Common Channel Signaling • Control signals carried over paths independent of voice channel • One control signal channel can carry signals for a number of subscriber channels • Common control channel for these subscriber lines • Associated Mode —Common channel closely tracks interswitch trunks • Disassociated Mode —Additional nodes (signal transfer points) —Effectively two separate networks
  • 25. Common v. In Channel Signaling
  • 27. Signaling System Number 7 • SS7 • Common channel signaling scheme • ISDN • Optimized for 64k digital channel network • Call control, remote control, management and maintenance • Reliable means of transfer of info in sequence • Will operate over analog and below 64k • Point to point terrestrial and satellite links
  • 28. SS7 Signaling Network Elements • Signaling point (SP) —Any point in the network capable of handling SS7 control message • Signal transfer point (STP) —A signaling point capable of routing control messages • Control plane —Responsible for establishing and managing connections • Information plane —Once a connection is set up, info is transferred in the information plane
  • 30. Signaling Network Structures • STP capacities —Number of signaling links that can be handled —Message transfer time —Throughput capacity • Network performance —Number of SPs —Signaling delays • Availability and reliability —Ability of network to provide services in the face of STP failures
  • 31. Softswitch Architecture • General purpose computer running software to make it a smart phone switch • Lower costs • Greater functionality — Packetizing of digitized voice data — Allowing voice over IP • Most complex part of telephone network switch is software controlling call process — Call routing — Call processing logic — Typically running on proprietary processor • Separate call processing from hardware function of switch • Physical switching done by media gateway • Call processing done by media gateway controller
  • 34. Packet Switching Principles • Circuit switching designed for voice —Resources dedicated to a particular call —Much of the time a data connection is idle —Data rate is fixed • Both ends must operate at the same rate
  • 35. Basic Operation • Data transmitted in small packets —Typically 1000 octets —Longer messages split into series of packets —Each packet contains a portion of user data plus some control info • Control info —Routing (addressing) info • Packets are received, stored briefly (buffered) and past on to the next node —Store and forward
  • 37. Advantages • Line efficiency —Single node to node link can be shared by many packets over time —Packets queued and transmitted as fast as possible • Data rate conversion —Each station connects to the local node at its own speed —Nodes buffer data if required to equalize rates • Packets are accepted even when network is busy —Delivery may slow down • Priorities can be used
  • 38. Switching Technique • Station breaks long message into packets • Packets sent one at a time to the network • Packets handled in two ways —Datagram —Virtual circuit
  • 39. Datagram • Each packet treated independently • Packets can take any practical route • Packets may arrive out of order • Packets may go missing • Up to receiver to re-order packets and recover from missing packets
  • 41. Virtual Circuit • Preplanned route established before any packets sent • Call request and call accept packets establish connection (handshake) • Each packet contains a virtual circuit identifier instead of destination address • No routing decisions required for each packet • Clear request to drop circuit • Not a dedicated path
  • 43. Virtual Circuits v Datagram • Virtual circuits —Network can provide sequencing and error control —Packets are forwarded more quickly • No routing decisions to make —Less reliable • Loss of a node looses all circuits through that node • Datagram —No call setup phase • Better if few packets —More flexible • Routing can be used to avoid congested parts of the network
  • 45. Circuit v Packet Switching • Performance —Propagation delay —Transmission time —Node delay
  • 47. X.25 • 1976 • Interface between host and packet switched network • Almost universal on packet switched networks and packet switching in ISDN • Defines three layers —Physical —Link —Packet
  • 48. X.25 - Physical • Interface between attached station and link to node • Data terminal equipment DTE (user equipment) • Data circuit terminating equipment DCE (node) • Uses physical layer specification X.21 • Reliable transfer across physical link • Sequence of frames
  • 49. X.25 - Link • Link Access Protocol Balanced (LAPB) —Subset of HDLC —see chapter 7
  • 50. X.25 - Packet • External virtual circuits • Logical connections (virtual circuits) between subscribers
  • 51. X.25 Use of Virtual Circuits
  • 52. Virtual Circuit Service • Logical connection between two stations —External virtual circuit • Specific preplanned route through network —Internal virtual circuit • Typically one to one relationship between external and internal virtual circuits • Can employ X.25 with datagram style network • External virtual circuits require logical channel —All data considered part of stream
  • 53. X.25 Levels • User data passes to X.25 level 3 • X.25 appends control information —Header —Identifies virtual circuit —Provides sequence numbers for flow and error control • X.25 packet passed down to LAPB entity • LAPB appends further control information
  • 54. User Data and X.25 Protocol Control Information
  • 55. Frame Relay • Designed to be more efficient than X.25 • Developed before ATM • Larger installed base than ATM • ATM now of more interest on high speed networks
  • 56. Frame Relay Background - X.25 • Call control packets, in band signaling • Multiplexing of virtual circuits at layer 3 • Layer 2 and 3 include flow and error control • Considerable overhead • Not appropriate for modern digital systems with high reliability
  • 57. Frame Relay - Differences • Call control carried in separate logical connection • Multiplexing and switching at layer 2 —Eliminates one layer of processing • No hop by hop error or flow control • End to end flow and error control (if used) are done by higher layer • Single user data frame sent from source to destination and ACK (from higher layer) sent back
  • 58. Advantages and Disadvantages • Lost link by link error and flow control —Increased reliability makes this less of a problem • Streamlined communications process —Lower delay —Higher throughput • ITU-T recommend frame relay above 2Mbps
  • 60. Control Plane • Between subscriber and network • Separate logical channel used —Similar to common channel signaling for circuit switching services • Data link layer —LAPD (Q.921) —Reliable data link control —Error and flow control —Between user (TE) and network (NT) —Used for exchange of Q.933 control signal messages
  • 61. User Plane • End to end functionality • Transfer of info between ends • LAPF (Link Access Procedure for Frame Mode Bearer Services) Q.922 —Frame delimiting, alignment and transparency —Frame mux and demux using addressing field —Ensure frame is integral number of octets (zero bit insertion/extraction) —Ensure frame is neither too long nor short —Detection of transmission errors —Congestion control functions
  • 62. User Data Transfer • One frame type —User data —No control frame • No inband signaling • No sequence numbers —No flow nor error control
  • 63. Required Reading • Stallings Chapter 10 • ITU-T web site • Telephone company web sites (not much technical info - mostly marketing) • X.25 info from ITU-T web site • Frame Relay forum