SlideShare a Scribd company logo
Water

    Stagnant                      In motion
    not flowing                   flowing
    u = 0 m/s                     u > 0 m/s

    Hydrostatics                  Fluid dynamics

                                  Pipes   Open channel

                   [Gesloten leidingen]   [Open water]
1
CU06997 Fluid Dynamics
    Lecture 2 Hydrostatics [Hydrostatica]

    1.1 Pressure (page 3-5) [Druk]
    1.2 Pressure measurement (page 5-8)
    1.3 Pressure forces on submerged bodies (page 8-11)
        [Krachten op voorwerpen onder water]
         example 1.1 (a) force on dam
    1.4 Flotation (page 14, 15) [Opdrijven]


1
Newton Force F= m . g
     F= Force                [N]
     m=Weight                [Kg]
     g=earths gravity = ± 10 [m/s2]

    Water
    m = ρ . V [kg/m3] . [m3]=[kg]
    ρ fresh water =1000 [kg/m3]
    ρ salt water =1025 [kg/m3]


1
General pressure / druk

        Pressure   [Pa=N/m2]
         Force     [N]
        Area on which the force acts   [m2]
    Pressure
            𝐹
         𝑝=
            𝐴


1
y



    F    g  A  y [N]

2
General pressure intensity

         Pressure   [Pa=N/m2]
         Force      [N]
         Area on which the force acts    [m2]
    Fluid Pressure at a point
       𝐹  𝜌∙ 𝑔∙ 𝐴∙ 𝑦
     𝑝= =            = 𝜌∙ 𝑔∙ 𝑦
       𝐴       𝐴


    Gauge Pressure / Absolute Pressure
3
Pressure Head                        𝑝
                                    𝑦=
    [Drukhoogte]                       𝜌∙ 𝑔

    𝑦 = distance surface to point    [m]
         Pressure        [Pa=N/m2]
         fluid density   [Kg/m3]
         earths gravity = ± 10 [m/s2]


                         [Kg/m3]

3                        [Kg/m3]
Pressure Head in a pipe


                   y       Transparent tube




        Pressure 10.000 N/m2, fresh water,
              Calculate pressure head
4
Pressure (p) 10.000 N/m2, fresh water




               y        Transparent tube




    y

4
Mano meter




4
Piezometric Head [Piezometrisch nivo]
    𝑧1 + 𝑦1 = 𝑧2 + 𝑦2 = 𝑧3 + 𝑦3
                                    Stagnant, not flowing


        𝑦3                               Piezometric Head
                             𝑦2     𝑦1   Surface / water level
                                         [druklijn]




Horizontal reference line / datum
          𝑝
     𝑦=           =Pressure Head[drukhoogte] [m]
        𝜌∙ 𝑔
5                 =Potential Head[plaatshoogte] [m]
Pascal’s law
     Pascal's law or Pascal's principle states that
         “a change in the pressure of an enclosed
    incompressible fluid is conveyed undiminished to
      every part of the fluid and to the surfaces of its
                         container”

[Een druk die wordt uitgeoefend op een vloeistof die
  zich in een geheel gevuld en gesloten vat bevindt,
       zal zich onverminderd in alle richtingen
                    voortplanten]
6
Example Pascal’s law
         𝐹
    𝑝=       = 1 N/m2
         𝐴

                            ???




6
Example Pascal’s law




6
Atmospheric and gauge pressure
Gauge pressure = absolute pressure - atmospheric pressure
Relatieve druk = absolute druk – atmosferische druk


       •   1 atmosphere = 100 kPa = 100.000 N/m2
       •   So 1 atm = 10 m freshwater = 10 mwc
       •   1 bar = 1 atm = 100 kPa
       •   1 mwc = 10.000 N/m2 = 10 kPa
       •   10 mwc = 100 kPa = 1 bar = 1 atm
       •   mwc = meter water column [mwk]
6a
Atmospheric and gauge pressure

• Hand = 150 cm2 = 150/10000 =0.015 m2
• So downward force = 0.015 x 100.000 = 1.500 N

• According to Pascal, there is also a upward force
• Upward force = 0.015 x 100.000 = 1.500 N




6a
Archimedes’ principle
Buoyancy is the upward force that keeps things afloat. The
net upward buoyancy force is equal to the magnitude of the
weight of fluid displaced by the body. This force enables the
object to float or at least seem lighter.




7
Archimedes’ principle
    Upward force = weight of fluid displaced by the body




7
7
Exercise buoyancy [Opdrijving]
Will buoyancy [opdrijving] occur????



                                                      +6 m NAP


             ground water level                       +5 m NAP

                                     5m

                                                   0,20 m
                                     Culvert
                              3m




                                     Empty

                                                      0 m NAP
ρ concrete=2400   [kg/m3]          cross-section


ρ soil=1600[kg/m3]
Exercise Pascal’s law



          The tank contains fresh water. Width of
          the tank is 2,44 m.
          Question 1
          Calculate the force on wall AB and CD
          Question 2
          Calculate the force on bottom BC
          Question 3
          Calculate the total weight of the water
          and compare this water the answer of 2.
          Explain the difference.

More Related Content

PDF
Cu06997 lecture 6_flow in pipes 1_2013
PDF
Cu06997 lecture 3_principles_of_flow-17-2-2013
PDF
Cu06997 lecture 5_reynolds_and_r
PDF
Cu06997 lecture 9_open channel
PDF
Cu06997 lecture 4_answer
PDF
Cu06997 lecture 2_answer
PDF
Cu06997 exercise5
PDF
Cu06997 lecture 7_culvert_2013
Cu06997 lecture 6_flow in pipes 1_2013
Cu06997 lecture 3_principles_of_flow-17-2-2013
Cu06997 lecture 5_reynolds_and_r
Cu06997 lecture 9_open channel
Cu06997 lecture 4_answer
Cu06997 lecture 2_answer
Cu06997 exercise5
Cu06997 lecture 7_culvert_2013

What's hot (20)

PDF
Cu06997 lecture 12_sediment transport and back water
DOC
Cu06997 assignment 6 2014_answer
PDF
Cu06997 lecture 6_exercises
PDF
Cu06997 lecture 4_bernoulli-17-2-2013
PDF
Cu06997 lecture 8_sewers
PDF
Cu06997 lecture 10_froude
PPTX
Compressible Fluid
PDF
Fluid dynamic
PDF
Cu06997 lecture 9-10_exercises
PPTX
A Seminar Topic On Boundary Layer
PDF
(Part ii)- open channels
PPTX
Fluid Mechanics
PPTX
Continuity Equation
PDF
CE-6451-Fluid_Mechanics.GVK
PDF
Flows under Pressure in Pipes (Lecture notes 02)
PPTX
A STUDY ON VISCOUS FLOW (With A Special Focus On Boundary Layer And Its Effects)
PPTX
Calculation of Flowrate and Pressure Drop Relationship for Laminar Flow using...
PDF
Viscosity & flow
PDF
Cu06997 computation lecture3
PPTX
Fluid flow
Cu06997 lecture 12_sediment transport and back water
Cu06997 assignment 6 2014_answer
Cu06997 lecture 6_exercises
Cu06997 lecture 4_bernoulli-17-2-2013
Cu06997 lecture 8_sewers
Cu06997 lecture 10_froude
Compressible Fluid
Fluid dynamic
Cu06997 lecture 9-10_exercises
A Seminar Topic On Boundary Layer
(Part ii)- open channels
Fluid Mechanics
Continuity Equation
CE-6451-Fluid_Mechanics.GVK
Flows under Pressure in Pipes (Lecture notes 02)
A STUDY ON VISCOUS FLOW (With A Special Focus On Boundary Layer And Its Effects)
Calculation of Flowrate and Pressure Drop Relationship for Laminar Flow using...
Viscosity & flow
Cu06997 computation lecture3
Fluid flow
Ad

Viewers also liked (20)

PPTX
Cu06997 1 basic_calculations_6_2_2012
PDF
Cu06997 table pipe_block 5
PDF
Cu06997 the basics_26052013
PDF
Cu06997 exam5jun2013
PDF
Computation exam
PDF
14 chapter 5
PPTX
Diploma Fire Safety Engineering
PPTX
Employees health safety institute hydrostatics
PPTX
Lecture 4 part ii
PPSX
Management Styles
PPTX
Accident Causation
PPTX
Epidemiology
PPTX
Safetypassport hydrostatics
PPSX
Epidemiology by prof. dr. rs mehta for msn students
PPTX
leadership style
PPTX
Leadership processes (Instructional Leadership)
PPT
Control of Substances Hazardous to Health
PPT
PPT
Supervision report
PDF
Instructor Led Training
Cu06997 1 basic_calculations_6_2_2012
Cu06997 table pipe_block 5
Cu06997 the basics_26052013
Cu06997 exam5jun2013
Computation exam
14 chapter 5
Diploma Fire Safety Engineering
Employees health safety institute hydrostatics
Lecture 4 part ii
Management Styles
Accident Causation
Epidemiology
Safetypassport hydrostatics
Epidemiology by prof. dr. rs mehta for msn students
leadership style
Leadership processes (Instructional Leadership)
Control of Substances Hazardous to Health
Supervision report
Instructor Led Training
Ad

Similar to Cu06997 lecture 2_hydrostatics_17-2-2013 (20)

DOCX
MET 212 Module 2-hydrostatics
PPTX
Fluids e
PPT
Lecture17
PPT
Lecture17
PDF
Chapter 11 fluids vic
PPTX
unit 5 Principals of hydraulics.pptx
PPT
Intro fluids
PDF
introduction to fluid mechanics physics 1
PDF
Fluid mechanics ( 2019 2020)
PDF
Fluids static
PPT
CHAPTER 9 FLUIDS: INTRODUCTION TO FLUIDS.ppt
PPT
Lecture Ch 10
PPT
Basics of Fluids
PPTX
Topic3_FluidMotion.pptx
PDF
AP Physics 2 - Hydrostatics
PPTX
Fluid Mechanics L#2
PPTX
FLUIDS MOTION for production engineering
PDF
SPM PHYSICS FORM 4 forces and pressure
PPT
SPM Physics - Solid and fluid pressure
PPT
Fluid mechanics
MET 212 Module 2-hydrostatics
Fluids e
Lecture17
Lecture17
Chapter 11 fluids vic
unit 5 Principals of hydraulics.pptx
Intro fluids
introduction to fluid mechanics physics 1
Fluid mechanics ( 2019 2020)
Fluids static
CHAPTER 9 FLUIDS: INTRODUCTION TO FLUIDS.ppt
Lecture Ch 10
Basics of Fluids
Topic3_FluidMotion.pptx
AP Physics 2 - Hydrostatics
Fluid Mechanics L#2
FLUIDS MOTION for production engineering
SPM PHYSICS FORM 4 forces and pressure
SPM Physics - Solid and fluid pressure
Fluid mechanics

More from Henk Massink (20)

PPT
Cu07821 ppt9 recapitulation
PPTX
Gastcollege mli
PPTX
Cu07821 10management and maintenance2015
PPTX
Cu07821 9 zoning plan2015
PPTX
Cu07821 8 weirs
PPTX
Cu07821 7 culverts new
PPTX
Cu07821 6 pumping stations_update
PPTX
Cu07821 5 drainage
PPTX
Cu07821 4 soil
PPTX
Cu07821 3 precipitation and evapotranspiration
PPTX
Cu07821 2 help
PPTX
Cu07821 1 intro_1415
PDF
Research portfolio delta_academy_s2_2014_2015
PDF
Research portfolio da arc 2014-2015 s1
PPTX
Jacobapolder
PDF
Research portfolios1 2013_2014 jan july 2014
PPTX
Presentatie AET voor scholieren 15-11-2013
PPTX
Vision group1(5)
PPTX
Final presentation spain quattro
PPTX
Final presentation group 3
Cu07821 ppt9 recapitulation
Gastcollege mli
Cu07821 10management and maintenance2015
Cu07821 9 zoning plan2015
Cu07821 8 weirs
Cu07821 7 culverts new
Cu07821 6 pumping stations_update
Cu07821 5 drainage
Cu07821 4 soil
Cu07821 3 precipitation and evapotranspiration
Cu07821 2 help
Cu07821 1 intro_1415
Research portfolio delta_academy_s2_2014_2015
Research portfolio da arc 2014-2015 s1
Jacobapolder
Research portfolios1 2013_2014 jan july 2014
Presentatie AET voor scholieren 15-11-2013
Vision group1(5)
Final presentation spain quattro
Final presentation group 3

Cu06997 lecture 2_hydrostatics_17-2-2013

  • 1. Water Stagnant In motion not flowing flowing u = 0 m/s u > 0 m/s Hydrostatics Fluid dynamics Pipes Open channel [Gesloten leidingen] [Open water] 1
  • 2. CU06997 Fluid Dynamics Lecture 2 Hydrostatics [Hydrostatica] 1.1 Pressure (page 3-5) [Druk] 1.2 Pressure measurement (page 5-8) 1.3 Pressure forces on submerged bodies (page 8-11) [Krachten op voorwerpen onder water] example 1.1 (a) force on dam 1.4 Flotation (page 14, 15) [Opdrijven] 1
  • 3. Newton Force F= m . g F= Force [N] m=Weight [Kg] g=earths gravity = ± 10 [m/s2] Water m = ρ . V [kg/m3] . [m3]=[kg] ρ fresh water =1000 [kg/m3] ρ salt water =1025 [kg/m3] 1
  • 4. General pressure / druk Pressure [Pa=N/m2] Force [N] Area on which the force acts [m2] Pressure 𝐹 𝑝= 𝐴 1
  • 5. y F    g  A  y [N] 2
  • 6. General pressure intensity Pressure [Pa=N/m2] Force [N] Area on which the force acts [m2] Fluid Pressure at a point 𝐹 𝜌∙ 𝑔∙ 𝐴∙ 𝑦 𝑝= = = 𝜌∙ 𝑔∙ 𝑦 𝐴 𝐴 Gauge Pressure / Absolute Pressure 3
  • 7. Pressure Head 𝑝 𝑦= [Drukhoogte] 𝜌∙ 𝑔 𝑦 = distance surface to point [m] Pressure [Pa=N/m2] fluid density [Kg/m3] earths gravity = ± 10 [m/s2] [Kg/m3] 3 [Kg/m3]
  • 8. Pressure Head in a pipe y Transparent tube Pressure 10.000 N/m2, fresh water, Calculate pressure head 4
  • 9. Pressure (p) 10.000 N/m2, fresh water y Transparent tube y 4
  • 11. Piezometric Head [Piezometrisch nivo] 𝑧1 + 𝑦1 = 𝑧2 + 𝑦2 = 𝑧3 + 𝑦3 Stagnant, not flowing 𝑦3 Piezometric Head 𝑦2 𝑦1 Surface / water level [druklijn] Horizontal reference line / datum 𝑝 𝑦= =Pressure Head[drukhoogte] [m] 𝜌∙ 𝑔 5 =Potential Head[plaatshoogte] [m]
  • 12. Pascal’s law Pascal's law or Pascal's principle states that “a change in the pressure of an enclosed incompressible fluid is conveyed undiminished to every part of the fluid and to the surfaces of its container” [Een druk die wordt uitgeoefend op een vloeistof die zich in een geheel gevuld en gesloten vat bevindt, zal zich onverminderd in alle richtingen voortplanten] 6
  • 13. Example Pascal’s law 𝐹 𝑝= = 1 N/m2 𝐴 ??? 6
  • 15. Atmospheric and gauge pressure Gauge pressure = absolute pressure - atmospheric pressure Relatieve druk = absolute druk – atmosferische druk • 1 atmosphere = 100 kPa = 100.000 N/m2 • So 1 atm = 10 m freshwater = 10 mwc • 1 bar = 1 atm = 100 kPa • 1 mwc = 10.000 N/m2 = 10 kPa • 10 mwc = 100 kPa = 1 bar = 1 atm • mwc = meter water column [mwk] 6a
  • 16. Atmospheric and gauge pressure • Hand = 150 cm2 = 150/10000 =0.015 m2 • So downward force = 0.015 x 100.000 = 1.500 N • According to Pascal, there is also a upward force • Upward force = 0.015 x 100.000 = 1.500 N 6a
  • 17. Archimedes’ principle Buoyancy is the upward force that keeps things afloat. The net upward buoyancy force is equal to the magnitude of the weight of fluid displaced by the body. This force enables the object to float or at least seem lighter. 7
  • 18. Archimedes’ principle Upward force = weight of fluid displaced by the body 7
  • 19. 7
  • 20. Exercise buoyancy [Opdrijving] Will buoyancy [opdrijving] occur???? +6 m NAP ground water level +5 m NAP 5m 0,20 m Culvert 3m Empty 0 m NAP ρ concrete=2400 [kg/m3] cross-section ρ soil=1600[kg/m3]
  • 21. Exercise Pascal’s law The tank contains fresh water. Width of the tank is 2,44 m. Question 1 Calculate the force on wall AB and CD Question 2 Calculate the force on bottom BC Question 3 Calculate the total weight of the water and compare this water the answer of 2. Explain the difference.