SlideShare a Scribd company logo
© SuperDataScienceDeep Learning A-Z
© SuperDataScienceDeep Learning A-Z
© SuperDataScienceDeep Learning A-Z
What we will learn in this section:
• How do Self-Organizing Maps work?
• K-Means Clustering
• How do Self-Organizing Maps Learn? (Part 1)
• How do Self-Organizing Maps Learn? (Part 2)
• Live SOM example
• Reading an Advanced SOM
© SuperDataScienceDeep Learning A-Z
© SuperDataScienceDeep Learning A-Z
Used for Regression & ClassificationArtificial Neural Networks
Used for Computer VisionConvolutional Neural Networks
Used for Time Series AnalysisRecurrent Neural Networks
Used for Feature DetectionSelf-Organizing Maps
Used for Recommendation SystemsDeep Boltzmann Machines
Used for Recommendation SystemsAutoEncoders
SupervisedUnsupervised
© SuperDataScienceDeep Learning A-Z
Image Source: aka.fi
© SuperDataScienceDeep Learning A-Z
Image Adapted From: arxiv.org/pdf/1312.5753.pdf
© SuperDataScienceDeep Learning A-Z
Image Source: cis.hut.fi
© SuperDataScienceDeep Learning A-Z
Image Source: cis.hut.fi
© SuperDataScienceDeep Learning A-Z
Image Source: cis.hut.fi
© SuperDataScienceDeep Learning A-Z
The Self-Organizing Map
By Tuevo Kohonen (1990)
Link:
http://sci2s.ugr.es/keel/pdf/algorithm/articulo/1990-Kohonen-PIEEE.pdf
Additional Reading:
© SuperDataScienceDeep Learning A-Z
© SuperDataScienceDeep Learning A-Z
© SuperDataScienceDeep Learning A-Z
© SuperDataScienceDeep Learning A-Z
Before K-Means
© SuperDataScienceDeep Learning A-Z
Before K-Means After K-Means
K-Means
© SuperDataScienceDeep Learning A-Z
Before K-Means After K-Means
K-Means
© SuperDataScienceDeep Learning A-Z
STEP 1: Choose the number K of clusters
STEP 2: Select at random K points, the centroids (not necessarily from your dataset)
STEP 3: Assign each data point to the closest centroid That forms K clusters
STEP 4: Compute and place the new centroid of each cluster
STEP 5: Reassign each data point to the new closest centroid.
If any reassignment took place, go to STEP 4, otherwise go to FIN.
Your Model is Ready
© SuperDataScienceDeep Learning A-Z
STEP 1: Choose the number K of clusters: K = 2
© SuperDataScienceDeep Learning A-Z
STEP 2: Select at random K points, the centroids (not necessarily from your dataset)
© SuperDataScienceDeep Learning A-Z
STEP 2: Select at random K points, the centroids (not necessarily from your dataset)
© SuperDataScienceDeep Learning A-Z
STEP 3: Assign each data point to the closest centroid That forms K clusters
© SuperDataScienceDeep Learning A-Z
STEP 3: Assign each data point to the closest centroid That forms K clusters
© SuperDataScienceDeep Learning A-Z
STEP 4: Compute and place the new centroid of each cluster
© SuperDataScienceDeep Learning A-Z
STEP 4: Compute and place the new centroid of each cluster
© SuperDataScienceDeep Learning A-Z
STEP 5: Reassign each data point to the new closest centroid.
If any reassignment took place, go to STEP 4, otherwise go to FIN.
© SuperDataScienceDeep Learning A-Z
STEP 5: Reassign each data point to the new closest centroid.
If any reassignment took place, go to STEP 4, otherwise go to FIN.
© SuperDataScienceDeep Learning A-Z
STEP 4: Compute and place the new centroid of each cluster
© SuperDataScienceDeep Learning A-Z
STEP 4: Compute and place the new centroid of each cluster
© SuperDataScienceDeep Learning A-Z
STEP 5: Reassign each data point to the new closest centroid.
If any reassignment took place, go to STEP 4, otherwise go to FIN.
© SuperDataScienceDeep Learning A-Z
STEP 5: Reassign each data point to the new closest centroid.
If any reassignment took place, go to STEP 4, otherwise go to FIN.
© SuperDataScienceDeep Learning A-Z
STEP 4: Compute and place the new centroid of each cluster
© SuperDataScienceDeep Learning A-Z
STEP 4: Compute and place the new centroid of each cluster
© SuperDataScienceDeep Learning A-Z
STEP 5: Reassign each data point to the new closest centroid.
If any reassignment took place, go to STEP 4, otherwise go to FIN.
© SuperDataScienceDeep Learning A-Z
STEP 5: Reassign each data point to the new closest centroid.
If any reassignment took place, go to STEP 4, otherwise go to FIN.
© SuperDataScienceDeep Learning A-Z
STEP 4: Compute and place the new centroid of each cluster
© SuperDataScienceDeep Learning A-Z
STEP 4: Compute and place the new centroid of each cluster
© SuperDataScienceDeep Learning A-Z
STEP 5: Reassign each data point to the new closest centroid.
If any reassignment took place, go to STEP 4, otherwise go to FIN.
© SuperDataScienceDeep Learning A-Z
FIN: Your Model Is Ready
© SuperDataScienceDeep Learning A-Z
FIN: Your Model Is Ready
© SuperDataScienceDeep Learning A-Z
STEP 2: Select at random K points, the centroids (not necessarily from your dataset)
© SuperDataScienceDeep Learning A-Z
FIN: Your Model Is Ready
© SuperDataScienceDeep Learning A-Z
© SuperDataScienceDeep Learning A-Z
Visible Input Nodes
Visible
Output
Nodes
(Map)
X1 X3
X2
© SuperDataScienceDeep Learning A-Z
Visible
Input
Nodes
Visible
Output
Nodes
X1
X3
X2
© SuperDataScienceDeep Learning A-Z
Visible
Input
Nodes
Visible
Output
Nodes
X1
X3
X2
W1,1
W1,2
W1,3
© SuperDataScienceDeep Learning A-Z
( ; ; )
Visible
Input
Nodes
Visible
Output
Nodes
X1
X3
X2
W1,1 W1,2 W1,3Node1:
© SuperDataScienceDeep Learning A-Z
( ; ; )
Visible
Input
Nodes
Visible
Output
Nodes
X1
X3
X2
W1,1 W1,2 W1,3Node1:
( ; ; )W2,1 W2,2 W2,3Node2:
© SuperDataScienceDeep Learning A-Z
( ; ; )
Visible
Input
Nodes
Visible
Output
Nodes
X1
X3
X2
W1,1 W1,2 W1,3Node1:
( ; ; )W2,1 W2,2 W2,3Node2:
( ; ; )W3,1 W3,2 W3,3Node3:
© SuperDataScienceDeep Learning A-Z
( ; ; )
Visible
Input
Nodes
X3
W1,1 W1,2 W1,3Node1:
( ; ; )W2,1 W2,2 W2,3Node2:
( ; ; )W3,1 W3,2 W3,3Node3:
( ; ; )W4,1 W4,2 W4,3Node4:
X2
X1
© SuperDataScienceDeep Learning A-Z
( ; ; )W1,1 W1,2 W1,3Node1:
( ; ; )W2,1 W2,2 W2,3Node2:
( ; ; )W3,1 W3,2 W3,3Node3:
( ; ; )W4,1 W4,2 W4,3Node4:
( ; ; )W5,1 W5,2 W5,3Node5:
( ; ; )W6,1 W6,2 W6,3Node6:
( ; ; )W7,1 W7,2 W7,3Node7:
( ; ; )W8,1 W8,2 W8,3Node8:
( ; ; )W9,1 W9,2 W9,3Node9:
Distance = (𝑥𝑖 − 𝑤1,𝑖)2 = 1.2
X3
X2
X1
© SuperDataScienceDeep Learning A-Z
( ; ; )W1,1 W1,2 W1,3Node1:
( ; ; )W2,1 W2,2 W2,3Node2:
( ; ; )W3,1 W3,2 W3,3Node3:
( ; ; )W4,1 W4,2 W4,3Node4:
( ; ; )W5,1 W5,2 W5,3Node5:
( ; ; )W6,1 W6,2 W6,3Node6:
( ; ; )W7,1 W7,2 W7,3Node7:
( ; ; )W8,1 W8,2 W8,3Node8:
( ; ; )W9,1 W9,2 W9,3Node9:
Distance = (𝑥𝑖 − 𝑤1,𝑖)2 = 1.2
Distance = (𝑥𝑖 − 𝑤2,𝑖)2 = 0.8
X3
X2
X1
© SuperDataScienceDeep Learning A-Z
( ; ; )W1,1 W1,2 W1,3Node1:
( ; ; )W2,1 W2,2 W2,3Node2:
( ; ; )W3,1 W3,2 W3,3Node3:
( ; ; )W4,1 W4,2 W4,3Node4:
( ; ; )W5,1 W5,2 W5,3Node5:
( ; ; )W6,1 W6,2 W6,3Node6:
( ; ; )W7,1 W7,2 W7,3Node7:
( ; ; )W8,1 W8,2 W8,3Node8:
( ; ; )W9,1 W9,2 W9,3Node9:
Distance = (𝑥𝑖 − 𝑤1,𝑖)2 = 1.2
Distance = (𝑥𝑖 − 𝑤2,𝑖)2 = 0.8
Distance = (𝑥𝑖 − 𝑤3,𝑖)2 = 0.4
X3
X2
X1
© SuperDataScienceDeep Learning A-Z
( ; ; )W1,1 W1,2 W1,3Node1:
( ; ; )W2,1 W2,2 W2,3Node2:
( ; ; )W3,1 W3,2 W3,3Node3:
( ; ; )W4,1 W4,2 W4,3Node4:
( ; ; )W5,1 W5,2 W5,3Node5:
( ; ; )W6,1 W6,2 W6,3Node6:
( ; ; )W7,1 W7,2 W7,3Node7:
( ; ; )W8,1 W8,2 W8,3Node8:
( ; ; )W9,1 W9,2 W9,3Node9:
Distance = (𝑥𝑖 − 𝑤1,𝑖)2 = 1.2
Distance = (𝑥𝑖 − 𝑤2,𝑖)2 = 0.8
Distance = (𝑥𝑖 − 𝑤3,𝑖)2 = 0.4
Distance = (𝑥𝑖 − 𝑤4,𝑖)2 = 1.1
X3
X2
X1
© SuperDataScienceDeep Learning A-Z
( ; ; )W1,1 W1,2 W1,3Node1:
( ; ; )W2,1 W2,2 W2,3Node2:
( ; ; )W3,1 W3,2 W3,3Node3:
( ; ; )W4,1 W4,2 W4,3Node4:
( ; ; )W5,1 W5,2 W5,3Node5:
( ; ; )W6,1 W6,2 W6,3Node6:
( ; ; )W7,1 W7,2 W7,3Node7:
( ; ; )W8,1 W8,2 W8,3Node8:
( ; ; )W9,1 W9,2 W9,3Node9:
Distance = (𝑥𝑖 − 𝑤1,𝑖)2 = 1.2
Distance = (𝑥𝑖 − 𝑤2,𝑖)2 = 0.8
Distance = (𝑥𝑖 − 𝑤3,𝑖)2 = 0.4
Distance = (𝑥𝑖 − 𝑤4,𝑖)2 = 1.1
Distance = (𝑥𝑖 − 𝑤5,𝑖)2 = 1.3
Distance = (𝑥𝑖 − 𝑤6,𝑖)2 = 1.0
Distance = (𝑥𝑖 − 𝑤7,𝑖)2 = 0.6
Distance = (𝑥𝑖 − 𝑤8,𝑖)2 = 1.2
Distance = (𝑥𝑖 − 𝑤9,𝑖)2 = 0.9
X3
X2
X1
© SuperDataScienceDeep Learning A-Z
© SuperDataScienceDeep Learning A-Z
© SuperDataScienceDeep Learning A-Z
Image Source: Wikipedia
© SuperDataScienceDeep Learning A-Z
© SuperDataScienceDeep Learning A-Z
© SuperDataScienceDeep Learning A-Z
© SuperDataScienceDeep Learning A-Z
© SuperDataScienceDeep Learning A-Z
© SuperDataScienceDeep Learning A-Z
© SuperDataScienceDeep Learning A-Z
© SuperDataScienceDeep Learning A-Z
© SuperDataScienceDeep Learning A-Z
© SuperDataScienceDeep Learning A-Z
© SuperDataScienceDeep Learning A-Z
© SuperDataScienceDeep Learning A-Z
© SuperDataScienceDeep Learning A-Z
© SuperDataScienceDeep Learning A-Z
© SuperDataScienceDeep Learning A-Z
© SuperDataScienceDeep Learning A-Z
© SuperDataScienceDeep Learning A-Z
© SuperDataScienceDeep Learning A-Z
© SuperDataScienceDeep Learning A-Z
© SuperDataScienceDeep Learning A-Z
Important to know:
• SOMs retain topology of the input set
• SOMs reveal correlations that are not easily identified
• SOMs classify data without supervision
• No target vector -> no backpropagation
• No lateral connections between output nodes
© SuperDataScienceDeep Learning A-Z
Kohonen's Self Organizing Feature
Maps
By Mat Buckland (2004?)
Link:
http://www.ai-junkie.com/ann/som/som1.html
Additional Reading:
© SuperDataScienceDeep Learning A-Z
© SuperDataScienceDeep Learning A-Z
© SuperDataScienceDeep Learning A-Z
Image Source: Wikipedia
© SuperDataScienceDeep Learning A-Z
Image Sources in order of appearance: Wikipedia, boylelab.org, R-Bloggers, This Course, stackoverflow.com, Viscovery.com, visualcinnamon.com
© SuperDataScienceDeep Learning A-Z
SOM - Creating hexagonal heatmaps
with D3.js
By Nadieh Bremer (2003)
Link:
https://www.visualcinnamon.com/2013/07/self-organizing-maps-creating-
hexagonal.html
Additional Reading:
© SuperDataScienceDeep Learning A-Z
© SuperDataScienceDeep Learning A-Z
If we choose K = 3 clusters...
© SuperDataScienceDeep Learning A-Z
...this correct random initialisation would lead us to...
© SuperDataScienceDeep Learning A-Z
…the following three clusters
© SuperDataScienceDeep Learning A-Z
…the following three clusters
© SuperDataScienceDeep Learning A-Z
But what would happen if we had a bad random initialisation ?
© SuperDataScienceDeep Learning A-Z
STEP 1: Choose the number K of clusters
STEP 2: Select at random K points, the centroids (not necessarily from your dataset)
STEP 3: Assign each data point to the closest centroid That forms K clusters
STEP 4: Compute and place the new centroid of each cluster
STEP 5: Reassign each data point to the new closest centroid.
If any reassignment took place, go to STEP 4, otherwise go to FIN.
Your Model is Ready
© SuperDataScienceDeep Learning A-Z
STEP 1: Choose the number K of clusters: K = 3
© SuperDataScienceDeep Learning A-Z
STEP 2: Select at random K points, the centroids (not necessarily from your dataset)
© SuperDataScienceDeep Learning A-Z
STEP 2: Select at random K points, the centroids (not necessarily from your dataset)
© SuperDataScienceDeep Learning A-Z
STEP 3: Assign each data point to the closest centroid That forms K clusters
© SuperDataScienceDeep Learning A-Z
STEP 3: Assign each data point to the closest centroid That forms K clusters
© SuperDataScienceDeep Learning A-Z
STEP 4: Compute and place the new centroid of each cluster
© SuperDataScienceDeep Learning A-Z
STEP 5: Reassign each data point to the new closest centroid.
If any reassignment took place, go to STEP 4, otherwise go to FIN.
© SuperDataScienceDeep Learning A-Z
STEP 5: Reassign each data point to the new closest centroid.
If any reassignment took place, go to STEP 4, otherwise go to FIN.
Your Model is Ready
© SuperDataScienceDeep Learning A-Z
Your Model is Ready
STEP 5: Reassign each data point to the new closest centroid.
If any reassignment took place, go to STEP 4, otherwise go to FIN.
© SuperDataScienceDeep Learning A-Z
Your Model is Ready
STEP 5: Reassign each data point to the new closest centroid.
If any reassignment took place, go to STEP 4, otherwise go to FIN.
© SuperDataScienceDeep Learning A-Z
© SuperDataScienceDeep Learning A-Z
© SuperDataScienceDeep Learning A-Z
Solution K-Means++
© SuperDataScienceDeep Learning A-Z
© SuperDataScienceDeep Learning A-Z
© SuperDataScienceDeep Learning A-Z
Cluster 1
Cluster 2
Cluster 3
C1
C3
C2Pi
Pi
Pi
© SuperDataScienceDeep Learning A-Z
© SuperDataScienceDeep Learning A-Z
Cluster 1
Cluster 2
Cluster 3
C1
C3
C2Pi
Pi
Pi
© SuperDataScienceDeep Learning A-Z
© SuperDataScienceDeep Learning A-Z
Cluster 1
C1
Pi
© SuperDataScienceDeep Learning A-Z
Cluster 1
Cluster 2
C2
Pi
Pi
C1
© SuperDataScienceDeep Learning A-Z
Cluster 1
Cluster 2
Cluster 3
C1
C3
C2Pi
Pi
Pi
© SuperDataScienceDeep Learning A-Z
© SuperDataScienceDeep Learning A-Z
The Elbow Method
© SuperDataScienceDeep Learning A-Z
The Elbow Method
Optimal number of clusters

More Related Content

PPTX
Deep Learning A-Z™: AutoEncoders - Module 6
PPTX
Deep Learning A-Z™: Recurrent Neural Networks (RNN) - Module 3
PPTX
Deep Learning A-Z™: Regression & Classification - Module 7
PPTX
Deep Learning A-Z™: Convolutional Neural Networks (CNN) - Module 2
PDF
SNI 16-7062-2004 tentang Pengukuran Intensitas Penerangan di Tempat Kerja
PPTX
Deep Learning A-Z™: Boltzmann Machine - Module 5 - Boltzmann Machine
PPT
Information System Plan
PPTX
Chapter 1- INTRODUCTION TO SYSTEM ANALYSIS AND DESIGN by DEEPA (1).pptx
Deep Learning A-Z™: AutoEncoders - Module 6
Deep Learning A-Z™: Recurrent Neural Networks (RNN) - Module 3
Deep Learning A-Z™: Regression & Classification - Module 7
Deep Learning A-Z™: Convolutional Neural Networks (CNN) - Module 2
SNI 16-7062-2004 tentang Pengukuran Intensitas Penerangan di Tempat Kerja
Deep Learning A-Z™: Boltzmann Machine - Module 5 - Boltzmann Machine
Information System Plan
Chapter 1- INTRODUCTION TO SYSTEM ANALYSIS AND DESIGN by DEEPA (1).pptx

What's hot (20)

PPTX
Deep Learning A-Z™: Convolutional Neural Networks (CNN) - What Are Convolutio...
PPTX
Deep Learning A-Z™: Artificial Neural Networks (ANN) - The Activation Function
PPTX
Deep Learning A-Z™: Autoencoders - Sparse Autoencoders
PPTX
Deep Learning A-Z™: Artificial Neural Networks (ANN) - The Neuron
PPTX
Deep Learning A-Z™: Artificial Neural Networks (ANN) - Backpropagation
PPTX
Deep Learning A-Z™: Artificial Neural Networks (ANN) - Module 1
PPTX
Deep Learning A-Z™: Artificial Neural Networks (ANN) - Plan of Attack
PPTX
Deep Learning A-Z™: AutoEncoders - Training an AutoEncoder
PPTX
Deep Learning A-Z™: Convolutional Neural Networks (CNN) - Step 1(b): ReLU Layer
PPTX
Deep Learning A-Z™: Convolutional Neural Networks (CNN) - Step 2: Pooling
PPTX
Deep Learning A-Z™: Autoencoders - Contractive Autoencoders
PPTX
Deep Learning A-Z™: Self Organizing Maps (SOM) - How Do SOMs Work?
PPTX
Deep Learning A-Z™: Recurrent Neural Networks (RNN) - LSTMs
PPTX
Deep Learning A-Z™: Recurrent Neural Networks (RNN) - The Idea Behind Recurre...
PPTX
Deep Learning A-Z™: Boltzmann Machines - Restricted Boltzmann Machine
PPTX
Deep Learning A-Z™: Recurrent Neural Networks (RNN) - The Vanishing Gradient ...
PPTX
Deep Learning A-Z™: Convolutional Neural Networks (CNN) - Step 3: Flattening
PPTX
Deep Learning A-Z™: Convolutional Neural Networks (CNN) - Step 1: Convolution...
PPTX
Deep Learning A-Z™: Recurrent Neural Networks (RNN) - Practical Intuition
PPTX
Deep Learning A-Z™: Boltzmann Machines - Boltzmann Machine
Deep Learning A-Z™: Convolutional Neural Networks (CNN) - What Are Convolutio...
Deep Learning A-Z™: Artificial Neural Networks (ANN) - The Activation Function
Deep Learning A-Z™: Autoencoders - Sparse Autoencoders
Deep Learning A-Z™: Artificial Neural Networks (ANN) - The Neuron
Deep Learning A-Z™: Artificial Neural Networks (ANN) - Backpropagation
Deep Learning A-Z™: Artificial Neural Networks (ANN) - Module 1
Deep Learning A-Z™: Artificial Neural Networks (ANN) - Plan of Attack
Deep Learning A-Z™: AutoEncoders - Training an AutoEncoder
Deep Learning A-Z™: Convolutional Neural Networks (CNN) - Step 1(b): ReLU Layer
Deep Learning A-Z™: Convolutional Neural Networks (CNN) - Step 2: Pooling
Deep Learning A-Z™: Autoencoders - Contractive Autoencoders
Deep Learning A-Z™: Self Organizing Maps (SOM) - How Do SOMs Work?
Deep Learning A-Z™: Recurrent Neural Networks (RNN) - LSTMs
Deep Learning A-Z™: Recurrent Neural Networks (RNN) - The Idea Behind Recurre...
Deep Learning A-Z™: Boltzmann Machines - Restricted Boltzmann Machine
Deep Learning A-Z™: Recurrent Neural Networks (RNN) - The Vanishing Gradient ...
Deep Learning A-Z™: Convolutional Neural Networks (CNN) - Step 3: Flattening
Deep Learning A-Z™: Convolutional Neural Networks (CNN) - Step 1: Convolution...
Deep Learning A-Z™: Recurrent Neural Networks (RNN) - Practical Intuition
Deep Learning A-Z™: Boltzmann Machines - Boltzmann Machine
Ad

Similar to Deep Learning A-Z™: Self Organizing Maps (SOM) - Module 4 (20)

PPTX
Deep Learning A-Z™: Self Organizing Maps (SOM) - K-Means Clustering
PPTX
Deep Learning A-Z™: Self Organizing Maps (SOM) - K-Means Clustering (part 2)
PPTX
Deep Learning in Recommender Systems - RecSys Summer School 2017
PPTX
Kmeans
PPTX
[AAAI2018] Multispectral Transfer Network: Unsupervised Depth Estimation for ...
PDF
[AAAI2018] Multispectral Transfer Network: Unsupervised Depth Estimation for ...
PDF
Lecture 5 backpropagation
PDF
Deep learning on spark
PDF
AlphaZero and beyond: Polygames
PPTX
Artificial Neural Network
PDF
Cluster Analysis : Assignment & Update
PDF
Barga Data Science lecture 3
PDF
Pathfinding in games
PPTX
Deep Learning A-Z™: AutoEncoders - AutoEncoders
PDF
Slope one recommender on hadoop
PDF
Svm map reduce_slides
PPT
one shot15729752 Deep Learning for AI and DS
PDF
H2O Distributed Deep Learning by Arno Candel 071614
PPTX
MLU_DTE_Lecture_2.pptx
PDF
Towards Set Learning and Prediction - Laura Leal-Taixe - UPC Barcelona 2018
Deep Learning A-Z™: Self Organizing Maps (SOM) - K-Means Clustering
Deep Learning A-Z™: Self Organizing Maps (SOM) - K-Means Clustering (part 2)
Deep Learning in Recommender Systems - RecSys Summer School 2017
Kmeans
[AAAI2018] Multispectral Transfer Network: Unsupervised Depth Estimation for ...
[AAAI2018] Multispectral Transfer Network: Unsupervised Depth Estimation for ...
Lecture 5 backpropagation
Deep learning on spark
AlphaZero and beyond: Polygames
Artificial Neural Network
Cluster Analysis : Assignment & Update
Barga Data Science lecture 3
Pathfinding in games
Deep Learning A-Z™: AutoEncoders - AutoEncoders
Slope one recommender on hadoop
Svm map reduce_slides
one shot15729752 Deep Learning for AI and DS
H2O Distributed Deep Learning by Arno Candel 071614
MLU_DTE_Lecture_2.pptx
Towards Set Learning and Prediction - Laura Leal-Taixe - UPC Barcelona 2018
Ad

More from Kirill Eremenko (15)

PPTX
Deep Learning A-Z™: Regression & Classification - Simple Linear Regression - ...
PPTX
Deep Learning A-Z™: Regression & Classification - Simple Linear Regression - ...
PPTX
Deep Learning A-Z™: Regression & Classification - Logistic Regression
PPTX
Deep Learning A-Z™: Autoencoders - Stacked Autoencoders
PPTX
Deep Learning A-Z™: Autoencoders - Denoising Autoencoders
PPTX
Deep Learning A-Z™: Regression - Multiple Linear Regression Intuition
PPTX
Deep Learning A-Z™: Boltzmann Machines - Deep Belief Networks
PPTX
Deep Learning A-Z™: Boltzmann Machines - Contrastive Divergence
PPTX
Deep Learning A-Z™: Boltzmann Machines - Energy Based Models (ebm)
PPTX
Deep Learning A-Z™: Boltzmann Machines - Deep Boltzmann Machines
PPTX
Deep Learning A-Z™: Boltzmann Machines - Plan of Attack
PPTX
Deep Learning A-Z™: Boltzmann Machines - Module 5
PPTX
Deep Learning A-Z™: Self Organizing Maps (SOM) - How do SOMs learn (part 2)
PPTX
Deep Learning A-Z™: Self Organizing Maps (SOM) - Reading an Advanced SOM
PPTX
Deep Learning A-Z™: Self Organizing Maps (SOM) - How do SOMs learn (part 1)
Deep Learning A-Z™: Regression & Classification - Simple Linear Regression - ...
Deep Learning A-Z™: Regression & Classification - Simple Linear Regression - ...
Deep Learning A-Z™: Regression & Classification - Logistic Regression
Deep Learning A-Z™: Autoencoders - Stacked Autoencoders
Deep Learning A-Z™: Autoencoders - Denoising Autoencoders
Deep Learning A-Z™: Regression - Multiple Linear Regression Intuition
Deep Learning A-Z™: Boltzmann Machines - Deep Belief Networks
Deep Learning A-Z™: Boltzmann Machines - Contrastive Divergence
Deep Learning A-Z™: Boltzmann Machines - Energy Based Models (ebm)
Deep Learning A-Z™: Boltzmann Machines - Deep Boltzmann Machines
Deep Learning A-Z™: Boltzmann Machines - Plan of Attack
Deep Learning A-Z™: Boltzmann Machines - Module 5
Deep Learning A-Z™: Self Organizing Maps (SOM) - How do SOMs learn (part 2)
Deep Learning A-Z™: Self Organizing Maps (SOM) - Reading an Advanced SOM
Deep Learning A-Z™: Self Organizing Maps (SOM) - How do SOMs learn (part 1)

Recently uploaded (20)

PDF
3rd Neelam Sanjeevareddy Memorial Lecture.pdf
PDF
Physiotherapy_for_Respiratory_and_Cardiac_Problems WEBBER.pdf
PDF
FourierSeries-QuestionsWithAnswers(Part-A).pdf
PDF
RMMM.pdf make it easy to upload and study
PPTX
Pharma ospi slides which help in ospi learning
PPTX
1st Inaugural Professorial Lecture held on 19th February 2020 (Governance and...
PDF
Module 4: Burden of Disease Tutorial Slides S2 2025
PDF
Microbial disease of the cardiovascular and lymphatic systems
PDF
01-Introduction-to-Information-Management.pdf
PDF
grade 11-chemistry_fetena_net_5883.pdf teacher guide for all student
PDF
Insiders guide to clinical Medicine.pdf
PDF
VCE English Exam - Section C Student Revision Booklet
PPTX
Final Presentation General Medicine 03-08-2024.pptx
PPTX
master seminar digital applications in india
PPTX
PPH.pptx obstetrics and gynecology in nursing
PDF
STATICS OF THE RIGID BODIES Hibbelers.pdf
PPTX
Pharmacology of Heart Failure /Pharmacotherapy of CHF
PPTX
Cell Types and Its function , kingdom of life
PDF
The Lost Whites of Pakistan by Jahanzaib Mughal.pdf
PDF
BÀI TẬP BỔ TRỢ 4 KỸ NĂNG TIẾNG ANH 9 GLOBAL SUCCESS - CẢ NĂM - BÁM SÁT FORM Đ...
3rd Neelam Sanjeevareddy Memorial Lecture.pdf
Physiotherapy_for_Respiratory_and_Cardiac_Problems WEBBER.pdf
FourierSeries-QuestionsWithAnswers(Part-A).pdf
RMMM.pdf make it easy to upload and study
Pharma ospi slides which help in ospi learning
1st Inaugural Professorial Lecture held on 19th February 2020 (Governance and...
Module 4: Burden of Disease Tutorial Slides S2 2025
Microbial disease of the cardiovascular and lymphatic systems
01-Introduction-to-Information-Management.pdf
grade 11-chemistry_fetena_net_5883.pdf teacher guide for all student
Insiders guide to clinical Medicine.pdf
VCE English Exam - Section C Student Revision Booklet
Final Presentation General Medicine 03-08-2024.pptx
master seminar digital applications in india
PPH.pptx obstetrics and gynecology in nursing
STATICS OF THE RIGID BODIES Hibbelers.pdf
Pharmacology of Heart Failure /Pharmacotherapy of CHF
Cell Types and Its function , kingdom of life
The Lost Whites of Pakistan by Jahanzaib Mughal.pdf
BÀI TẬP BỔ TRỢ 4 KỸ NĂNG TIẾNG ANH 9 GLOBAL SUCCESS - CẢ NĂM - BÁM SÁT FORM Đ...

Deep Learning A-Z™: Self Organizing Maps (SOM) - Module 4