The document provides an overview of LSTM (Long Short-Term Memory) networks. It first reviews RNNs (Recurrent Neural Networks) and their limitations in capturing long-term dependencies. It then introduces LSTM networks, which address this issue using forget, input, and output gates that allow the network to retain information for longer. Code examples are provided to demonstrate how LSTM remembers information over many time steps. Resources for further reading on LSTMs and RNNs are listed at the end.
Related topics: