SlideShare a Scribd company logo
CU06997 Fluid Dynamics
    Flow in pipes and closed conduits
    4.5 Turbulent flow (page 100-111)
    4.6 Local head losses (page 112-116)
    4.7 Partially full pipes (page 116-121)




1
Culvert, no upstream and downstream
velocity




1
Culvert, with upstream and downstream
velocity




1
Culvert, no upstream and downstream
velocity           2         2
                   u1              u2
         y1  z1      y 2  z2      H12
                   2g              2g




 P1                                                    P2

                                       2
                                   u
2       ΔΗ culvert  ξ culvert        culvert
                                                 [m]
                                       2g
Friction loss, Darcy Weisbach




                        L
              f   
                       4R
2
Inlet and outlet loss [intree en uitree verlies]




                                         o  1
               2
      1   
 i    1
         
          
µ=contraction coëfficiënt (bv 0,6) [1]
2
Outlet los




    u  0,3   u  0,5

2
Loss at a (open) valve [klep]

      Between 0,1 and 0,2

    Loss at a non-return valve
    [terugslag klep]
      approximately 1
2
Head (energy) loss strategy
                       2
                   u
    ΔΗ  ξ                [m]
                   2g
                           2       2                  2
                     u       u         u
    ΔΗ total    ξ1   ξ 2   ξ... 
                           1       2
                                          [m]         ....
                     2g      2g        2g
    If velocity does not change

                                            2
                                        u
    ΔΗ total  (ξ1  ξ 2  ξ..... )            [m]
2                                       2g
Head (energy) loss culvert




                                                   o  1
               2
      1                     L
 i    1
                 f   
                           4R
                                                2
                                            u
        ΔΗ culvert  (ξ i  ξ f  ξ o )        culvert
                                                          [m]
2                                               2g
Submerged Culvert 1 [Volledig gevuld]
                      u2      tot  (ξ i  ξ f  ξ o  ....)
  ΔΗ tot     ξ tot   c
                      2g
∆𝐻 𝑡𝑜𝑡 =   Total Head Loss Culvert             [m]                    1   
                                                                                2

 𝜉 𝑡𝑜𝑡 =   Sum of Loss coefficients            [1]               i    1
                                                                         
 𝑢𝑐 =      Mean Fluid Velocity Culvert         [m/s]                      
 𝜉𝑖    =   Loss coefficient due to contraction [1]
                                                                            l
 𝜉𝑤 =      Loss coefficient due to friction    [1]              f   
                                                                           4R
 𝜉𝑜 =      Loss coefficient due to outlet      [1]
 𝜇     =   Contraction coefficient             [1]
 𝑔     =    earths gravity                     [m/s2]            o  1
 𝜆     =   Friction coefficient                [1]
R      =   Hydraulic Radius                    [m]
𝑙      =   Length between the Head Loss        [m]                          2
Submerged Culvert 2
                      2
                      u
     ΔΗ tot  ξ tot  c
                      2g   𝑄= 𝑢∙ 𝐴

            1
     m
             tot


     q  m  Ac  2 g  H tot
2b
Submerged Culvert 2

q  m  Ac  2 g  H tot
        1
m
        tot

 q = Flow rate Culvert              [m3/s]
  𝑚 = Discharge coefficient         [m]
  𝐴 = Wetted Area Culvert           [m2]
 ∆𝐻 𝑡𝑜𝑡 = Total Head Loss Culvert   [m]
 𝜉 𝑡𝑜𝑡 = Sum of Loss coefficients   [1]
  𝑔 = earths gravity                [m/s2]
2b
Culvert, no upstream and downstream
velocity




    ∆y=∆H
    Difference in water level = Difference in total head
3
Culvert, with upstream and downstream
velocity




    ∆y≠∆H
    Difference in water level ≠ Difference in total head
3
Culvert, with upstream and downstream
velocity
          2               2
          u               u
y1  z1  1
              y 2  z2  2
                              H12
          2g              2g




    P1                                                           P2

                                                      2
                                                  u
                        ΔΗculvert  ξ culvert        culvert
                                                                [m]
3                                                     2g
Exercise 1 culvert




•Difference in waterlevel 1 m
•Dimensions culvert 2 x 2 m

•μ=0,6 and λ = 0,022

•Calculate Q and draw the H and y line
Discharge culvert
Exercise 2 culvert




•Difference in waterlevel 1 m
•Dimensions culvert 2 x 2 m

•μ=0,6 and λ = 0,022

•u upstream = 0,5 m/s, u downstream = 0,2 m/s
•Calculate Q and draw the H and y line

More Related Content

PDF
Cu06997 lecture 4_bernoulli-17-2-2013
PDF
Cu06997 lecture 4_answer
PDF
Cu06997 lecture 3_principles_of_flow-17-2-2013
PDF
Cu06997 lecture 6_exercises
PDF
Cu06997 lecture 6_flow in pipes 1_2013
PDF
Cu06997 lecture 9_open channel
PDF
Cu06997 lecture 5_reynolds_and_r
PDF
Cu06997 lecture 2_hydrostatics_17-2-2013
Cu06997 lecture 4_bernoulli-17-2-2013
Cu06997 lecture 4_answer
Cu06997 lecture 3_principles_of_flow-17-2-2013
Cu06997 lecture 6_exercises
Cu06997 lecture 6_flow in pipes 1_2013
Cu06997 lecture 9_open channel
Cu06997 lecture 5_reynolds_and_r
Cu06997 lecture 2_hydrostatics_17-2-2013

What's hot (20)

DOC
Cu06997 assignment 6 2014_answer
PDF
Cu06997 lecture 8_sewers
PDF
Cu06997 exercise5
PDF
Cu06997 lecture 12_sediment transport and back water
PDF
Cu06997 lecture 2_answer
PPTX
Physics LO 4
PDF
Answers assignment 4 real fluids-fluid mechanics
PDF
Answers assignment 3 integral methods-fluid mechanics
PDF
Solution manual for water resources engineering 3rd edition - david a. chin
PDF
Lecture notes 02
PDF
Solutions Manual for Water-Resources Engineering 3rd Edition by Chin
PDF
(Part ii)- open channels
PDF
HOW TO PREDICT HEAT AND MASS TRANSFER FROM FLUID FRICTION
PPT
Francis turbine
PDF
CE-6451-Fluid_Mechanics.GVK
PPT
Pelton turbine (1)
PPTX
Boundary layer theory 4
PPT
Drift flux
PPTX
Free convection heat and mass transfer
PDF
Lecture notes 05
Cu06997 assignment 6 2014_answer
Cu06997 lecture 8_sewers
Cu06997 exercise5
Cu06997 lecture 12_sediment transport and back water
Cu06997 lecture 2_answer
Physics LO 4
Answers assignment 4 real fluids-fluid mechanics
Answers assignment 3 integral methods-fluid mechanics
Solution manual for water resources engineering 3rd edition - david a. chin
Lecture notes 02
Solutions Manual for Water-Resources Engineering 3rd Edition by Chin
(Part ii)- open channels
HOW TO PREDICT HEAT AND MASS TRANSFER FROM FLUID FRICTION
Francis turbine
CE-6451-Fluid_Mechanics.GVK
Pelton turbine (1)
Boundary layer theory 4
Drift flux
Free convection heat and mass transfer
Lecture notes 05
Ad

Similar to Cu06997 lecture 7_culvert_2013 (16)

PDF
hydro chapter_4_a_by louy al hami
PPT
02 pipe networks
DOC
Solved problems pipe flow final 1.doc
PPTX
Presentation on flow through simple pipes and flow through compound pipe
PPTX
flow in pipe series and parallel
PDF
05210202 Fluid Mechanics And Hydraulic Machinery
PDF
05210202 F L U I D M E C H A N I C S A N D H Y D R A U L I C M A C H I...
PDF
CIVE 572 Final Project
PDF
T2203
PPTX
pipe lines lec 2.pptx
PDF
F L U I D M E C H A N I C S A N D H E A T T R A N S F E R J N T U M O D...
PPT
Ch e354 pumps
DOCX
echnology and Economics ngineering 2002 Dr. Miklós Bla.docx
PDF
hydro chapter_4_b_pipe_network_by louy Al hami
PPT
PDF
Viscosity & flow
hydro chapter_4_a_by louy al hami
02 pipe networks
Solved problems pipe flow final 1.doc
Presentation on flow through simple pipes and flow through compound pipe
flow in pipe series and parallel
05210202 Fluid Mechanics And Hydraulic Machinery
05210202 F L U I D M E C H A N I C S A N D H Y D R A U L I C M A C H I...
CIVE 572 Final Project
T2203
pipe lines lec 2.pptx
F L U I D M E C H A N I C S A N D H E A T T R A N S F E R J N T U M O D...
Ch e354 pumps
echnology and Economics ngineering 2002 Dr. Miklós Bla.docx
hydro chapter_4_b_pipe_network_by louy Al hami
Viscosity & flow
Ad

More from Henk Massink (20)

PPT
Cu07821 ppt9 recapitulation
PPTX
Gastcollege mli
PPTX
Cu07821 10management and maintenance2015
PPTX
Cu07821 9 zoning plan2015
PPTX
Cu07821 8 weirs
PPTX
Cu07821 7 culverts new
PPTX
Cu07821 6 pumping stations_update
PPTX
Cu07821 5 drainage
PPTX
Cu07821 4 soil
PPTX
Cu07821 3 precipitation and evapotranspiration
PPTX
Cu07821 2 help
PPTX
Cu07821 1 intro_1415
PDF
Research portfolio delta_academy_s2_2014_2015
PDF
Research portfolio da arc 2014-2015 s1
PPTX
Jacobapolder
PDF
Research portfolios1 2013_2014 jan july 2014
PPTX
Presentatie AET voor scholieren 15-11-2013
PPTX
Vision group1(5)
PPTX
Final presentation spain quattro
PPTX
Final presentation group 3
Cu07821 ppt9 recapitulation
Gastcollege mli
Cu07821 10management and maintenance2015
Cu07821 9 zoning plan2015
Cu07821 8 weirs
Cu07821 7 culverts new
Cu07821 6 pumping stations_update
Cu07821 5 drainage
Cu07821 4 soil
Cu07821 3 precipitation and evapotranspiration
Cu07821 2 help
Cu07821 1 intro_1415
Research portfolio delta_academy_s2_2014_2015
Research portfolio da arc 2014-2015 s1
Jacobapolder
Research portfolios1 2013_2014 jan july 2014
Presentatie AET voor scholieren 15-11-2013
Vision group1(5)
Final presentation spain quattro
Final presentation group 3

Cu06997 lecture 7_culvert_2013

  • 1. CU06997 Fluid Dynamics Flow in pipes and closed conduits 4.5 Turbulent flow (page 100-111) 4.6 Local head losses (page 112-116) 4.7 Partially full pipes (page 116-121) 1
  • 2. Culvert, no upstream and downstream velocity 1
  • 3. Culvert, with upstream and downstream velocity 1
  • 4. Culvert, no upstream and downstream velocity 2 2 u1 u2 y1  z1   y 2  z2   H12 2g 2g P1 P2 2 u 2 ΔΗ culvert  ξ culvert  culvert [m] 2g
  • 5. Friction loss, Darcy Weisbach L f    4R 2
  • 6. Inlet and outlet loss [intree en uitree verlies] o  1 2 1   i    1     µ=contraction coëfficiënt (bv 0,6) [1] 2
  • 7. Outlet los u  0,3 u  0,5 2
  • 8. Loss at a (open) valve [klep]   Between 0,1 and 0,2 Loss at a non-return valve [terugslag klep]   approximately 1 2
  • 9. Head (energy) loss strategy 2 u ΔΗ  ξ  [m] 2g 2 2 2 u u u ΔΗ total  ξ1   ξ 2   ξ...  1 2 [m] .... 2g 2g 2g If velocity does not change 2 u ΔΗ total  (ξ1  ξ 2  ξ..... )  [m] 2 2g
  • 10. Head (energy) loss culvert o  1 2 1  L  i    1   f      4R 2 u ΔΗ culvert  (ξ i  ξ f  ξ o )  culvert [m] 2 2g
  • 11. Submerged Culvert 1 [Volledig gevuld] u2 tot  (ξ i  ξ f  ξ o  ....) ΔΗ tot  ξ tot  c 2g ∆𝐻 𝑡𝑜𝑡 = Total Head Loss Culvert [m] 1  2 𝜉 𝑡𝑜𝑡 = Sum of Loss coefficients [1]  i    1   𝑢𝑐 = Mean Fluid Velocity Culvert [m/s]   𝜉𝑖 = Loss coefficient due to contraction [1] l 𝜉𝑤 = Loss coefficient due to friction [1] f    4R 𝜉𝑜 = Loss coefficient due to outlet [1] 𝜇 = Contraction coefficient [1] 𝑔 = earths gravity [m/s2] o  1 𝜆 = Friction coefficient [1] R = Hydraulic Radius [m] 𝑙 = Length between the Head Loss [m] 2
  • 12. Submerged Culvert 2 2 u ΔΗ tot  ξ tot  c 2g 𝑄= 𝑢∙ 𝐴 1 m  tot q  m  Ac  2 g  H tot 2b
  • 13. Submerged Culvert 2 q  m  Ac  2 g  H tot 1 m  tot q = Flow rate Culvert [m3/s] 𝑚 = Discharge coefficient [m] 𝐴 = Wetted Area Culvert [m2] ∆𝐻 𝑡𝑜𝑡 = Total Head Loss Culvert [m] 𝜉 𝑡𝑜𝑡 = Sum of Loss coefficients [1] 𝑔 = earths gravity [m/s2] 2b
  • 14. Culvert, no upstream and downstream velocity ∆y=∆H Difference in water level = Difference in total head 3
  • 15. Culvert, with upstream and downstream velocity ∆y≠∆H Difference in water level ≠ Difference in total head 3
  • 16. Culvert, with upstream and downstream velocity 2 2 u u y1  z1  1  y 2  z2  2  H12 2g 2g P1 P2 2 u ΔΗculvert  ξ culvert  culvert [m] 3 2g
  • 17. Exercise 1 culvert •Difference in waterlevel 1 m •Dimensions culvert 2 x 2 m •μ=0,6 and λ = 0,022 •Calculate Q and draw the H and y line
  • 19. Exercise 2 culvert •Difference in waterlevel 1 m •Dimensions culvert 2 x 2 m •μ=0,6 and λ = 0,022 •u upstream = 0,5 m/s, u downstream = 0,2 m/s •Calculate Q and draw the H and y line