SlideShare a Scribd company logo
   
Direction Finding with Arrays in Matlab 
By: Ryan Bull, Garrett Hoch, ​Surya Chandra, Yeshwanth Malekar 
1.Introduction
The purpose of this project is to explore the different methods of array direction finding in 
Matlab.  
The direction finding methods that will be explored is the eigen beam method, periodogram, 
Capon’s method, MUltiple SIgnal Classification (MUSIC), Maximum Entropy Method (MEM), 
and Pisarenko Harmonic Decomposition (PHD). Determining the correlation matrix is a critical 
first step for all of the methods listed above. For this reason, the process of calculating the 
correlation matrix will be discussed in depth. By the end of this project the direction of an 
incoming signal will be able to be determined with the above listed methods. The system will 
be modeled after a uniform linear array with a varying number of elements. 
2.Forming the Correlation Matrix
All of the methods described in this project first require calculating the correlation 
matrix for the antenna array and incoming signal(s) system. The process for this is described 
below. For a given antenna array, the array steering vector, A, is  
 
where J is the number of elements in the array, and M is the number of incoming signals. A 
gives the phase of incoming plane waves at each of the elements in the array. The  signals 
are in turn described by a vector, 
 
where   correspond to each input signal. The output of the array is therefore given bysM  
   
where   is the vector describing the noise inherent in the system. The covariance matrices(t)N  
are then calculated for   and   by(t)X (t)N  
1 
   
 
The covariance matrix can then manipulated depending on the method to be used to 
determine the directions of each signal. 
3. Method 1: Eigen Beam
The eigen beam method uses a simple eigenvalue decomposition to determine the directions 
of the incoming signals. The covariance matrix can be decomposed by 
 
where   are the eigenvalues and   is a matrix composed of the eigenvalues associatedλJ V λ  
with each vector. There will be one eigenvalue for each input signal, while the other 
eigenvalues correspond to the noise, and the total number of eigenvalues is the number of 
elements in the array. The largest eigenvalues correspond to the signals. New array factors 
are calculated for each eigenvalue, with the weights of the array factor given by the 
eigenvector for the eigenvalue.  
 
This was done in Matlab for a four­element uniform array with half­wavelength spacing. The 
signal is a 1 V/m plane wave incident at 30° and ­50°. This gives eigenvalues and vectors of  
 
When turned into weights for an array factor, the results are 
2 
   
 
Figure 1: System with noise variance of .01 
 
The signal array factor clearly has a maximum at 30° and ­50°, while the noise array factors 
have nulls. 
 
Figure 2: System with noise variance of .1 
 
3 
   
The eigen beam method is clearly very resistant to noise. Changing the noise variance had 
almost no change on the array factor. 
 
4. Method 2: Periodogram
The periodogram uses the main beam of the array to determine the location of the signal.The 
main beam is steered using beam steering across the desired angles. The received signal will 
be the strongest when the main beam is aligned with it. This will give a peak in the power 
received. The plot of the output power versus angle is a periodogram. The equations for the 
periodogram are given below: 
 
 
R is the same correlation matrix computed above. A gives the array steering vector. The 
graph below shows an example that was produced in matlab. There are three different signal 
shown here. The red line has has the signal incident at ­30 and 30 degrees. The nulls are 
distinct in this case as the incident angles are far enough apart. The other two singal show 
that as the angles of the incident signals becomes closer and closer the direction of the signal 
is in accurate. The blue signal has the incoming signal at 10 and 30 degrees. The black line 
has the signal incoming at 20 and 30 degrees, but it appears as if there is only a single signal 
incoming at an angle of 25 degrees. This smearing of the signal is due to the beamwidth of 
the main being large and not precise.  
 
Figure 3: System with noise variance of .01 
4 
   
 
Figure 4: System with noise variance of .1 
 
The periodogram is very sensitive to noise. Increasing the noise greatly raised the noise floor. 
With a little more noise the signals would not be seen at all. This is in addition to the 
periodogram’s inability to differentiate between signals that are close together. These factors 
combine to make the periodogram the least robust method of direction finding, but it is simple 
to implement. The periodogram will be used to compare the effectiveness of all the other 
methods described. 
5. Method 3: Capon’s method
Unlike the periodogram method Capon’s uses nulls in the array pattern to detect the direction 
of a signal. Capon’s method uses statistics, specifically, maximum likelihood estimate. This 
method allows for the distinction of the estimated signal while lowering the magnitude of all 
other sources. Each antenna in the array is weighted as to maximize the 
signal­to­interference ratio. Once the array is weighted properly the equation below can be 
used to calculate the direction of the signal. 
 
5 
   
The graph below shows both the periodogram and Capon’s method. The signal has nulls at 
0,10 and ­60 with the weights of 2, 4, and 1. The periodogram cannot distinguish between the 
signals at 0 and 10 while Capon’s method can. The noise floor with Capon’s method is also 
much lower than the periodogram method making the peaks more distinct.  
 
Figure 5: System with noise variance of .01 
 
 
Figure 6: System with noise variance of .1 
6 
   
 
Capon’s method is fairly resistant to noise. However, it can be seen that the added noise 
makes the difference between closely spaced peaks much smaller. With too much noise this 
method would be unable to differentiate between the two close peaks. 
6. Method 4: MUltiple SIgnal Classification (MUSIC)
MUSIC makes two major assumptions; noise is uncorrelated and the signals are uncorrelated 
or only mildly correlated. This is one of the most popular and studied methods for determining 
the direction of arrival of signals. The equation used is below: 
 
where   is again the matrix of the eigenvectors. The graph shows that there is even furtherV λ  
refinement in the peaks of closely spaced incident angles. The noise floor is further lowered 
as well. The weights of the signals do not affect the detection as much either. Even with the 
better performance this method is not very robust. 
 
Figure 7: System with noise variance of .01 
7 
   
 
Figure 8: System with noise variance of .1 
 
MUSIC is very resistant to noise. Increasing the noise variance had very little effect on the 
plot. The two close peaks are still very easy to identify.  
7. Method 5: Maximum Entropy Method (MEM)
The MEM method places poles at the location of the the incoming signal in a rational function 
as shown below. With no zeros in the transfer function the peaks are very distinct. For 
different values of n the results will differ. The magnitudes of the incoming signal is reversed 
from the actual weights present of the incoming signal. 
 
where n is the nth column of the covariance matrix. 
8 
   
 
Figure 9: System with noise variance of .01 
 
Figure 10: System with noise variance of .1 
 
9 
   
MEM is fairly resistant to noise. The peaks are not as sharp with the increased noise, but they 
are still all readily identifiable.  
8. Method 6:Pisarenko Harmonic Decomposition (PHD)
The pisarenko Harmonic decomposition uses the smallest eigenvector to minimize the mean 
squared error of the array output. The weights of the system are normalized to 1.  Using the 
equation below the following graph is obtained. It can be seen that the peaks of the incoming 
signals are very sharp, but there are some erroneous peaks at other angles. The equation for 
the PHD method is given below 
 
where  is the eigenvector associated with the smallest noise eigenvalue. This method is alsoe1  
highly variable to the sampling rate. Sampling at different rates has dramatic effects on the 
results, and these sampling issues are likely the cause of the extra peaks. 
 
Figure 11: System with noise variance of .01 
10 
   
 
Figure 12: System with noise variance of .1 
 
Increasing the noise variance actually had the effect of removing one of the extraneous peaks 
around 30 degrees. However, the other extraneous peak around ­40 degrees is much more 
pronounced. The real peaks are still easily differentiated.  
9. Conclusion
The goal of this project was to show multiple methods of direction finding or direction of arrival 
methods for antenna arrays. Ideally some of these methods would have been implemented 
using software defined radios. Due to time constraints this was not done. Instead, Matlab was 
used to simulate an eight element array with three incoming signals. The basis for direction 
finding is determining the correlation matrix. Once the correlation matrix is found the 
implementation of any of the 6 methods is relatively simple.  
There are trade offs for each method that will need to be considered when deciding 
what method to use. The periodogram method is the most simple method but it cannot make 
the distinction between closely spaced signals. The more complex methods: Eigen beams, 
Capon’s, MUSIC, MEM, and PHD are more successful in interpreting close signals and lower 
the noise floor of all other signals. They are also less sensitive to increased noise. The eigen 
beam and MUSIC methods seem to be the most robust for noise response, followed by 
Capon’s and MEM, and finally the PHD method. The PHD method is notable in that in 
addition to its increased noise sensitivity, it also has issues with sampling creating extra 
11 
   
peaks. For robust direction finding with multiple signals, either the eigen beam or MUSIC 
methods should probably be used. If there is only one incoming signal, a simpler method like 
the periodogram is sufficient. 
 
References
Haupt, Randy L. ​Antenna Arrays: A Computational Approach​. Hoboken, NJ: Wiley­IEEE, 
2010.  
 
Haupt, Randy L. ​Direction Finding Arrays or Angle of Arrival Estimation​. Colorado School of 
Mines Antennas Course Lecture. 2015. 
Appendix A: Matlab Code
Eigen Beam
%% DATA 
f = 2*10^9; % frequency 
c = 3 *10^8; % speed of light 
j= sqrt(­1); 
 
lambda = c/f; % wave length 
k = 2*pi/lambda; % wave number 
d = lambda/2; % distance between adjacent array elements 
 
% Locations of the linear array elements 
x1= 0; 
x2=x1 + d; 
x3=x2 + d; 
x4=x3 + d; 
 
%%%%%THREE SETS OF DATA USED%%%%% 
% STEER ANGLE 
thetaV{1}=20; 
thetaV{2}=[­50;30]; 
thetaV{3}=[­50;30]; 
 
% SIGNALS 
S1V{1} = 1; 
S1V{2} = [1 0;0 1]; 
S1V{3} = [1 0 ; 0 2]; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
%LOOPING THROUGH EACH SET OF DATA 
for data=1:3 
   
    %steer angle of the signal 
    theta = (thetaV{data}) * pi/180; 
   
12 
   
    %Signal Vector V/m 
    S1 = (S1V{data}); 
   
    % Steering Vector 
    A = [ 
        exp(­j*k*x1*sin(theta')); 
        exp(­j*k*x2*sin(theta')); 
        exp(­j*k*x3*sin(theta')); 
        exp(­j*k*x4*sin(theta')) ]; 
   
    % Noise 
    noise_var = .01; 
    N =  sqrt(noise_var) * randn(size(A,1),size(S1,1)); 
   
    X1 = A * S1; % Output of the antenna array without noise 
    X = X1 + N; % Output of the antenna array with noise 
   
    Rn = noise_var * eye(size(A,1)); % Noise Covariance Matrix 
    Rs = (1/size(X1,1))*(X1*X1'); % Signal Covariance Matrix 
    Rxx = Rs + Rn; % Signal+Noise Covariance Matrix 
   
    %Display the data index being used 
    disp('For Data '); 
    disp(data);  
   
    [V,D] = eig(Rxx); % Eigen Decomposition 
   
    %Eigen vectors to polar form 
    [PHASE,AMPLITUDE]= cart2pol(real(V),imag(V));  
    EIGENVALUES = eig(D); 
   
    %Printing the Eigen values for current data for reference 
    EIGENVALUES 
    AMPLITUDE 
    PHASE 
   
%% EIGEN BEAMS 
   
%%%%%%%%%% PLOTS%%%%%%%%%%%%%%% 
    th = linspace(­pi/2,pi/2,100);% Sampling theta 
    color = ['r','b','g','c']; 
    for loop=1:size(A,1) 
   
        figure(data) 
        % Each eigen vector used as weights for antenna array elements 
        % Starting with the largest eigen value 
        w = V(:,size(A,1)+1­loop);  
 
        %Array Factor corresponding to that eigen weights 
        AF = w(1)* exp(j*k*x1*sin(th)) + ... 
13 
   
            w(2)* exp(j*k*x2*sin(th)) + ... 
            w(3)* exp(j*k*x3*sin(th)) + ... 
            w(4)* exp(j*k*x4*sin(th)) ; 
        AFabs(:,loop) = abs(AF); 
    end 
    AFF = 20*log10((AFabs)/max(AFabs(:))); %dB value of the AF 
   
    % Plotting signals and noise components seperately 
    for pp = 1 : size(A,1) 
        hold on 
        if pp<=size(S1,1) 
            plot(th*(180/pi),AFF(:,pp),color(pp),'LineWidth',2); 
            Legend{pp}=strcat('Signal',num2str(pp)); 
        else 
            plot(th*(180/pi),AFF(:,pp),strcat('.­',color(pp)),'LineWidth',1); 
            Legend{pp}=strcat('Noise',num2str(pp­size(S1,1))); 
        end 
    end 
   
    %Formatting the plots 
    hold off 
    leg = legend(Legend,'Location','SE','FontSize',12); 
    set(leg,'FontSize',12); 
    xlabel('theta (degrees)','FontSize',18); 
    ylabel('AF (dB)','FontSize',18); 
    title('Eigen Beams','FontSize',18) 
    hold off 
    axis([­90 90 ­50 0]); 
   
    pause 
   
end 
Data for the remaining methods
%% DATA 
f = 2*10^9; % frequency 
c = 3 *10^8; % speed of light 
j= sqrt(­1); 
 
lambda = c/f; % wave length 
k = 2*pi/lambda; % wave number 
d = lambda/2; % distance between adjacent array elements 
 
% Locations of the linear array elements 
x1= 0; 
x2=x1 + d; 
x3=x2 + d; 
x4=x3 + d; 
x5=x4 + d; 
x6=x5 + d; 
14 
   
x7=x6 + d; 
x8=x7 + d; 
 
%steer angle of the signal 
theta = [­60; 
    0; 
    10] * pi/180; 
 
%Signal V/m 
S1 = [1 0 0; 
    0 2 0; 
    0 0 4]; 
 
% Steering Vector 
A = [ exp(­j*k*x1*sin(theta')); 
    exp(­j*k*x2*sin(theta')); 
    exp(­j*k*x3*sin(theta')); 
    exp(­j*k*x4*sin(theta')); 
    exp(­j*k*x5*sin(theta')); 
    exp(­j*k*x6*sin(theta')); 
    exp(­j*k*x7*sin(theta')); 
    exp(­j*k*x8*sin(theta'))]; 
 
% Symbol version of steering vector 
syms t 
A_theta = [ 
    exp(­j*k*x1*sin(t)); 
    exp(­j*k*x2*sin(t)); 
    exp(­j*k*x3*sin(t)); 
    exp(­j*k*x4*sin(t)); 
    exp(­j*k*x5*sin(t)); 
    exp(­j*k*x6*sin(t)); 
    exp(­j*k*x7*sin(t)); 
    exp(­j*k*x8*sin(t)) 
    ]; 
 
%Noise 
noise_var = .01; 
N =  sqrt(noise_var) * randn(size(A,1),size(S1,1)); 
 
X1 = A * S1; %Output of antenna without noise 
X = X1 + N; %Output of the antenna array with noise 
 
Rn = noise_var * eye(size(A,1)); % Noise Covariance Matrix 
Rs = (1/size(X1,1))*(X1*X1'); % Signal Covariance Matrix 
Rxx = Rs + Rn; % Signal+Noise Covariance Matrix 
 
[V,D] = eig(Rxx); %Eigen Decomposition 
15 
   
Periodogram
%% PERIODOGRAM 
  
%%%%%%%%%% PLOTS%%%%%%%%%%%%%%% 
 
    color{1} = 'r'; 
    color{2} = '­­b'; 
    color{3} = '­­black'; 
    color{4} = 'g'; 
    th = linspace(­pi/2,pi/2,100); % Sampling theta 
   
    for i = 1:size(th,2) 
        % Computing steering for each theta 
        At = double(subs(A_theta,{t},{th(i)})); 
   
        % Computing Periodogram Value 
        P(i) = ((At'*(Rxx)*At)); 
    end 
   
    % Plot in dB 
    Pdb(1,:) = 10*log10(abs(P)/max(abs(P))); 
    plot(th*(180/pi),(Pdb),char(color{data}),'LineWidth',1.2); 
    hold on 
   
end 
Capon
%%%%%%%%%% PLOTS %%%%%%%%%%%%%%% 
%% PERIODOGRAM + CAPON 
color{1} = '­­r'; 
color{2} = '­­b'; 
color{3} = 'black'; 
color{4} = 'g'; 
th = linspace(­pi/2,pi/2,207);% Sampling theta 
 
% Calculating Periodogram and Capon values at each theta sample 
for i = 1:size(th,2) 
    At = double(subs(A_theta,{t},{th(i)})); 
    P(i) = ((At'*(Rxx)*At)); 
    CAP(i) = (1/(At'*inv(Rxx)*At)); 
end 
 
% Plotting in dB scale 
Pdb(1,:) = 10*log10(abs(P)/max(abs(P))); 
Pdb2(1,:) = 10*log10(abs(CAP)/max(abs(CAP))); 
plot(th*(180/pi),(Pdb),char(color{1}),'LineWidth',2); 
hold on 
plot(th*(180/pi),(Pdb2),char(color{3}),'LineWidth',2); 
hold off 
16 
   
 
% Formatting the plots 
leg=legend('PERIODOGRAM','CAPON'); 
set(leg,'FontSize',14); 
xlabel('theta (degrees)','FontSize',18); 
ylabel('P(theta) dB','FontSize',18); 
q = char(39); 
title(strcat('CAPON',q,'S METHOD'),'FontSize',18); 
%axis([­90 90 ­20 0]); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
MUSIC
%% PERIODOGRAM + MUSIC 
 
%%%%%%%%%% PLOTS%%%%%%%%%%%%%%% 
 
color{1} = '­­r'; 
color{2} = '­­b'; 
color{3} = 'black'; 
color{4} = 'g'; 
th = linspace(­pi/2,pi/2,304);% Sampling theta     %304 
 
% V*V' calculated for Noise eigen vectors only 
VVt = V(:,1:end­3)*V(:,1:end­3)'; 
 
% Calculating Periodogram and Music values at each theta sample 
for i = 1:size(th,2) 
    At = double(subs(A_theta,{t},{th(i)})); 
    P(i) = ((At'*(Rxx)*At)); 
    MUS(i) = (At'*At/((At'*VVt*At))); 
end 
 
% Plotting in dB scale 
Pdb(1,:) = 10*log10(abs(P)/max(abs(P))); 
Pdb2(1,:) = 10*log10(abs(MUS)/max(abs(MUS))); 
plot(th*(180/pi),(Pdb),char(color{1}),'LineWidth',2); 
hold on 
plot(th*(180/pi),(Pdb2),char(color{3}),'LineWidth',2); 
hold off 
 
% Formatting the plots 
leg=legend('PERIODOGRAM','MUSIC'); 
set(leg,'FontSize',18); 
xlabel('theta (degrees)','FontSize',18); 
ylabel('P(theta) dB','FontSize',18); 
q = char(39); 
title('MUSIC','FontSize',18); 
axis([­90 90 ­30 0]); 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
17 
   
MEM
%% PERIODOGRAM + MEM 
color{1} = '­­r'; 
color{2} = '­­b'; 
color{3} = 'black'; 
color{4} = 'g'; 
th = linspace(­pi/2,pi/2,198); % Sampling Theta 
 
RT = Rxx; 
RTinv = inv(RT); 
 
% Calculating Periodogram and MEM values at each theta sample 
for i = 1:size(th,2) 
    At = double(subs(A_theta,{t},{th(i)})); 
    P(i) = ((At'*(Rxx)*At)); 
    % Calculating only for noise signals 
    MEM(i) = (1/((At'*RTinv(:,end­4:end)*RTinv(:,end­4:end)'*At))); 
end 
 
% Plotting in dB scale 
Pdb(1,:) = 10*log10(abs(P)/max(abs(P))); 
Pdb2(1,:) = 10*log10(abs(MEM)/max(abs(MEM))); 
plot(th*(180/pi),(Pdb),char(color{1}),'LineWidth',2); 
hold on 
plot(th*(180/pi),(Pdb2),char(color{3}),'LineWidth',2); 
hold off 
 
% Formatting the plots 
leg=legend('PERIODOGRAM','MEM'); 
set(leg,'FontSize',18); 
xlabel('theta (degrees)','FontSize',18); 
ylabel('P(theta) dB','FontSize',18); 
title('MEM','FontSize',18); 
axis([­90 90 ­30 0]); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
PHD
%% PERIODOGRAM + PHD 
color{1} = '­­r'; 
color{2} = '­­b'; 
color{3} = 'black'; 
color{4} = 'g'; 
 
%%%% PLOT CHANGES VERY MUCH WITH CHANGE IN SAMPLE RATE 
th = ­pi/2:.011:pi/2; % Sampling Theta  
%%%% 
 
RT = Rxx; 
RTinv = inv(RT); 
18 
   
% Calculating Periodogram and Music values at each theta sample 
for i = 1:size(th,2) 
    At = double(subs(A_theta,{t},{th(i)})); 
    P(i) = ((At'*(Rxx)*At)); 
    % Only Noise eigen vector with least eigen value is considered  
    PHD(i) = (1/((At'*(V(:,1)))))^2; 
end 
% Plotting in dB scale 
Pdb(1,:) = 10*log10(abs(P)/max(abs(P))); 
Pdb2(1,:) = 10*log10(abs(PHD)/max(abs(PHD))); 
plot(th*(180/pi),(Pdb),char(color{1}),'LineWidth',2); 
hold on 
plot(th*(180/pi),(Pdb2),char(color{3}),'LineWidth',2); 
hold off 
 
% Formatting the plots 
leg=legend('PERIODOGRAM','PHD'); 
set(leg,'FontSize',18); 
xlabel('theta (degrees)','FontSize',18); 
ylabel('P(theta) dB','FontSize',18); 
title('PHD','FontSize',18); 
axis([­90 90 ­30 0]); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
19 

More Related Content

PDF
Symbol Based Modulation Classification using Combination of Fuzzy Clustering ...
PDF
Hybridization of Meta-heuristics for Optimizing Routing protocol in VANETs
PDF
A Learning Automata Based Prediction Mechanism for Target Tracking in Wireles...
PDF
D0931621
PDF
Implementation of Fuzzy Logic for the High-Resolution Remote Sensing Images w...
PDF
Tsp2008 lp feng
PDF
Paper id 252014146
PDF
Optimized Robot Path Planning Using Parallel Genetic Algorithm Based on Visib...
Symbol Based Modulation Classification using Combination of Fuzzy Clustering ...
Hybridization of Meta-heuristics for Optimizing Routing protocol in VANETs
A Learning Automata Based Prediction Mechanism for Target Tracking in Wireles...
D0931621
Implementation of Fuzzy Logic for the High-Resolution Remote Sensing Images w...
Tsp2008 lp feng
Paper id 252014146
Optimized Robot Path Planning Using Parallel Genetic Algorithm Based on Visib...

What's hot (20)

PDF
A COMPARISON BETWEEN SWARM INTELLIGENCE ALGORITHMS FOR ROUTING PROBLEMS
PDF
Towards Machine Learning of Motor Skills
PDF
Hybrid multi objectives genetic algorithms and immigrants scheme for dynamic ...
PDF
Efficient Forecasting of Exchange rates with Recurrent FLANN
PDF
EFFECTIVE REDIRECTING OF THE MOBILE ROBOT IN A MESSED ENVIRONMENT BASED ON TH...
PDF
EFFECTIVE REDIRECTING OF THE MOBILE ROBOT IN A MESSED ENVIRONMENT BASED ON TH...
PDF
A Low Rank Mechanism to Detect and Achieve Partially Completed Image Tags
PDF
Routing in Wireless Mesh Networks: Two Soft Computing Based Approaches
PDF
Multiple Ant Colony Optimizations for Stereo Matching
PDF
Multi Object Tracking Methods Based on Particle Filter and HMM
PDF
Adaptive Training of Radial Basis Function Networks Based on Cooperative
DOCX
IEEE 2014 JAVA DATA MINING PROJECTS A fast clustering based feature subset se...
PDF
Application of normalized cross correlation to image registration
PDF
Combining Neural Network and Firefly Algorithm to Predict Stock Price in Tehr...
PDF
International Journal of Engineering Research and Development (IJERD)
PDF
Multi-Robot Task Allocation using Meta-heuristic Optimization
PDF
A Path Planning Technique For Autonomous Mobile Robot Using Free-Configuratio...
DOCX
A fast clustering based feature subset selection algorithm for high-dimension...
PDF
1-s2.0-S092523121401087X-main
PDF
Performance Analysis of the Sigmoid and Fibonacci Activation Functions in NGA...
A COMPARISON BETWEEN SWARM INTELLIGENCE ALGORITHMS FOR ROUTING PROBLEMS
Towards Machine Learning of Motor Skills
Hybrid multi objectives genetic algorithms and immigrants scheme for dynamic ...
Efficient Forecasting of Exchange rates with Recurrent FLANN
EFFECTIVE REDIRECTING OF THE MOBILE ROBOT IN A MESSED ENVIRONMENT BASED ON TH...
EFFECTIVE REDIRECTING OF THE MOBILE ROBOT IN A MESSED ENVIRONMENT BASED ON TH...
A Low Rank Mechanism to Detect and Achieve Partially Completed Image Tags
Routing in Wireless Mesh Networks: Two Soft Computing Based Approaches
Multiple Ant Colony Optimizations for Stereo Matching
Multi Object Tracking Methods Based on Particle Filter and HMM
Adaptive Training of Radial Basis Function Networks Based on Cooperative
IEEE 2014 JAVA DATA MINING PROJECTS A fast clustering based feature subset se...
Application of normalized cross correlation to image registration
Combining Neural Network and Firefly Algorithm to Predict Stock Price in Tehr...
International Journal of Engineering Research and Development (IJERD)
Multi-Robot Task Allocation using Meta-heuristic Optimization
A Path Planning Technique For Autonomous Mobile Robot Using Free-Configuratio...
A fast clustering based feature subset selection algorithm for high-dimension...
1-s2.0-S092523121401087X-main
Performance Analysis of the Sigmoid and Fibonacci Activation Functions in NGA...
Ad

Similar to Direction Finding - Antennas Project (20)

PDF
Optimal Synthesis of Array Pattern for Concentric Circular Antenna Array Usin...
PDF
Ag4301181184
PDF
Active learning algorithms in seismic facies classification
PDF
A New Method Based on MDA to Enhance the Face Recognition Performance
PDF
PATTERN SYNTHESIS OF NON-UNIFORM AMPLITUDE EQUALLY SPACED MICROSTRIP ARRAY AN...
PDF
Kunyang_Li_AAS2016
PDF
Blind Source Separation of Super and Sub-Gaussian Signals with ABC Algorithm
PDF
Enhancing the Radiation Pattern of Phase Array Antenna Using Particle Swarm O...
PDF
J010116069
PDF
Direction of Arrival Estimation Based on MUSIC Algorithm Using Uniform and No...
PDF
Comparision of Clustering Algorithms usingNeural Network Classifier for Satel...
PDF
TREND REMOVAL FROM RAMAN SPECTRA WITH LOCAL VARIANCE ESTIMATION AND CUBIC SPL...
PDF
TREND REMOVAL FROM RAMAN SPECTRA WITH LOCAL VARIANCE ESTIMATION AND CUBIC SPL...
PDF
Trend Removal from Raman Spectra With Local Variance Estimation and Cubic Spl...
PDF
TREND REMOVAL FROM RAMAN SPECTRA WITH LOCAL VARIANCE ESTIMATION AND CUBIC SPL...
PDF
TREND REMOVAL FROM RAMAN SPECTRA WITH LOCAL VARIANCE ESTIMATION AND CUBIC SPL...
PDF
Trend removal from raman spectra with local variance estimation and cubic spl...
PPTX
5. Global and Local Alignment Algorithms.pptx
PDF
PDF
D04922630
Optimal Synthesis of Array Pattern for Concentric Circular Antenna Array Usin...
Ag4301181184
Active learning algorithms in seismic facies classification
A New Method Based on MDA to Enhance the Face Recognition Performance
PATTERN SYNTHESIS OF NON-UNIFORM AMPLITUDE EQUALLY SPACED MICROSTRIP ARRAY AN...
Kunyang_Li_AAS2016
Blind Source Separation of Super and Sub-Gaussian Signals with ABC Algorithm
Enhancing the Radiation Pattern of Phase Array Antenna Using Particle Swarm O...
J010116069
Direction of Arrival Estimation Based on MUSIC Algorithm Using Uniform and No...
Comparision of Clustering Algorithms usingNeural Network Classifier for Satel...
TREND REMOVAL FROM RAMAN SPECTRA WITH LOCAL VARIANCE ESTIMATION AND CUBIC SPL...
TREND REMOVAL FROM RAMAN SPECTRA WITH LOCAL VARIANCE ESTIMATION AND CUBIC SPL...
Trend Removal from Raman Spectra With Local Variance Estimation and Cubic Spl...
TREND REMOVAL FROM RAMAN SPECTRA WITH LOCAL VARIANCE ESTIMATION AND CUBIC SPL...
TREND REMOVAL FROM RAMAN SPECTRA WITH LOCAL VARIANCE ESTIMATION AND CUBIC SPL...
Trend removal from raman spectra with local variance estimation and cubic spl...
5. Global and Local Alignment Algorithms.pptx
D04922630
Ad

More from Surya Chandra (7)

PDF
Robotics Simulation by Wireless Brains - ROBOKDC'15 Project
PDF
Forward Bit Error Correction - Wireless Communications
PDF
Wordoku Puzzle Solver - Image Processing Project
PDF
Smart Bin – Advanced Control System Design Project
PDF
Augmented Reality Video Playlist - Computer Vision Project
PDF
Balancing Robot Kalman Filter Design – Estimation Theory Project
PDF
Exploring Support Vector Regression - Signals and Systems Project
Robotics Simulation by Wireless Brains - ROBOKDC'15 Project
Forward Bit Error Correction - Wireless Communications
Wordoku Puzzle Solver - Image Processing Project
Smart Bin – Advanced Control System Design Project
Augmented Reality Video Playlist - Computer Vision Project
Balancing Robot Kalman Filter Design – Estimation Theory Project
Exploring Support Vector Regression - Signals and Systems Project

Recently uploaded (20)

PPTX
Fundamentals of Mechanical Engineering.pptx
PDF
The CXO Playbook 2025 – Future-Ready Strategies for C-Suite Leaders Cerebrai...
PDF
III.4.1.2_The_Space_Environment.p pdffdf
PPT
Project quality management in manufacturing
PDF
PREDICTION OF DIABETES FROM ELECTRONIC HEALTH RECORDS
PDF
Unit I ESSENTIAL OF DIGITAL MARKETING.pdf
PPT
Total quality management ppt for engineering students
PDF
Categorization of Factors Affecting Classification Algorithms Selection
PPTX
Foundation to blockchain - A guide to Blockchain Tech
PDF
Level 2 – IBM Data and AI Fundamentals (1)_v1.1.PDF
PPTX
CARTOGRAPHY AND GEOINFORMATION VISUALIZATION chapter1 NPTE (2).pptx
PPTX
Fundamentals of safety and accident prevention -final (1).pptx
PPTX
6ME3A-Unit-II-Sensors and Actuators_Handouts.pptx
PDF
A SYSTEMATIC REVIEW OF APPLICATIONS IN FRAUD DETECTION
PDF
Mitigating Risks through Effective Management for Enhancing Organizational Pe...
PPTX
Infosys Presentation by1.Riyan Bagwan 2.Samadhan Naiknavare 3.Gaurav Shinde 4...
PPTX
MET 305 2019 SCHEME MODULE 2 COMPLETE.pptx
PDF
BIO-INSPIRED HORMONAL MODULATION AND ADAPTIVE ORCHESTRATION IN S-AI-GPT
PPTX
Construction Project Organization Group 2.pptx
PDF
737-MAX_SRG.pdf student reference guides
Fundamentals of Mechanical Engineering.pptx
The CXO Playbook 2025 – Future-Ready Strategies for C-Suite Leaders Cerebrai...
III.4.1.2_The_Space_Environment.p pdffdf
Project quality management in manufacturing
PREDICTION OF DIABETES FROM ELECTRONIC HEALTH RECORDS
Unit I ESSENTIAL OF DIGITAL MARKETING.pdf
Total quality management ppt for engineering students
Categorization of Factors Affecting Classification Algorithms Selection
Foundation to blockchain - A guide to Blockchain Tech
Level 2 – IBM Data and AI Fundamentals (1)_v1.1.PDF
CARTOGRAPHY AND GEOINFORMATION VISUALIZATION chapter1 NPTE (2).pptx
Fundamentals of safety and accident prevention -final (1).pptx
6ME3A-Unit-II-Sensors and Actuators_Handouts.pptx
A SYSTEMATIC REVIEW OF APPLICATIONS IN FRAUD DETECTION
Mitigating Risks through Effective Management for Enhancing Organizational Pe...
Infosys Presentation by1.Riyan Bagwan 2.Samadhan Naiknavare 3.Gaurav Shinde 4...
MET 305 2019 SCHEME MODULE 2 COMPLETE.pptx
BIO-INSPIRED HORMONAL MODULATION AND ADAPTIVE ORCHESTRATION IN S-AI-GPT
Construction Project Organization Group 2.pptx
737-MAX_SRG.pdf student reference guides

Direction Finding - Antennas Project