This document summarizes key points from a lecture on deep learning theory:
1) It discusses the Maurey sampling technique, which shows that a finite sample approximation X^ of a random variable X converges to X as the number of samples k goes to infinity.
2) It proposes extending this technique to sample finite-width neural networks by converting the weight distribution of an infinite network to a probability measure through normalization.
3) The approximation error between outputs of the infinite and finite networks is bounded using Maurey sampling, with the bound converging to zero as the number of samples increases.
Related topics: