SlideShare a Scribd company logo
SOLAR THERMAL POWER!
               GEEN 4830 – ECEN 5007!




4. Fundamentals of solar thermal concentrating systems!



                    Manuel A. Silva Pérez
                                        !
                      silva@esi.us.es !
Solar Thermal Concentrating
       Systems
       Systems that make use of solar energy by first
           concentrating solar radiation and then converting it
           to thermal energy
       }  Uses:
         }    Electricity (Solar Thermal Power)
         }    Industrial Process Heat
         }    Absorption cooling
         }    Chemical processes
         }    …




1	

                            GEEN 4830 – ECEN 5007	

   07/07/11
Solar energy

       }    Abundant
       }    High-quality energy

       }    Variable (on time)
       }    Unevenly distributed (on space)
       }    Low density




2	

                         GEEN 4830 – ECEN 5007	

   07/07/11
Why high temperature?




3	

              GEEN 4830 – ECEN 5007	

   07/07/11
The sun as a heat source




4	

               GEEN 4830 – ECEN 5007	

   07/07/11
Why concentrate solar radiation?




5	

               GEEN 4830 – ECEN 5007	

   07/07/11
Ideal concentrating system
                                 }    The receiver (or absorber)
                                       converts concentrated
                                       solar radiation to thermal
                                       energy (heat)
                                 }    An ideal receiver may be
                                       characterized as a
                                       blackbody, which has only
                                       radiative losses




6	

             GEEN 4830 – ECEN 5007	

              07/07/11
Geometrical concentration ratio
       }    The geometrical
             concentration
             ratio, Cg, is
             defined as
                       A                                       Concentrator	
  
                  Cg = C
                      Aabs



       Where Aabs is the
        receiver (or
                                                          Collec'on	
  
        absorber) area                                      area	
  
                                                                             Absorp'on	
  
        and Ac is the                                                           area	
  
        collection area.


7	

                           GEEN 4830 – ECEN 5007	

                   07/07/11
Optical efficiency of the receiver




8	

                 GEEN 4830 – ECEN 5007	

   07/07/11
Ideal concentrator
       }  The maximum theoretical optical efficiency (when
           Tabs≥TSky) is the effective absorptivity of the receiver.
       }  The higher the concentrated solar flux (C*I), the better
           the optical efficiency.
       }  The higher the absorber temperature, the higher the
           radiative loss and, therefore, optical efficiency is lower.
       }  The higher the effective emissivity, ε, the lower the
           optical efficiency.




9	

                        GEEN 4830 – ECEN 5007	

       07/07/11
Global efficiency of the ideal concentrating
system




10	

             GEEN 4830 – ECEN 5007	

   07/07/11
Ideal concentrating system
        }  For each value of the geometrical concentration ratio,
            there is an optimum temperature.
        }  The higher the geometrical concentration ratio, the
            higher the optimum temperature and the global
            efficiency.




11	

                       GEEN 4830 – ECEN 5007	

     07/07/11
Concentration limits

}      The Sun is not a point light source.
        Seen From the Earth, is a disk of
        apparent diameter θS ≈ 32’.
}      The maximum concentration ratio is
        given by                                                                  32’	

                           n′2
              C max,3D = 2 2
                        n sen θ S                              32’	

                                                                                      Focus	
  
Where n and n’ are the refractive indices of
 the media that the light crosses before
 and after the reflection on the
 concentrator surface



      12	

                         GEEN 4830 – ECEN 5007	

            07/07/11
Types of concentrating systems
        }    Line focus (2D)
              }    Parabolic troughs; CLFR


          Cmáx,2 D = 1/ sin θ S

        }    Point focus (3D)
              }    Central receiver systems,
                    parabolic concentrators
                    (dishes)

        Cmáx ,3D = 1 / sin θ S         2



13	

                                      GEEN 4830 – ECEN 5007	

   07/07/11
Real concentrating systems




                                         Theoretical
                                         3D: < 46200
                                         2D: < 215

14	

               GEEN 4830 – ECEN 5007	

           07/07/11

More Related Content

PPTX
GPU-based Accelerated Spectral Caustic Rendering of Homogeneous Caustic Objects
PDF
PPTX
Model-based Polarimetric Decomposition using PolInSAR Coherence_v11(FILEminim...
PDF
11 mn01 review 1
PPTX
Ellipse
PPTX
An Alternative Energy Technology to Nigeria’s Energy Problem
GPU-based Accelerated Spectral Caustic Rendering of Homogeneous Caustic Objects
Model-based Polarimetric Decomposition using PolInSAR Coherence_v11(FILEminim...
11 mn01 review 1
Ellipse
An Alternative Energy Technology to Nigeria’s Energy Problem

Similar to Cu stp 04_fundamentals (20)

PDF
Ecen 5007 lecture 7
PPTX
CEM Workshop Lectures (5/11): Best Practices in RCS Prediction
PPT
Concentrated Solar Power Course - Session 1 : Fundamentals
PDF
VPrasad_DAEBRNSHEPDec2014talk
PDF
CSP Training course - Lesson 1 : General Principles
PDF
Cu stp 07_crs(tower)
PDF
Absorber Technology for Concentrated Solar Power System
PDF
SURVEY ON CLOUD-BASED HEALTH MANAGEMENT SOLUTIONS
PDF
DESIGN, OPTIMIZATION AND DEVELOPMENT OF SOLAR THERMAL HEAT RECEIVER SYSTEM WI...
PDF
Solar Thermal Engineeirng chap 4.pdf
PDF
Solar thermal engineeirng chap 4
PDF
Symposium Poster
PDF
Yuzhe_LIU_4207891_ERPs_poster
PDF
Sizing of solar cooling systems
PDF
PDF
Micro-Electro Mechanical Systems Endsem Merged.pdf
PPTX
Integrated solar energy harvesting and storage
PDF
Kurnitski rehva aicarr-seminar-mce-28.03.2012
PPT
High concentration photovoltaics: potentials and challenges
PDF
Optical Absoprtion of Thin Film Semiconductors
Ecen 5007 lecture 7
CEM Workshop Lectures (5/11): Best Practices in RCS Prediction
Concentrated Solar Power Course - Session 1 : Fundamentals
VPrasad_DAEBRNSHEPDec2014talk
CSP Training course - Lesson 1 : General Principles
Cu stp 07_crs(tower)
Absorber Technology for Concentrated Solar Power System
SURVEY ON CLOUD-BASED HEALTH MANAGEMENT SOLUTIONS
DESIGN, OPTIMIZATION AND DEVELOPMENT OF SOLAR THERMAL HEAT RECEIVER SYSTEM WI...
Solar Thermal Engineeirng chap 4.pdf
Solar thermal engineeirng chap 4
Symposium Poster
Yuzhe_LIU_4207891_ERPs_poster
Sizing of solar cooling systems
Micro-Electro Mechanical Systems Endsem Merged.pdf
Integrated solar energy harvesting and storage
Kurnitski rehva aicarr-seminar-mce-28.03.2012
High concentration photovoltaics: potentials and challenges
Optical Absoprtion of Thin Film Semiconductors
Ad

More from Manuel Silva (12)

PDF
Cu stp 09_parabolic dish
PDF
Cu stp 09_parabolic dish
PDF
Cu stp 10_clfr
PDF
Cstp project
PDF
Cu stp 08_tes+hybrid
PDF
Custp 06 parabolic_trough
PDF
Cu stp 03_basics td
PDF
Custp 05 stp_plants
PDF
Geen4830syllabus 11 01
PDF
Geen4830 courseoutline 11_01
PDF
Cu stp 02_solar_resource
PDF
Cu stp 01_intro
Cu stp 09_parabolic dish
Cu stp 09_parabolic dish
Cu stp 10_clfr
Cstp project
Cu stp 08_tes+hybrid
Custp 06 parabolic_trough
Cu stp 03_basics td
Custp 05 stp_plants
Geen4830syllabus 11 01
Geen4830 courseoutline 11_01
Cu stp 02_solar_resource
Cu stp 01_intro
Ad

Recently uploaded (20)

PDF
Network Security Unit 5.pdf for BCA BBA.
PDF
MIND Revenue Release Quarter 2 2025 Press Release
PDF
A comparative study of natural language inference in Swahili using monolingua...
PDF
Spectral efficient network and resource selection model in 5G networks
PDF
Reach Out and Touch Someone: Haptics and Empathic Computing
PDF
Profit Center Accounting in SAP S/4HANA, S4F28 Col11
PDF
gpt5_lecture_notes_comprehensive_20250812015547.pdf
PDF
Encapsulation theory and applications.pdf
PPTX
TLE Review Electricity (Electricity).pptx
PDF
Diabetes mellitus diagnosis method based random forest with bat algorithm
PDF
7 ChatGPT Prompts to Help You Define Your Ideal Customer Profile.pdf
PDF
Per capita expenditure prediction using model stacking based on satellite ima...
PDF
Encapsulation_ Review paper, used for researhc scholars
PDF
Advanced methodologies resolving dimensionality complications for autism neur...
PPTX
Programs and apps: productivity, graphics, security and other tools
PDF
Approach and Philosophy of On baking technology
PPTX
OMC Textile Division Presentation 2021.pptx
PPTX
Spectroscopy.pptx food analysis technology
PDF
Empathic Computing: Creating Shared Understanding
PPTX
KOM of Painting work and Equipment Insulation REV00 update 25-dec.pptx
Network Security Unit 5.pdf for BCA BBA.
MIND Revenue Release Quarter 2 2025 Press Release
A comparative study of natural language inference in Swahili using monolingua...
Spectral efficient network and resource selection model in 5G networks
Reach Out and Touch Someone: Haptics and Empathic Computing
Profit Center Accounting in SAP S/4HANA, S4F28 Col11
gpt5_lecture_notes_comprehensive_20250812015547.pdf
Encapsulation theory and applications.pdf
TLE Review Electricity (Electricity).pptx
Diabetes mellitus diagnosis method based random forest with bat algorithm
7 ChatGPT Prompts to Help You Define Your Ideal Customer Profile.pdf
Per capita expenditure prediction using model stacking based on satellite ima...
Encapsulation_ Review paper, used for researhc scholars
Advanced methodologies resolving dimensionality complications for autism neur...
Programs and apps: productivity, graphics, security and other tools
Approach and Philosophy of On baking technology
OMC Textile Division Presentation 2021.pptx
Spectroscopy.pptx food analysis technology
Empathic Computing: Creating Shared Understanding
KOM of Painting work and Equipment Insulation REV00 update 25-dec.pptx

Cu stp 04_fundamentals

  • 1. SOLAR THERMAL POWER! GEEN 4830 – ECEN 5007! 4. Fundamentals of solar thermal concentrating systems! Manuel A. Silva Pérez ! silva@esi.us.es !
  • 2. Solar Thermal Concentrating Systems Systems that make use of solar energy by first concentrating solar radiation and then converting it to thermal energy }  Uses: }  Electricity (Solar Thermal Power) }  Industrial Process Heat }  Absorption cooling }  Chemical processes }  … 1 GEEN 4830 – ECEN 5007 07/07/11
  • 3. Solar energy }  Abundant }  High-quality energy }  Variable (on time) }  Unevenly distributed (on space) }  Low density 2 GEEN 4830 – ECEN 5007 07/07/11
  • 4. Why high temperature? 3 GEEN 4830 – ECEN 5007 07/07/11
  • 5. The sun as a heat source 4 GEEN 4830 – ECEN 5007 07/07/11
  • 6. Why concentrate solar radiation? 5 GEEN 4830 – ECEN 5007 07/07/11
  • 7. Ideal concentrating system }  The receiver (or absorber) converts concentrated solar radiation to thermal energy (heat) }  An ideal receiver may be characterized as a blackbody, which has only radiative losses 6 GEEN 4830 – ECEN 5007 07/07/11
  • 8. Geometrical concentration ratio }  The geometrical concentration ratio, Cg, is defined as A Concentrator   Cg = C Aabs Where Aabs is the receiver (or Collec'on   absorber) area area   Absorp'on   and Ac is the area   collection area. 7 GEEN 4830 – ECEN 5007 07/07/11
  • 9. Optical efficiency of the receiver 8 GEEN 4830 – ECEN 5007 07/07/11
  • 10. Ideal concentrator }  The maximum theoretical optical efficiency (when Tabs≥TSky) is the effective absorptivity of the receiver. }  The higher the concentrated solar flux (C*I), the better the optical efficiency. }  The higher the absorber temperature, the higher the radiative loss and, therefore, optical efficiency is lower. }  The higher the effective emissivity, ε, the lower the optical efficiency. 9 GEEN 4830 – ECEN 5007 07/07/11
  • 11. Global efficiency of the ideal concentrating system 10 GEEN 4830 – ECEN 5007 07/07/11
  • 12. Ideal concentrating system }  For each value of the geometrical concentration ratio, there is an optimum temperature. }  The higher the geometrical concentration ratio, the higher the optimum temperature and the global efficiency. 11 GEEN 4830 – ECEN 5007 07/07/11
  • 13. Concentration limits }  The Sun is not a point light source. Seen From the Earth, is a disk of apparent diameter θS ≈ 32’. }  The maximum concentration ratio is given by 32’ n′2 C max,3D = 2 2 n sen θ S 32’ Focus   Where n and n’ are the refractive indices of the media that the light crosses before and after the reflection on the concentrator surface 12 GEEN 4830 – ECEN 5007 07/07/11
  • 14. Types of concentrating systems }  Line focus (2D) }  Parabolic troughs; CLFR Cmáx,2 D = 1/ sin θ S }  Point focus (3D) }  Central receiver systems, parabolic concentrators (dishes) Cmáx ,3D = 1 / sin θ S 2 13 GEEN 4830 – ECEN 5007 07/07/11
  • 15. Real concentrating systems Theoretical 3D: < 46200 2D: < 215 14 GEEN 4830 – ECEN 5007 07/07/11