SlideShare a Scribd company logo
CU06997 Fluid Dynamics
    Open channel flow 1
    5.1 Flow with a free surface (page 122)
    5.2 Flow classification (page 122, 123)
    5.3 Channels and their properties (page 123-125)
    5.4 Velocity distributions (page 126,127)
    5.5 Laminar and turbulent flow (page 127-129)
    5.6 Uniform flow (page 129 -138)




1
Flow with a free surface




1
Classification of flows, see part 2

    1. Steady uniform flow
      example: pipe with constant D and Q
      example: channel with constant A and Q
    2. Steady non-uniform flow
      example: pipe with different D and constant Q
      example: channel with different A and constant Q
    3. Unsteady uniform flow
      example: channel with constant A and different Q
    4. Unsteady non-uniform flow
      example; channel with different A and Q
2
Types of flow




2
Geometric properties




3
Velocity distributions




3
Velocity distributions




                     𝑄  𝑉1 𝐴1 + 𝑉2 𝐴2 + 𝑉3 𝐴3
         𝑉𝑎𝑣𝑒𝑟𝑎𝑔𝑒   = =
                     𝐴      𝐴1 + 𝐴2 + 𝐴3
    𝑄 𝑡𝑜𝑡𝑎𝑎𝑙 = 𝑄1 + 𝑄3 + 𝑄3 =𝑉1 𝐴1 + 𝑉2 𝐴2 + 𝑉3 𝐴3

3
Reynolds number, see part 3 𝑅𝑒 = 𝑉. 𝐷
                                            𝜈
 𝜇=  Absolute viscosity     [m2/s]         𝑉. 4𝑅
 𝜐=  Kinematic viscosity    [kg/ms]   𝑅𝑒 =
     water, 20°C= 1,00 ∙ 10−6                 𝜈
𝜌 = Density of liquid       [kg/m3]
𝑉 = Velocity                [m/s]
D = Hydraulic diameter      [m]
R=   Hydraulic Radius = D/4 [m]
𝑅𝑒 = Reynolds Number        [1]

 𝑹𝒆 > 𝟒𝟎𝟎𝟎 Turbulent flow
 𝑹𝒆 < 𝟐𝟎𝟎𝟎 Laminar flow


3 In this course we only look at turbulent flow
Open channel, with bed slope >0
           2              2
          𝑢1             𝑢2
𝑦1 + 𝑧1 +    = 𝑦2 + 𝑧2 +    + ∆𝐻1−2
          2𝑔             2𝑔
                                    Q  u1  A1  u2  A2

                                                   Head loss




                   Reference line

4
Open channel, with bed slope <= 0
                    2                 2
                   u              u
         y1  z1   1
                       y2  z2      H 1 2
                                      2
                   2g             2g
                                               Head loss [m]
          u12/2g                ΔH
                                               Total Head H [m]
          y1                 u22/2g            Velocity Head [m]
    P1
               u1                              Surfacelevel y +z [m]
          z1                              y2
                                 P2
                           u2             z2

4                                              Reference [m]
Chezy formula                               𝑉= 𝐶∙        𝑅 ∙ 𝑆𝑓

Chezy formula describes the mean velocity of uniform, turbulent flow

                                𝑉=     Mean Fluid Velocity [m/s]
                                R=     Hydraulic Radius    [m]
                                𝑆𝑓 =   Hydraulic gradient [1]
                                       8𝑔
                                 𝐶=         Chezy coefficient [m1/2/s]
                                        𝜆


                      ΔH
                 𝑆𝑓 =
                       𝐿
                                                         ΔH
5                    Length
Chezy coefficient


    In this course we assume a hydraulic rough boundary




    Boundary hydraulic rough                     12 R
                                      C  18 log      [m1/2/s]
                                                  k

    kS =   surface roughness    [m]

5
Surface roughness kS [m]
                                             Equivalent Sand Roughness,
                           Material                  (ft)             (mm)
                       Copper, brass     1x10-4 - 3x10-3      3.05x10-2 - 0.9
                       Wrought iron,
                                         1.5x10-4 - 8x10-3    4.6x10-2 - 2.4
                       steel
                       Asphalt-lined
                                         4x10-4 - 7x10-3      0.1 - 2.1
                       cast iron
                                         3.3x10-4 - 1.5x10-
                       Galvanized iron   2                    0.102 - 4.6

                       Cast iron         8x10-4 - 1.8x10-2    0.2 - 5.5
                       Concrete          10-3   -   10-2      0.3 - 3.0
                       Uncoated Cast
                                         7.4x10-4             0.226
                       Iron
                       Coated Cast Iron 3.3x10-4              0.102
                       Coated Spun
                                         1.8x10-4             5.6x10-2
                       Iron
                       Cement            1.3x10-3 - 4x10-3    0.4 - 1.2s
                       Wrought Iron      1.7x10-4             5x10-2
                       Uncoated Steel    9.2x10-5             2.8x10-2
                       Coated Steel      1.8x10-4             5.8x10-2
                       Wood Stave        6x10-4 - 3x10-3      0.2 - 0.9
                       PVC               5x10-6               1.5x10-3
                       Compiled from Lamont (1981), Moody (1944), and
                       Mays (1999)




5
Manning’s formula describes the
Manning’s formula                  mean velocity of uniform,
                                   turbulent flow

          2        1                 5
                                              1
         𝑅3   ∙   𝑆2        1       𝐴3
                                             𝑆2
                                                        1


    𝑉=
                   𝑓      𝑄= ∙           ∙            R 6

                             𝑛       2        𝑓    C
              𝑛                     𝑃3                n
𝑉=     Mean Fluid Velocity                   [m/s]
R=     Hydraulic Radius                      [m]
𝑆𝑓 =   Slope Total head                      [1]
𝐴=     Wetted Area                           [m2]
𝑃=     Wetter Perimeter                      [m]
𝑛=     Mannings roughness coefficient        [s/m1/3]



6
Manning's roughness coefficient




6
Mean boundary shear stress

       𝜏0 = 𝜌 ∙ 𝑔 ∙ 𝑅 ∙ 𝑆0

      τ0 =    shear stress at solid boundary [N/m2]
      R=      Hydraulic Radius        [m]
       𝑆0 =   Slope of channel bed [1]




7
Flowing water and energy
                       2
                   u
    H1  z1  y1      1
                      [m ]
                   2g
                             Total head H [m]
                  u12/2g     Velocity head [m]
                             Surface level [m]
                  y1         y = Pressure head [m]
    u1       P1
                  z1         z = Potential head [m]

                             Reference /datum [m]
Specific Energy
             𝑉2
    𝐸𝑠 = 𝑦 +
             2𝑔

 𝑉=         Mean Fluid Velocity           [m/s]
       p
 y=         = Pressure Head / water depth [m]
      ρ∙g
                      Total head H or Specific energy Es [m]

                          V2/2g          Velocity head [m]
                                         Surface level [m]

        V
                          y               y = Pressure head [m]
                                            = water depth [m]
8                                         Channel bed as datum [m]
Equilibrium / normal depth
                                          Discharge, cross-section, energy
                                          gradient and friction are constant
                yn

                                           𝑆0 = 𝑆 𝑓
    Side view



                                            𝑉= 𝐶∙          𝑅 ∙ 𝑆𝑜
                          yn

                                            A   b. y
                                          R          y
        Cross-section
                                            P b  2 y
                                           𝑞 = 𝑉 ∙ 𝐴 = 𝐶 2 𝑦 ∙ 𝑆 𝑜∙ 𝑦 ∙ 𝑏
                     3         𝑞2
      𝑦𝑛 =
9                        𝑏 2 ∙ 𝐶 2 ∙ 𝑆0
Equilibrium / normal depth
                                    𝑆0 = 𝑆 𝑓
             3          𝑞2
     𝑦𝑛 =
                  𝑏 2 ∙ 𝐶 2 ∙ 𝑆0

    yn =    normal depth [m]
    q=      discharge     [m3/s]
    b=      width         [m]
     𝑆0 =   bed slope     [1]
     𝑆𝑓 =   Hydraulic gradient caused by friction [1]
            8𝑔
    𝐶=           Chezy coefficient [m1/2/s]
             𝜆

9
Equilibrium / normal depth
yn

                   yn

                                yn

                                                    yn



                                     Dredged area




           3         𝑞2
    𝑦𝑛 =
               𝑏 2 ∙ 𝐶 2 ∙ 𝑆0

9

More Related Content

PDF
Cu06997 lecture 3_principles_of_flow-17-2-2013
PDF
Cu06997 lecture 5_reynolds_and_r
PDF
Cu06997 lecture 6_flow in pipes 1_2013
PDF
Cu06997 lecture 8_sewers
PDF
Cu06997 lecture 2_hydrostatics_17-2-2013
PDF
Cu06997 lecture 7_culvert_2013
PDF
Cu06997 lecture 4_answer
PDF
Cu06997 exercise5
Cu06997 lecture 3_principles_of_flow-17-2-2013
Cu06997 lecture 5_reynolds_and_r
Cu06997 lecture 6_flow in pipes 1_2013
Cu06997 lecture 8_sewers
Cu06997 lecture 2_hydrostatics_17-2-2013
Cu06997 lecture 7_culvert_2013
Cu06997 lecture 4_answer
Cu06997 exercise5

What's hot (20)

PDF
Cu06997 lecture 4_bernoulli-17-2-2013
PDF
Cu06997 lecture 12_sediment transport and back water
PDF
Cu06997 lecture 6_exercises
DOC
Cu06997 assignment 6 2014_answer
PDF
Cu06997 lecture 10_froude
PDF
Cu06997 lecture 2_answer
PDF
(Part ii)- open channels
PDF
CE-6451-Fluid_Mechanics.GVK
PPTX
A Seminar Topic On Boundary Layer
PDF
Hydraulic analysis of complex piping systems (updated)
PDF
Cu06997 lecture 8_exercise
PDF
Fluid dynamic
PDF
Hydraulic losses in pipe
PDF
Lecture notes 05
PDF
Lecture notes 04
PDF
Chapter 7 gvf
PDF
Laminar turbulent
PPTX
Boundary layer theory 4
PPT
Laminar Flow in pipes and Anuli Newtonian Fluids
PPTX
Design of pipe network
Cu06997 lecture 4_bernoulli-17-2-2013
Cu06997 lecture 12_sediment transport and back water
Cu06997 lecture 6_exercises
Cu06997 assignment 6 2014_answer
Cu06997 lecture 10_froude
Cu06997 lecture 2_answer
(Part ii)- open channels
CE-6451-Fluid_Mechanics.GVK
A Seminar Topic On Boundary Layer
Hydraulic analysis of complex piping systems (updated)
Cu06997 lecture 8_exercise
Fluid dynamic
Hydraulic losses in pipe
Lecture notes 05
Lecture notes 04
Chapter 7 gvf
Laminar turbulent
Boundary layer theory 4
Laminar Flow in pipes and Anuli Newtonian Fluids
Design of pipe network
Ad

Similar to Cu06997 lecture 9_open channel (16)

PDF
Sediment transport
PDF
Rubble mound breakwater
PPT
8. fm 9 flow in pipes major loses co 3 copy
PDF
Fluid mechanics for chermical engineering students
PDF
Gabarito Fox Mecanica dos Fluidos cap 1 a 6
PPT
Met 402 mod_2
PDF
010a (PPT) Flow through pipes.pdf .
PPT
OPEN CHANNEL FLOW TYPES OF FLOW IN CHANNEL
PPT
Fluids16 class lecture for engineering student
PDF
Viscosity & flow
PPTX
Laminar flow
PDF
Plank on a log
PDF
Plank on a log
PPTX
Soil Mechanics
PPSX
Surface area and volume ssolids
PPTX
L21 MOS OCT 2020.pptx .
Sediment transport
Rubble mound breakwater
8. fm 9 flow in pipes major loses co 3 copy
Fluid mechanics for chermical engineering students
Gabarito Fox Mecanica dos Fluidos cap 1 a 6
Met 402 mod_2
010a (PPT) Flow through pipes.pdf .
OPEN CHANNEL FLOW TYPES OF FLOW IN CHANNEL
Fluids16 class lecture for engineering student
Viscosity & flow
Laminar flow
Plank on a log
Plank on a log
Soil Mechanics
Surface area and volume ssolids
L21 MOS OCT 2020.pptx .
Ad

More from Henk Massink (20)

PPT
Cu07821 ppt9 recapitulation
PPTX
Gastcollege mli
PPTX
Cu07821 10management and maintenance2015
PPTX
Cu07821 9 zoning plan2015
PPTX
Cu07821 8 weirs
PPTX
Cu07821 7 culverts new
PPTX
Cu07821 6 pumping stations_update
PPTX
Cu07821 5 drainage
PPTX
Cu07821 4 soil
PPTX
Cu07821 3 precipitation and evapotranspiration
PPTX
Cu07821 2 help
PPTX
Cu07821 1 intro_1415
PDF
Research portfolio delta_academy_s2_2014_2015
PDF
Research portfolio da arc 2014-2015 s1
PPTX
Jacobapolder
PDF
Research portfolios1 2013_2014 jan july 2014
PPTX
Presentatie AET voor scholieren 15-11-2013
PPTX
Vision group1(5)
PPTX
Final presentation spain quattro
PPTX
Final presentation group 3
Cu07821 ppt9 recapitulation
Gastcollege mli
Cu07821 10management and maintenance2015
Cu07821 9 zoning plan2015
Cu07821 8 weirs
Cu07821 7 culverts new
Cu07821 6 pumping stations_update
Cu07821 5 drainage
Cu07821 4 soil
Cu07821 3 precipitation and evapotranspiration
Cu07821 2 help
Cu07821 1 intro_1415
Research portfolio delta_academy_s2_2014_2015
Research portfolio da arc 2014-2015 s1
Jacobapolder
Research portfolios1 2013_2014 jan july 2014
Presentatie AET voor scholieren 15-11-2013
Vision group1(5)
Final presentation spain quattro
Final presentation group 3

Recently uploaded (20)

PPTX
IMMUNITY IMMUNITY refers to protection against infection, and the immune syst...
PDF
Microbial disease of the cardiovascular and lymphatic systems
PPTX
BOWEL ELIMINATION FACTORS AFFECTING AND TYPES
PDF
RMMM.pdf make it easy to upload and study
PPTX
PPT- ENG7_QUARTER1_LESSON1_WEEK1. IMAGERY -DESCRIPTIONS pptx.pptx
PDF
Sports Quiz easy sports quiz sports quiz
PDF
01-Introduction-to-Information-Management.pdf
PDF
Anesthesia in Laparoscopic Surgery in India
PDF
VCE English Exam - Section C Student Revision Booklet
PDF
Saundersa Comprehensive Review for the NCLEX-RN Examination.pdf
PPTX
master seminar digital applications in india
PDF
FourierSeries-QuestionsWithAnswers(Part-A).pdf
PDF
O5-L3 Freight Transport Ops (International) V1.pdf
PDF
Physiotherapy_for_Respiratory_and_Cardiac_Problems WEBBER.pdf
PDF
Pre independence Education in Inndia.pdf
PDF
BÀI TẬP BỔ TRỢ 4 KỸ NĂNG TIẾNG ANH 9 GLOBAL SUCCESS - CẢ NĂM - BÁM SÁT FORM Đ...
PDF
Abdominal Access Techniques with Prof. Dr. R K Mishra
PDF
O7-L3 Supply Chain Operations - ICLT Program
PPTX
Final Presentation General Medicine 03-08-2024.pptx
PDF
Module 4: Burden of Disease Tutorial Slides S2 2025
IMMUNITY IMMUNITY refers to protection against infection, and the immune syst...
Microbial disease of the cardiovascular and lymphatic systems
BOWEL ELIMINATION FACTORS AFFECTING AND TYPES
RMMM.pdf make it easy to upload and study
PPT- ENG7_QUARTER1_LESSON1_WEEK1. IMAGERY -DESCRIPTIONS pptx.pptx
Sports Quiz easy sports quiz sports quiz
01-Introduction-to-Information-Management.pdf
Anesthesia in Laparoscopic Surgery in India
VCE English Exam - Section C Student Revision Booklet
Saundersa Comprehensive Review for the NCLEX-RN Examination.pdf
master seminar digital applications in india
FourierSeries-QuestionsWithAnswers(Part-A).pdf
O5-L3 Freight Transport Ops (International) V1.pdf
Physiotherapy_for_Respiratory_and_Cardiac_Problems WEBBER.pdf
Pre independence Education in Inndia.pdf
BÀI TẬP BỔ TRỢ 4 KỸ NĂNG TIẾNG ANH 9 GLOBAL SUCCESS - CẢ NĂM - BÁM SÁT FORM Đ...
Abdominal Access Techniques with Prof. Dr. R K Mishra
O7-L3 Supply Chain Operations - ICLT Program
Final Presentation General Medicine 03-08-2024.pptx
Module 4: Burden of Disease Tutorial Slides S2 2025

Cu06997 lecture 9_open channel

  • 1. CU06997 Fluid Dynamics Open channel flow 1 5.1 Flow with a free surface (page 122) 5.2 Flow classification (page 122, 123) 5.3 Channels and their properties (page 123-125) 5.4 Velocity distributions (page 126,127) 5.5 Laminar and turbulent flow (page 127-129) 5.6 Uniform flow (page 129 -138) 1
  • 2. Flow with a free surface 1
  • 3. Classification of flows, see part 2 1. Steady uniform flow example: pipe with constant D and Q example: channel with constant A and Q 2. Steady non-uniform flow example: pipe with different D and constant Q example: channel with different A and constant Q 3. Unsteady uniform flow example: channel with constant A and different Q 4. Unsteady non-uniform flow example; channel with different A and Q 2
  • 7. Velocity distributions 𝑄 𝑉1 𝐴1 + 𝑉2 𝐴2 + 𝑉3 𝐴3 𝑉𝑎𝑣𝑒𝑟𝑎𝑔𝑒 = = 𝐴 𝐴1 + 𝐴2 + 𝐴3 𝑄 𝑡𝑜𝑡𝑎𝑎𝑙 = 𝑄1 + 𝑄3 + 𝑄3 =𝑉1 𝐴1 + 𝑉2 𝐴2 + 𝑉3 𝐴3 3
  • 8. Reynolds number, see part 3 𝑅𝑒 = 𝑉. 𝐷 𝜈 𝜇= Absolute viscosity [m2/s] 𝑉. 4𝑅 𝜐= Kinematic viscosity [kg/ms] 𝑅𝑒 = water, 20°C= 1,00 ∙ 10−6 𝜈 𝜌 = Density of liquid [kg/m3] 𝑉 = Velocity [m/s] D = Hydraulic diameter [m] R= Hydraulic Radius = D/4 [m] 𝑅𝑒 = Reynolds Number [1] 𝑹𝒆 > 𝟒𝟎𝟎𝟎 Turbulent flow 𝑹𝒆 < 𝟐𝟎𝟎𝟎 Laminar flow 3 In this course we only look at turbulent flow
  • 9. Open channel, with bed slope >0 2 2 𝑢1 𝑢2 𝑦1 + 𝑧1 + = 𝑦2 + 𝑧2 + + ∆𝐻1−2 2𝑔 2𝑔 Q  u1  A1  u2  A2 Head loss Reference line 4
  • 10. Open channel, with bed slope <= 0 2 2 u u y1  z1  1  y2  z2   H 1 2 2 2g 2g Head loss [m] u12/2g ΔH Total Head H [m] y1 u22/2g Velocity Head [m] P1 u1 Surfacelevel y +z [m] z1 y2 P2 u2 z2 4 Reference [m]
  • 11. Chezy formula 𝑉= 𝐶∙ 𝑅 ∙ 𝑆𝑓 Chezy formula describes the mean velocity of uniform, turbulent flow 𝑉= Mean Fluid Velocity [m/s] R= Hydraulic Radius [m] 𝑆𝑓 = Hydraulic gradient [1] 8𝑔 𝐶= Chezy coefficient [m1/2/s] 𝜆 ΔH 𝑆𝑓 = 𝐿 ΔH 5 Length
  • 12. Chezy coefficient In this course we assume a hydraulic rough boundary Boundary hydraulic rough 12 R C  18 log [m1/2/s] k kS = surface roughness [m] 5
  • 13. Surface roughness kS [m] Equivalent Sand Roughness, Material (ft) (mm) Copper, brass 1x10-4 - 3x10-3 3.05x10-2 - 0.9 Wrought iron, 1.5x10-4 - 8x10-3 4.6x10-2 - 2.4 steel Asphalt-lined 4x10-4 - 7x10-3 0.1 - 2.1 cast iron 3.3x10-4 - 1.5x10- Galvanized iron 2 0.102 - 4.6 Cast iron 8x10-4 - 1.8x10-2 0.2 - 5.5 Concrete 10-3 - 10-2 0.3 - 3.0 Uncoated Cast 7.4x10-4 0.226 Iron Coated Cast Iron 3.3x10-4 0.102 Coated Spun 1.8x10-4 5.6x10-2 Iron Cement 1.3x10-3 - 4x10-3 0.4 - 1.2s Wrought Iron 1.7x10-4 5x10-2 Uncoated Steel 9.2x10-5 2.8x10-2 Coated Steel 1.8x10-4 5.8x10-2 Wood Stave 6x10-4 - 3x10-3 0.2 - 0.9 PVC 5x10-6 1.5x10-3 Compiled from Lamont (1981), Moody (1944), and Mays (1999) 5
  • 14. Manning’s formula describes the Manning’s formula mean velocity of uniform, turbulent flow 2 1 5 1 𝑅3 ∙ 𝑆2 1 𝐴3 𝑆2 1 𝑉= 𝑓 𝑄= ∙ ∙ R 6 𝑛 2 𝑓 C 𝑛 𝑃3 n 𝑉= Mean Fluid Velocity [m/s] R= Hydraulic Radius [m] 𝑆𝑓 = Slope Total head [1] 𝐴= Wetted Area [m2] 𝑃= Wetter Perimeter [m] 𝑛= Mannings roughness coefficient [s/m1/3] 6
  • 16. Mean boundary shear stress 𝜏0 = 𝜌 ∙ 𝑔 ∙ 𝑅 ∙ 𝑆0 τ0 = shear stress at solid boundary [N/m2] R= Hydraulic Radius [m] 𝑆0 = Slope of channel bed [1] 7
  • 17. Flowing water and energy 2 u H1  z1  y1  1 [m ] 2g Total head H [m] u12/2g Velocity head [m] Surface level [m] y1 y = Pressure head [m] u1 P1 z1 z = Potential head [m] Reference /datum [m]
  • 18. Specific Energy 𝑉2 𝐸𝑠 = 𝑦 + 2𝑔 𝑉= Mean Fluid Velocity [m/s] p y= = Pressure Head / water depth [m] ρ∙g Total head H or Specific energy Es [m] V2/2g Velocity head [m] Surface level [m] V y y = Pressure head [m] = water depth [m] 8 Channel bed as datum [m]
  • 19. Equilibrium / normal depth Discharge, cross-section, energy gradient and friction are constant yn 𝑆0 = 𝑆 𝑓 Side view 𝑉= 𝐶∙ 𝑅 ∙ 𝑆𝑜 yn A b. y R  y Cross-section P b  2 y 𝑞 = 𝑉 ∙ 𝐴 = 𝐶 2 𝑦 ∙ 𝑆 𝑜∙ 𝑦 ∙ 𝑏 3 𝑞2 𝑦𝑛 = 9 𝑏 2 ∙ 𝐶 2 ∙ 𝑆0
  • 20. Equilibrium / normal depth 𝑆0 = 𝑆 𝑓 3 𝑞2 𝑦𝑛 = 𝑏 2 ∙ 𝐶 2 ∙ 𝑆0 yn = normal depth [m] q= discharge [m3/s] b= width [m] 𝑆0 = bed slope [1] 𝑆𝑓 = Hydraulic gradient caused by friction [1] 8𝑔 𝐶= Chezy coefficient [m1/2/s] 𝜆 9
  • 21. Equilibrium / normal depth yn yn yn yn Dredged area 3 𝑞2 𝑦𝑛 = 𝑏 2 ∙ 𝐶 2 ∙ 𝑆0 9