The document provides an overview of recurrent neural networks (RNNs) and their advantages over feedforward neural networks. It describes the basic structure and training of RNNs using backpropagation through time. RNNs can process sequential data of variable lengths, unlike feedforward networks. However, RNNs are difficult to train due to vanishing and exploding gradients. More advanced RNN architectures like LSTMs and GRUs address this by introducing gating mechanisms that allow the network to better control the flow of information.