This document discusses the wave equation and properties of one-dimensional waves. It begins by defining the wave equation as a hyperbolic partial differential equation. It then derives the one-dimensional wave equation mathematically by taking the double derivatives of a wave function with respect to position and time. The key result is that the second derivative of the wave function with respect to position equals the inverse velocity squared times the second derivative with respect to time. It then discusses the differences between traveling waves, which transport energy and move crests/troughs, and standing waves, which remain in a fixed position with nodes and antinodes.